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Abstract: This paper considers the problem of designing optimal robust Iterative
Learning Control (ILC) algorithms for LTI processes. Given a multiplicative
uncertainty model of the plant, learning operators are designed to minimize
the ultimate tracking error and convergence rate, while guaranteeing robust
convergence. The optimal learning operators are shown to be noncausal. After the
controller is optimized in the frequency domain, a finite-time implementation of
the algorithm is shown to achieve the same performance and robustness. Copyright
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1. INTRODUCTION

Iterative Learning Control (ILC) improves trajec-
tory following by modifying control inputs based
on past errors. A wide survey of the ILC field
is presented in (Moore, 1999). Unlike feedback
control, which is necessarily causal, ILC can pro-
cess past error signals using noncausal operators.
Continuous-time analyses of noncausal ILC algo-
rithms have appeared in (Chen and Moore, 2000;
Pandit and Buchheit, 1999).

Although a central purpose of ILC is to overcome
plant uncertainty through learning, few ILC anal-
yses model plant uncertainty explicitly. General
formulations of the robust ILC design problem
for LTI plants have appeared in (Tayebi and
Zaremba, 2003; Goldsmith, 2003), where plant
uncertainty is modelled as a multiplicative pertur-
bation in the frequency domain, as is commonly
done in classical feedback control design (Doyle
et al., 1992). A major limitation of the design
proposed in (Tayebi and Zaremba, 2003) is that it
uses causal operators in the ILC algorithm. It is
well known that ILC restricted to proper causal

operators cannot, converge to zero error for plants
having relative degree greater than one (Ghosh
and Paden, 2001). Moreover, for every causal ILC,
there exists a feedback control (constructed from
the ILC operators alone) that achieves the ul-
timate tracking error of the ILC, without any
iterations (Goldsmith, 2002).

A robust design problem formulated in the fre-
quency domain was recently solved using non-
causal ILC (Goldsmith, 2003). However, the re-
sults of such analyses on the infinite time interval
do not extend trivially to trials of finite duration,
as noncausal operators require future informa-
tion that is unavailable beyond the end of the
trial (Padieu and Su, 1990).

This paper extends the idealized design method-
ology of (Goldsmith, 2003) to the real situation
where trials have finite duration. A design modifi-
cation ensures that robustness is preserved when
the ILC is implemented on a finite time interval.
In Section 2, we formulate the general ILC design
problem for LTI plants. Properties of noncausal
operators are described in Section 3. The optimal



design is presented in Section 4. In Section 5,
we propose a finite-time implementation of the
optimal noncausal ILC and prove its robustness.
Section 6 concludes the paper.

2. ITERATIVE LEARNING CONTROL

For clarity, we shall restrict ourselves to SISO
systems. Signals are in Ls., the extension of
L2 (—00,00) to include unstable signals. The pro-
cess to be controlled is modelled as

Yi = Pui: (1)

where i € {0, 1,2, ...} is the trial number, y; is the
output, u; is the control input, and P is a proper
causal LTT operator. We shall use the same symbol
to denote a signal and its Laplace transform (and
similarly for signal operators and their transfer
functions), as the meaning should be clear from
the context.

It is desired that y; follow a reference signal y; €
L, and that the tracking accuracy improve as the
number of trials increases. The error in trial 7 is

ei = Yd — Yi- (2)

Substitution of (1) into (2) gives
e; = yq — Pu;. (3)

The ILC algorithm is given by
u; = Ce; + Fuj_1 + Le;_1q, (4)

where C, F', and L are proper LTI operators. Note
that the feedback operator C' is necessarily causal
since it is implemented in real time, but F' and
L can be noncausal. Feedback is essential if P is
unstable.

