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Abstract: Multi-vehicle swarms offer the potential for increased performance and
robustness in several key robotic and autonomous applications. Emergent swarm
behavior demonstrated in biological systems shows performance that far outstrips
the abilities of the individual members. We demonstrate a lightweight formation
control methodology that uses conservative potential functions to ensure group
cohesion, and yet has very modest communication and control requirements for
the individual nodes. Any arbitrary formation can be formed and held, even while
navigating through an unstructured obstacle environment. Simulation studies
demonstrate that the formation control is robust, stable, and easily implemented
in a distributed fashion. Copyright c©2005IFAC.
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1. INTRODUCTION

As the cost and capability of small autonomous
vehicles have improved, research efforts have fo-
cused on the distributed control of multi-agent
systems. A biologically inspired swarm of vehicles
has the potential to deliver inexpensive yet robust
performance, especially in the case of hostile and
adverse environments. Typically, the computa-
tional capability of the embedded processors and
the limited communications bandwidth between
individual vehicles makes large scale control op-
timization difficult. In this paper we describe a
very lightweight framework for moving a group of
homogenous vehicles through an obstacle field as
a cohesive flock that is based on a simplified liquid
surface tension abstraction.

Examples of cohesive group movement can be
found throughout the natural world. Ants, fish,
birds, and even sub atomic particles exhibit aston-
ishingly elegant group coordination in the midst of

complex and highly dynamic environments. Math-
ematical biologists have attempted to model this
swarming behavior for some time [Breder (1954),
Okubo (1986), Warburton and Lazarus (1991),
G. Flierl and Olson (1999)], referring to the swarm
behavior that is greater than the sum of its parts
as “emergent behavior.” In many cases the be-
havior can be reduced to rules of attraction and
repulsion between neighbors [Breder (1954)].

In 1986 Craig Reynolds created a computer graph-
ics model of coordinated animal motion based
on the behavior of fish schools and bird flocks
[Reynolds (1987)]. These “boids” used only knowl-
edge of flock-mates in their immediate vicinity
and motion based upon three simple rules: (1)
avoid crowding (separation), (2) match heading
(alignment), and (3) avoid separation (cohesion).
Using these rules, the boids demonstrated mo-
tion in a remarkably cooperative and fluid way,
showing that rule-based distributed group motion
control is indeed feasible.



The overarching theme in this paper is to model
the vehicle swarm in a simplified manner as a
liquid droplet balanced between gravity and sur-
face tension. To simplify the mathematical for-
mulation, in this paper we use an artificial po-
tential relationship to control vehicle separation
and cohesion [Khatib (1986), Latombe (1991)].
As a technique, artificial potential has recently
has come to prominence in the area of distributed
control [Olfati-Saber and Murray (2002)].

In this paper, we define three types of artificial
potential relationships: (1) vehicle to vehicle, (2)
vehicle to virtual leader, and (3) vehicle to ob-
stacle. The vehicle to vehicle relationship is used
to control separation and cohesion, keeping the
flock members from drifting too far or close to
one another, and are modeled mathematically as
a linear force relationship with an equilibrium
position, much like a mechanical spring.

It is critical to note that within this model, the
swarm has no mission goal or destination; the
individual vehicles will simply move towards an
equilibrium point. In essence, each vehicle follows
a steepest descent towards the geometric point
at which the sum of the virtual forces become
zero. Motion of the group is based on the mo-
tion of the virtual leader, whose trajectory is con-
trolled independently of the swarm. When the vir-
tual leader is motionless (static environment), the
swarm moves towards its equilibrium formation.
Note that this equilibrium formation can be either
the natural equilibrium or an arbitrary formation,
as detailed in Section 3.

We use virtual leader in much the same way as
Leonard from whom we have adapted the term
[Leonard and Friorelli (2001)]. Note that the vir-
tual leader is not a vehicle, but simply an imag-
inary point used to guide group movement. The
simplicity of this approach is that the group is
pulled by the virtual leader, and the formation
is held together simply by the individual vehicles
seeking their own equilibrium positions with re-
spect to each other and the virtual leader.

