OBSERVER BASED SENSOR MONITORING IN
AN ACTIVE FRONT STEERING SYSTEM
USING EXPLICIT SENSOR FAILURE
MODELLING

W. Reinelt and C. Lundquist

ZF Lenksysteme GmbH, Richard Bullinger Strafle,
78527 Schwdbisch Gmiind, Germany.
E-mail: Wolfgang. Reinelt@zf-lenksysteme.com

Abstract: Active front steering is an emerging steering technology for passenger
cars that realises a mechatronic superposition of an angle to the hand steering
wheel angle that is prescribed by the driver. This contribution describes algo-
rithms, used to ensure — along with others — the overall safety of the system (i.e.
preventing hazardous behaviour). In particular, observers are derived for estimat-
ing the position of the electric motor, used in the active front steering system as
an actuator. These observers are accompanied by common failure patterns such as
drift or offset in the sensors. Sample measurements from a prototype vehicle are

presented. Copyright © 2005 IFAC

Keywords: Brushless DC motor, sensor failures, fault detection, Luenberger

observer.

1. INTRODUCTION AND MOTIVATION

Active front steering is a newly developed mecha-
tronic steering system for passenger cars that re-
alises an electronically controlled superposition of
an angle to the hand steering wheel angle that is
prescribed by the driver.

A great deal of functionality that is housed in the
electronic control unit is devoted to ensure the
overall functional safety of the system, comprising
mechanics, electronics and software. This paper
will focus on safety measures that are needed
to reach the safety integrity level of the sen-
sor, measuring the position of the electric motor.
Beyond usual sensor diagnosis such as analogue
signal monitoring, test patterns etc (all of them
described in recognised safety standards such as
(TEC61508, 1998)), more advanced methods aim-
ing at analytical redundancy of the sensor are
needed.

One method used within active front steering is es-
timation of the electric motor’s position using Lu-
enberger observers or (extended) Kalman filters.
Starting off with a motor model, motor position or
speed can be estimated using observer techniques
(measuring voltages and currents of the motor).
Given a sufficient overall tracking performance
and accuracy of the filter, it is useful to directly
model typical sensor failures such as offset or drift,
as derived in a failure modes and effects analysis
(FMEA). Doing so, the failure detection and man-
agement system (FDMS) can directly cope with
these effects.

Applicability for production type electronic con-
trol units is discussed and accompanied by mea-
surements from a prototype vehicle equipped with
active front steering.

Outline of the paper Sec. 2 establishes basic
system description and notation. This is followed
by a short background on functional safety in



Sec. 3. Models for the motor under investigation
are compiled in Sec. 4 and some results of a
Luenberger observer with respect to tracking and
accuracy are shown in Sec. 5 thereafter. Sec. 6
then describes how to incorporate typical sensor
failures and gives some results. We conclude in
Sec. 7.

2. SYSTEM DESCRIPTION AND NOTATION

The complete system setup including mathemat-
ical modelling and parameter estimation is de-
scribed in great detail in (Klier and Reinelt, 2004).
In order to make this paper self-contained, the ba-
sic relations are given here as well. Fig. 1 shows the
system’s principle: The driver controls the vehicles
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Fig. 1. Schematic view of active front steering.
The electric motor superimposes an angle s
via a plantetary gerabox to the hand steering
wheel angle dg. The result is the steering
gear’s pinion angle d¢.

course via the hand steering wheel; the resulting
steering wheel angle is denoted by dg. Active front
steering actuates an additional angle §; using its
electric motor. Both angles result in an pinion
angle §¢ down at the steering rack. All three an-
gles relate as given in (1), also accounting for the
respective ratios ias,4p. The resulting (average)
road wheel angle can then be calculated via the
pinion angle and a static nonlinearity Fisg (-) that
accounts for the relation between pinion angle
and rack displacement as well as for the steering
geometry, cf. (2). Finally, the overall ratio between
hand wheel to front road wheel §r(t) is defined
in (3).