A fixed point (e, too) Of the iterative system (3)
and (4) has the property that e; = e;_; = e and
U; = Uj—1 = Us. Hence

eoo:yd_Puooa (5)

and

U = C@oo + Fuoo + Leooa (6)

which may be solved to give

€co = Ryq, (7)

where
1-F

B=T—rycrnp

(8)

The goal of ILC is to make the system converge
to a small e,,. Although F' =1 gives e, = 0, we

must also ensure that e; converges to es. If we
define €; = e; — ex, and @; = u; — Uso, then (3)
and (5) give

e; = —Pua;. (9)

Similarly, (4) and (6) give
u; =Ce; + Fu; 1+ Le;_+, (10)

Substituting (9) at ¢ and at ¢ — 1 into (10) gives

u; = Hu;—y, (11)
where
H=S(F - LP), (12)
and
S=@1+cpP)"". (13)

Applying P to both sides of (11) and substituting
in (9) at i and at ¢ — 1 gives

e;=He; 1, (].4)

We shall use || - || to mean the L, norm of a
time signal and the induced Ls norm of an LTI
operator, which equals the co-norm of its transfer
function. If H is stable, then a sufficient condition
for @; and €; to converge to zero is that

[H(jw)| <1 (15)

for all w. A slightly stronger condition, which
guarantees uniform convergence, is that there ex-
ists u < 1 such that

|H(jw)| < p (16)

for all w. This is equivalent to

I|H|| < 1. (17)

Uncertainty in P is modelled as

P = Py(1+ AT), (18)

where Py is a nominal model of the plant, W5 is a
known stable causal transfer function, and A is an
unknown stable causal transfer function satisfying
|A]l < 1.

3. NONCAUSAL OPERATORS

An ILC with causal F' and L is limited to the
performance and robustness of feedback control
(without iterations). If the causal ILC converges
to zero (F = 1), then the high gain feedback
u = Ke with K = C+k(C+ L) gives limy_, e =



0 (Goldsmith, 2002). This is possible only for
minimum phase plants of relative degree 0 or 1.
For more general plants, if the causal ILC con-
verges to e, then the feedback control K = (1 —
F)7Y(C + D) gives e = e (without iterations).
Since this ‘equivalent feedback’ does not depend
on the plant, it is as robust as the ILC: if the plant
is perturbed and the ILC still converges, then so
does the equivalent feedback.

An operator is causal if its output at any time
r depends only on its input at times ¢t < r. An
operator C' is causal if, for each r € (—00, 00),

T.CT, = T,C, (19)

where 7). is the right truncation operator, defined
by

(Tru)(t)=u(t) t<r (20)
=0 otherwise, (21)

for t € (—o00,00). A causal operator C' also has
the property that for each [ € (—o0, 00),

T,CT, = T, (22)
where T; is the left truncation operator defined by

(Trw) () =u(t) t 21 (23)
=0 otherwise, (24)

for t € (—o0,0).

An operator is anticausal if its output at any time
[ depends only on its input at times ¢ > [. An
operator A is anticausal if, for each [ € (—o0, 00),

TIAT) = T/A. (25)

An anticausal operator A also has the property
that for each r € (—o0, 00),

T, AT, = AT,. (26)

These properties will be useful in Section 5 when
we consider the effect of truncation on finite-time
ILC.

The term noncausal is used in the same manner
as nonlinear. It can mean either not causal or
not necessarily causal, depending on the context.
In the latter sense, causal is a special case of
noncausal.

A concept closely related to causal operators is
causal signals. A causal signal is a signal u(t) that
is zero for t < 0, while an anticausal signal is
zero for ¢ > 0. A proper LTI operator is causal
if its impulse response is causal and anticausal
if its impulse response is anticausal. The impulse
response of a proper noncausal operator is the sum
of a causal signal and an anticausal signal.

Of particular interest are symmetric operators
whose anticausal and causal parts are reflections
about ¢t = 0. An example is a symmetric noncausal
low-pass filter NV whose impulse response is

n(t) = 1/2wee” w0t (27)

where woy > 0. This signal is stable, decaying
as t approaches —oco and +oo. The (two-sided)
Laplace transform of n(t) is

N(s) = ! (28)

(1r)(-2)

—wp < Re(s) < wo, (29)

Note that this transfer function is stable, even
though it has a RHP pole at s = wp. This is
because its domain (29) lies to the left of this pole.
Taking the inverse Laplace transform of N(s)
along a vertical contour in (29) transforms the
RHP pole of N(s) back into a stable anticausal
signal (given by (27) for ¢ < 0) instead of an
unstable causal signal.

Setting s = jw in (28) gives
1

27
1+(§0)

showing that N(jw) is a real-valued function, and
thus has zero phase at all frequencies.

N(jw) = (30)

We will see that the optimal F' and L in the
ILC (4) are noncausal. They should also be
proper, since improper operators such as differ-
entiation (Arimoto et al., 1984)) amplify high-
frequency noise.