Sa(t) = i () + % b5 (1)
0 (t) = Fsg (6r(t)) (2)
5 (t) = iv b5 (1) 3)

Having this basic framework at hand, one can
start looking at functions that manipulate the
motor angle dpr(t) in order to e.g. achieve a

desired overall steering ratio iy that depends on
vehicle speed and pinion angle, i.e.:

iy =iy (vx,0G) (4)

This desired motor angle dp4(t) will then be
passed to the motor’s feedback control algorithm.
However, before designing such functions, the
plausibility of all signals discussed so far has to be
ensured, to ensure the safety of the system. This
is part of the Functional Safety, described next.

3. FUNCTIONAL SAFETY

The so-called technical safety concept deals with
ensuring the functional safety of the system, which
means that no harmful actions are initiated (with
a prescribed probability). The analysis process de-
scribed in (Reinelt and Krautstrunk, 2005) assigns
a certain safety integrity level for each compo-
nent in a top-down approach. Here, components
can be actual devices such as sensors, micro-
controllers, motors or functions (which are then
mapped onto software modules). Having assigned
a certain safety integrity level to a component,
for example a sensor, a certain amount of safety
measures has to be implemented until the risk
reduction (as intended by the safety concept) is
reached. Safety measures are usually classified as
being electrics/electronics dependent or applica-
tion dependent. The first category can be set up
whenever the component in question is in place
— in any system. Examples are simple range and
gradient checks of voltages that generate a sen-
sor signal, watchdogs for microcontrollers etc. In
safety standards such as (IEC61508, 1998), the
diagnostic coverage of these safety measures is
low or medium, since they only represent neces-
sary conditions for proper functionality. Hence,
in systems of higher safety integrity level, they
are accompanied by application dependent safety
measures. These are based on application depen-
dent relations. As an example, any of the sensors
in the active front steering system could be vali-
dated exploiting (1) and assuming that the other
two signals are valid. The information obtained
from both types of safety functions is collected,
the current state of the signals and the system is
assessed in the Failure Diagnosis and Management
System (FDMS).

This contribution is concerned with the appli-
cation dependent safety measures of the motor
angle sensor used the active front steering system.
In general, application dependent safety mea-
sures share a generic structure that is depicted
in Fig. 2 and already well established in literature
(Gustafsson, 2000; Schwarte and Isermann, 2002).
The signal or state y(t), to be monitored, is com-
pared to its estimate, generated for instance by a



model also called filter. Most importantly, the fil-
ter has to use signals u(t) that are independent of
the signal to be estimated. The difference between
signal and its estimate is called residuum €(t).
The distance measure then generates the symptom
s(t). Finally, the stopping rule decides whether or
not to raise an alarm. Usual stopping rules are
direct thresholding, generalised moving average,
cumulated sums etc. Mean, variance and other
statistical properties could be used as distance
measures. We refer to (Gustafsson, 2000; Bas-
seville and Nikiforov, 1993; Blanke et.al., 2003)
for a state of the art overview of such techniques.
Criteria for chosing one method over another are
the trade-off between mean time to detection and
mean time to false alarm, but also computational
load etc.

data Filter e (t) | Distance S(t) | Stopping | aam
y(6),u(t) Measure Rule ’

Fig. 2. Generic structure of a safety measure con-
taining filter, distance measure and stopping
rule.

4. MODELS OF THE BRUSHLESS DC
MOTOR

Fig. 3 shows a brushless DC (BLDC) motor as
used in the active front steering system includ-
ing the different co-ordinate transformations and
the current controller, realised in rotor (d,q) co-
ordinates. Phase currents Iy, Iy, Iy of the BLDC
motor are measured. These phase currents are
transformed to stator (a, 8) co-ordinates using the
so-called Clarke Transform. Aiming at an time in-
variant co-ordinate system, they are transformed
to (d,q) co-ordinates using the so-called Park
Transform, cf. (Krause and Wasynczk, 1989).
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Fig. 3. Park/Clarke Transforms and Generation
of PWM Signals.

DC voltage

The dynamics of the BLDC motor in (d,q) co-
ordinates is given by (Krause and Wasynczk,
1989):

Loglog = —Leq2,0T5q — e — RyI,y + Uy, (5)
Lsdjsd = LSqZpéIsq —R,l;q+Usq (6)
Il = —bub + carlsy — Mioaa, (7)

where z, denotes the number of pole pairs, ¥,
the rotor flux and ¢y = 2, - ¥, the machine
constant, R,, Ls; the resistance and inductance
respectively. Jy; is the moment of inertia, by, the
internal friction and finally Mj,,s the external
load. Obviously, this is a non-linear differential
equation with the two electrical states I5q, I, and
the one mechanical state §. When neglecting the
sd component (i.e. Iy4 = 0), or, equivalently,
starting off with a simple DC motor to model
the BLDC motor’s dynamics, we obtain (with
appropriate initial conditions):

qujsq =—RI5q - emf + Usq (8)
I = carlsy — barf — Miaa- 9)

The output signal is, in both cases, the current.
Clearly, the rotor position can be chosen as output
of the system, which implies adding this also as an
extra state. Note, however, that this would not
add extra parameters to the model.

Since the models contain a lot of physical pa-
rameters, these have to be estimated and val-
idated from data. The parameters then are
estimated with e.g. prediction error methods,
see (Ljung, 1999) or unknown-but-bounded ap-
proaches (Milanese et.al., 1996), including param-
eter validation on validation data and a final as-
sessment of the parameter quality. An overview
and comparison of recent methods is given by
(Reinelt et.al., 2002).

5. STATE ESTIMATION
5.1 Luenberger Observer
Consider the linear equations (8,9) written down

in standard state space notation and neglecting
the load input, i.e.:

_Bs e 1
L, L, .

Bt)=| .0 o z(t) + | Lsg | Usq; £(0) 189
A

or shorter:



z(t) = Az(t) + Bu(t);
y(t) = Cx(¢). (13)

Since this is an observable linear model, an esti-
mate Z(t) of the state vector z(t) can be calculated
using a Luenberger observer that measures output
y(t) and input u(t):

#(t) = Az(t) + Bu(t) + K [y(t) — Ci(t)]. (14)

The error between real and estimated state vector
e(t) := z(t) — Z(t) tends to zero whenever the
observer gain K is chosen properly, i.e. the system
matrix A— K C of the differential equation for the
error

é(t) =(A-KC)e(t); e(0)=e (15

has eigenvalues in the left half plane. Based on
the linear motor model in (d, ¢) co-ordinates (8,9),
the Luenberger observer (14) is the first means
to estimate the motor speed 6(t) (and hence the
position) based on measurements of currents and
voltages.

5.2 Reduced Luenberger Observer

Since the current I, (¢) is state variable and (mea-
sured) output at the same time, it is not necessary
to estimate it. Hence, the observer can be reduced
to a one that only estimates the unknown state

6(t). Therefore, the system is rewritten to (omit-
ting the time argument ¢ from now on):

(2) = (i ) (2) + (3) v 00
y=(10)z. (17)

The estimated value is z2 and x; = y is measured.
Introducing new signals

Up = A1y + BaUy, (18)

yr =9 — Ay — B1Uy, (19)

and new matrices A, = Ay, B, =1, C, =
A2, (16,17) become

To = A, T2 + Bru, (20)

yr = Cro (21)

representing a system with a non-measurable
state o = 6. For this system, the Luenberger
observer (as above) is:

$;2 = (Ar - KT'C’!‘) ~:i.2 + Brur + KTyT (22)

using K, for the observer gain to be chosen.
Resorting to the notation of (8,9) and introducing
the new state xp = 572 — K,y yields the reduced
observer for this case:

bm . K,
g = (——-{- CM)IL'B+—Usq+ (23)

Jm | Lgg L
cM bm) cM szs)
-V K+ My I
iy =2 + K. I, (24)

Based on the linear motor model in (d,q) co-
ordinates (8,9), the reduced Luenberger observer
(23,24) is the second means to estimate the motor
speed 6(t) (and hence the position) based on
measurements of currents and voltages.

5.3 Ezxperimental Results

Figs. 4 and 5 show representative measurements
from a vehicle equipped with active front steer-
ing. Two sample results have been chose, one for
medium motor speeds and one for higher motor
speeds. Preliminary investigations showed that
there is no paramount difference between the Lu-
enberger and the reduced Luenberger observer in
terms of tracking and accuracy, hence we only
show the results of the Luenberger observer. The
algorithm has been executed using a dSpace de-
vice, which has also been used for storing the data.
Devices for measuring motor voltages, currents
and position are regular production type ones.