4. OPTIMAL ILC DESIGN

The general case of designing C, F and L is
considered in (Goldsmith, 2003). Here, we shall
focus on the case when C' = 0 and P is stable.
For unstable P, this design can be applied to
the stabilized closed-loop plant S P resulting from
suitable design of C, as long as AW, is then
redefined as the uncertainty in SP.

Our design goal is to minimize the nominal value
of e, while guaranteeing ILC convergence in the
face of plant uncertainty. With S = 1 (since C = 0
in (13)), (12) becomes

H=F—LP. (31)

Substitution of (18) into (31) gives
H =F — LPy(1+ AW,). (32)

First, we shall consider the case when ||Ws|| < 1.
The optimal ILC in this case is



F=1 (33)
L=NP;", (34)
where N is a stable symmetric noncausal low-pass

filter having relative degree at least equal to that
of Py (to make L proper) and satisfying

0 < N(jw) < 1. (35)

Substitution of (33) and (34) into (32) gives, at
every frequency

|H| =1 - N1+ AW)| (36)

=|1— N — NAWW,| (37)
<|1—N|+|N]| (38)

=1, (39)

where (38) follows from ||[AW3|| < 1, and (39)

follows from (35). Hence, the convergence condi-
tion (15) is satisfied. Substituting (33) into (7)
gives es, = 0.

Although this design is optimal (es = 0 is the
smallest error possible), the optimal filter N is
not unique. The bandwidth of N may be chosen
to achieve a desired tradeoff between nominal
convergence rate and noise attenuation. Let H)
denote the value of H when the uncertainty Wy =
0. Then (36) gives

|Ho| = |1 = N|. (40)

Fast nominal convergence of (11) is achieved by
choosing N near 1 at lower frequencies, while
good noise attenuation is achieved by choosing
N small at high frequencies. A tradeoff occurs at
intermediate frequencies.

Now let us consider the case [|[AWs|| > 1, since
in most real plants |W2| > 1 at high frequencies.
Then ||ex|| = 0 is not possible, which can be seen
as follows. By (7), [lexs|| = O implies F' = 1. If
N =0, then H = 1 in (36), and the ILC does
not converge. If N # 0, then at a frequency where
|AW5| > 1, the phase of 1 + AW, can be made
equal to any value by varying the phase of A.
Hence N(1+4+ AW>) in (36) can be made negative
real, implying |H| > 1.

To design F' and L for the case [|[Ws]|| > 1, we se-
lect the following design specifications for robust-
ness, convergence rate, and nominal performance:
i) robust convergence

ii) instant nominal convergence

iii) minimized nominal ||e||

We again parameterize L as L = NPy ' with N
a new design parameter, which must have relative
degree at least equal to that of P so that L is
proper. Equation (32) becomes

H=F - N(1+AW,), (41)

and the nominal value of H is

Hy=F—N. (42)

Instant nominal convergence of (11) implies that
F = N, and hence

H = —NAW,. (43)

Since ||A|] < 1, there exists p < 1 such that
AG) <p Vo€ R (44)
Taking i to be the largest such value and substi-
tuting (44) into (43) gives
|H (jw)| < pIN(jw)Wa(jw)|, Yw € R (45)

This satisfies the convergence condition (16) iff

ING)Wa(jw) <1, Vwe R (46)

Meanwhile, the nominal value of e, is given by (7)
as

exo = (1= N)ya (47)

At low frequencies, where |W5| < 1, the choice
N =1 gives e, = 0 in (47) while satisfying (46).
At frequencies where |W3| > 1, the N satisfy-
ing (46) and minimizing ||es|| in (47) is positive
real (i.e. a symmetric noncausal filter), and is
given by

N(jw) = [Wa(jw)|™", YweR.  (48)

The optimal ILC is thus

u; = Nuj—1 + NPy le;_y. (49)

5. TRUNCATION EFFECTS

A major limitation of the foregoing analysis is that
it assumes trials of infinite duration. Here we shall
consider the real situation in which ILC trials are
performed on a finite time interval ¢ € [I,r].

Let

T =TT,, (50)

where T and T; are defined by (21) and (24). The
truncated signal Tu € Lo, uniquely represents a
signal in Lo[l,r].