Computational load as well as a comparison with
two other methods, namely an Extended Kalman
Filter and a simple feedforward model in (a, 3)
stator co-ordinates is outlined in (Reinelt et.al.,
2005).

— measured Bm
+= estimated with Luenberger observer

Fig. 4. Measurements in a protoype vehicle show-
ing measured motor angle (blue, solid) and
the estimate by the Luenberger observer
(black, dashed) in a manoeuver that requires
moderate speeds of the electric motor.

6. EXPLICIT FAILURE MODELLING

The observers presented in Sec. 5 aim at esti-
mating the motor position as good as possible.
during the fault detection process, the estimate
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Fig. 5. Measurements in a protoype vehicle show-
ing measured motor angle (blue, solid) and
the estimate by the Luenberger observer
(black, dashed) in a manoeuver that requires
faster speeds of the electric motor.

would then be compared to the sensor signal,
cf. also Fig. 2. A simple process for the fault
detection scheme would be

and the stopping rule could be €(t) > T, where
T > 01is a given threshold. A disadvantage in this
approach is that no assumptions are made on the
nature of the failure, hence the observer has to
cope with all (possible or not) types of failures
at any time. But sensor failures follow common
patterns very often. Switching bits are examples
in digital sensors and offset or drift (due to aging
or temperature) are quite common patterns for
analogue sensors. Given an analogue sensor and
knowing that offset or drift are not captured by
hardware, it is straightforward to model them
directly. According to (Gustafsson, 2000), offsets
and drifts can be described as follows. A simple
model for a (constant) offset m is th = 0. This
could then be added as an offset of the measured
current Iz, to (10,11) as follows:

_Rs _CM 0 Usq

Lo Lgg 7
Go(t)= [ em  _bm o @o(t)+ | Tg? [(25)

Jn  JIm

0 0 0

Quite similar, a drift d of the measured current
I, to (10,11) as follows:

R, CM

— — 00 Usq
qu Ib’SQ qu
gat)=| YL "m0 lz)+| 0 (27)
Tm Im 0
0 0 01 0
0 0 00
Is.q(t)
o(t
v =(1010)2u(0), 2al®) = | 50 |.(29
c(t)

Doing so, offsets and drifts (or both) of the current
measurement can be estimated quite straightfor-
wardly. Once for instance an offset is established,
the sensor signal could be corrected accordingly
for the next drive cycle. Fig. 6 shows an example.
There, a drift in the motor current is simulated.
While the observer with explicit offset and drift
modelling still estimates the position quite well,
the estimate of the obeserver without explicit fail-
ure modelling tends to follow the drift.

In the same way, a drifting measured voltage Us,+
d can be modelled as follows:

B _em g Usq
T, Ly 7
saty= | X 0 Lol | 0m
¢ Jn  Jm L d 0
0o 0 01 0
0 0 0 0
IS_q(t)
y(t)= (100 0) za(t), zat) = | 2D | 30)
d(t)
c(t)

— 8
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Fig. 6. Measurements in a protoype vehicle show-
ing measured current I, (blue, solid) with
a drift in the measured current arising as
10s, the estimate by the Luenberger observer
(black, dashed) and the estimate by the Luen-
berger observer using a drift and offset model
(red, dash-dotted).



7. CONCLUSIONS AND FUTURE WORK

Observers as well as reduced state observers have
been derived for estimating the postion of the elec-
tric motor, used in the active front steering sys-
tem. The models used for building the observers
have been accompanied by common failure pat-
terns such as drift or offset in the senors. Sample
measurements from a prototype vehicle showed
sufficient performance. The algorithm needs to
run the linear motor model plus the update of the
state vector at each sampling instance, which is
computationally quite cheap (counting the num-
ber of floating point multiplications). Adding ex-
plicit failure models generates extra states, but
the resulting state space representatin tends to be
sparse, adding not much computational burden to
the algorithm. Overall, the algorithms presented
are suited for production type of electronic control
units.

Future work will concentrate on investigating tem-
perature dependence of the model and running the
observers on a production type electronic control
unit using automated code generation. More so-
phisticated failure models, directly derived in a
failure modes and effects analysis will be incorpo-
rated into the motor model as well.
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