Given any L : Ly, — Lo, TLT is called the
compression of L to Lo[l,r]. It applies L to a
truncated input and then truncates the output.
If L is linear

ITLT|| < [ILl, (51)



since ||T|| = 1. If C and P are both causal,
then (19), (22), and (50) imply that
TCTPT =TCPT. (52)

Truncation is not problematic for causal operators
such as feedback. If a feedback C' is applied to
a plant P, the truncated error response to a
truncated reference Tyy is e = TSTyg, which
is smaller in norm than the infinite-time error
response e = STyg.

We assume P does not include a pure time delay,
since any delay is handled trivially by defining
time zero (I = 0) of the error signal as the time
the plant starts responding to the reference. This
amounts to inverting a time delay with a time
advance. With no (remaining) time-delay in P, a
causal (but generally improper) P~ exists.

The initial conditions of the plant are assumed
to be zero. This assumption is not restrictive,
since non-zero initial conditions zg become zero
under the state tranformation x — = — xg. Such
zeroing should be performed at the start of each
ILC trial. However, if the same sensors are used
to reset the system on subsequent trials, this new
zero must not be used in the resetting procedure,
otherwise any systematic resetting error present
would accumulate. Actual reset errors must be
reduced by improving the resetting procedure, not
the ILC.

In a real ILC implementation, since the plant
operates only when ¢ € [0, 7], the real plant is the
compression T PT of the Lo, operator P, where
I =0 1in (50). Hence, (9) becomes

e; = —TPTu;. (53)

Similarly, the finite-time implementation of (4) is

u; =TFTu; y+TLTe; 1, (54)

or

w; =TFTu;—1+TLTe;_4 (55)

with respect to the fixed point. Substituting (53)
at ¢ and at ¢ — 1 into (55) gives

U; = HTﬂifl, (56)

where

Hy =TFT - TLTPT. (57)

By (56) and (53), @; and &; converge to zero if
||HT|| < 1.

Based on our optimal solution for the (usual)
case when [|[Ws|| > 1, we set F = Np and
L = NTTPO_I, where Np is a parameter to be
designed. Substituting these into (57) gives

Hr =TNsT — TNyTP;'TPT (58)
=TNsT — TNyT Py ' PT (59)
=TNsT — TN7T(1— AW,)T  (60)
=TNrTAW,T, (61)

where (59) follows from (52) and the fact that P
and P, ' are causal. If W, = 0, (61) gives Hr = 0,
showing that this ILC design yields instant nom-
inal convergence (specification (ii) in Section 4)
when applied to a finite time interval. However,
guaranteeing robust convergence requires careful
construction of Ny.

The symmetric noncausal filter N with magnitude
response given by (48) may be factored as N =
N,N., where N, is a causal minimum-phase low-
pass filter having the same magnitude response as
N, while N, is an anticausal all-pass filter of unit
norm and opposite in phase to N.. We choose Nt
as

N7 = N,TN.. (62)

Substituting (62) into (61) gives

|Hrl| = TN TNTAWT|| (63)
= ||TNaTNcAW2T|| (64)
<[|TNT| - |A[l- 1Tl (65)
<wp<l, (66)

Here, (64) follows from (52) and the fact that N,
and AW, are causal, (65) follows from |N,.(jw)| =
|N(jw)| and (48), and (66) follows from ||T|| =
[INg|| =1 and ||A|| = 1 < 1. This ILC design thus
guarantees robust convergence when applied on a
finite time interval. The complete update law for
the case C' =0 is

w; = TN,TN,Tu;_y + TN,TN.TP; ' Te;_,.(67)

Let us now consider nominal performance. Sub-
stituting the fixed point of (67) into esx = T'yq —
TPTuy with P = Py yields

eoo = (T — TN,TN.T)yq (68)
= (T, — TIN,T,.N.)ya, (69)
where (69) follows from T' = T;T,, from proper-

ties (19), (22), (25), and (26), and from Tjyq = yq
(since I = 0 and yq(t) =0 for t < 0).

We wish to compare this e, with that produced
on [0, r] by the infinite-time ILC (4) (with C' = 0).
The latter gives ey as

et =T (1~ N)yq (70)
= (T, — TN, N,)ya, (71)

where we have again used the fact that Tjys = yq-
If we let = es — €%, then (69) and (71) give



&= (TN,N, — T,N,T,N,)ya (72)
=TN,(1—T.)N.ya, (73)

where in (73) we have used the fact that N, T} =
T,.N,T,. The signal z represents the truncation
error, which is the difference between the eq(t)
observed on ¢t € [0,r] when the ILC is imple-
mented on (—oo0,00) and that observed when the
ILC is implemented on [0, r].

The time-dependence of the truncation error x
may be obtained as follows. The anticausal all-
pass filter N, has the form N, = +1 + A, where
A is a stable strictly- proper anticausal filter, and
the sign of the identity depends on the order of
the filter. The identity in N, is annihilated in (73)
sinceT(1-T,) =TIT,(1-T,) =TI(T, - T,) = 0.
Therefore (73) becomes

z=TA( =T )yq, (74)

where yqr = N.yq denotes the (causally) filtered
reference input. Let a denote the impulse response
response of A. Then, for all ¢ € [0,7], (74) gives

o0

o(t) = / alt — T)yap (v)dr- (75)

r

Since A is anticausal and strictly proper, there
exists b, A > 0 such that, for all § <0,

la(8)| < be/>. (76)

Substitution of (76) into (75) gives

j(®)] < b / (D Ay ()ldr. (T7)

In (77), A is the effective time constant of the filter
A, and is typically much smaller than the ILC
interval 7. In a robot application, for example, r
might be a few seconds and A a few milliseconds.
At a time ¢t where r —t >> ) the exponential term
in (77) is approximately zero for all 7 € [r,00),
giving |z(t)| = 0. Hence the truncation error is
negligible at times far away from r. However (77)
shows that the truncation error sharply increases
as t approaches r.

A simple remedy to the problem of truncation
error is suggested by (77). Suppose the ILC must
accurately track a reference yq(t) for ¢t € [0,¢]. If
we extend yq(t) beyond t to time r >> t;+ A, and
apply ILC on the interval [0,7], then (77) shows
that the truncation error is negligible in [0, t¢]. We
call [tg,r] the runoff or follow-through region. It
need only be a few time constants A in duration to
nearly eliminate truncation errors in [0,¢]. Note
that the robust convergence result (66) applies
on the entire interval [0,7] (including the runoff
region), not just on [0,t¢].

6. CONCLUSION

We have investigated the problem of designing
optimal robust ILC algorithms for LTT processes.
The optimal learning operators were found to be
noncausal. A proposed finite-time implementation
of the ILC was proved to preserve the robustness
of the infinite-time design, and a simple method
was proposed for attenuating truncation artifacts.

REFERENCES

Arimoto, S., S. Kawamura and F. Miyazaki
(1984). Bettering operation of robots by
learning. J. Robotic Systems 1(2), 123-140.

Chen, Y. and K. Moore (2000). Improved path
following for an omni-directional vehicle
via practical iterative learning control us-
ing local symmetrical double-integration. In:
Proc. Asian Control Conference. Shanghai.
pp. 1878-1883.

Doyle, J., B. Francis and A. Tannenbaum (1992).
Feedback Control Theory. Macmillan. New
York.

Ghosh, J. and B. Paden (2001). Tterative learn-
ing control for nonlinear nonminimum phase
plants. ASME J. Dyn. Syst. Meas. Control
123(3), 21-30.

Goldsmith, P. (2002). On the equivalence of causal
Iti iterative learning control and feedback
control. Automatica 38(4), 703-708.

Goldsmith, P. (2003). Noncausal iterative learning
control for uncertain Iti systems. In: Proceed-
ings International Conference on Advanced
Robotics. Coimbra, Portugal, June 30-July 3.
pp- 293-298.

Moore, M. (1999). Iterative learning control-an
expository overview. Applied and Computa-
tional Controls, Signal Processing, and Cir-
cuits 1, 151-214.

Padieu, F. and R. Su (1990). An h-infinity
approach to learning control systems. Int.
J. Adaptive Control and Signal Processing
4, 465-474.

Pandit, K.L. and K.H. Buchheit (1999). Optimiz-
ing iterative learning control of cyclic produc-
tion processes with application to extruders.
IEEE Trans. Control. Sys. Tech. 7(3), 382—
390.

Tayebi, A. and M.B. Zaremba (2003). Robust it-
erative learning control is straightforward for
uncertain 1ti systems satisfying the robust
performance condition. IEEE Trans. Auto-
matic Control 48(1), 101-106.