Each vehicle has an artificial potential relation-
ship with the virtual leader which is, mathemat-
ically, nearly identical to that between vehicles.
When the virtual leader shifts from its equilibrium
position it takes the entire flock with it causing a
mass movement of the swarm to regain its equi-
librium configuration. This global dependence on
virtual leader motion reduces the task of planning
multiple collision free paths for many vehicles to
planning just one collision free path.

This paper is organized into the following sections:
Section 2 describes the basic force relationships
of individual members of the swarm, Section 3
describes the initial group formation based on a

simple geometrical approach and the nature of
the various artificial potential, Section 4 covers
obstacle force formulation, Section 5 the virtual
leader motion and swarm feedback control laws,
Section 6 discusses the simulation studies, and
Section 7 concludes with a summary of the results
and indications for future work.

2. BASIC FORMULATION

As described in Section 1, the basic formulation of
the swarming problem is modeled upon a simpli-
fied liquid surface tension. While this analysis can
be extended to three dimensions, for the purposes
of this paper, we limit the problem to a two-
dimensional plane. The initial observation that led
to this formulation of the flocking problem was the
way that a liquid droplet of water is able to flow
between and around various obstacles. Thus, var-
ious formulations were attempted in order to gen-
erate a set of mathematical relations that would
produce a similar macroscopic behavior.

The initial formulation is to have each identical
node in the swarm attracted to a center of mass
(cohesion), yet repelled from each other (separa-
tion). In order to simplify the analysis, the for-
mulas are kept linear, thus given N vehicles, the
center of mass is defined as:

xcm =
1
N

N∑
1

xi and ycm =
1
N

N∑
1

yi (1)

For the attractive force to the center of mass
(the gravity type force), the basic formulation is a
linear force that grows larger with distance, much
like a spring stretched from the center of mass to
each node. Mathematically, the force is expressed
as:

F cm,i = Kcmdcm,i (2)

where Kcm is the equivalent spring constant, and
dcm,i is the distance between the ith node and the
center of mass. Rewriting this in its coordinate
form yields equation:

[
F cm

x

F cm
y

]
= Kcm

[
xcm − xi

ycm − yi

]
(3)

which always points towards the center of mass of
the group. The repulsive force between each node
of the group is also modeled as a simple force, in
this case:

F ij =
K

|dij | (−êij) (4)

where Fij is the repulsive force, K is a spring-
type constant, dij is the scalar distance between
nodes i and j, and êij is the unit vector from i
to j. Given the definitions of dij, Eq. 4 can be
rewritten in coordinate form as:[

F ij
x

F ij
y

]
=

K

(xi − xj)
2 + (yi − yj)

2

[
xi − xj

yi − yj

]
(5)



Fig. 1. Initial formation for a four node formation
with distances and artificial potential forces
labeled.

Note that all of the forces generated on the
individual nodes are either of the attractive type,
Eq. 2, or the repulsive type, Eq. 4. Obstacle forces
are dealt with in Section 4.

3. INITIAL FORMATION

Given the above formulation for the basic forces
that provide the cohesion and separation of the
swarm, it is instructive to define the equilibrium
initial formation, as well as demonstrate how arbi-
trary formations can be held. Intuitively, we can
see that the initial formation will be a uniform
ring with nodes equally spaced around the cir-
cumference of the ring. That is, the for N nodes,
they are distributed equally in polar coordinates,
such that the ith angle, θ is 2π

N i, where i ranges
from 0 to N − 1. Assuming the center of mass is
at the origin, and each node is located at a radius,
R0 away, then the distance vector between the ith

node and the center of mass is:

dcm,i = R0



− cos

(
2π

N
i

)

− sin
(

2π

N
i

)


 (6)

again where i ranges from 0 to N − 1. The
geometry of the node to node distances is slightly
more complex with the magnitude of the distance
between the 0th and the ith node as:

d0,i = 2R0 sin
( π

N
i
)

(7)

and the unit vector from the 0th to the ith node
is:

ê0i =


 sin

( π

N
i
)

cos
( π

N
i
)


 (8)

putting these distance formulas together with the
force relationships defined above and solving for
the equilibrium point yields relationship for the
base radius, R0 that is only a function of the two
“spring” constants:

R0 =

√
(N − 1)K

2Kcm
(9)

where the negative root is discarded.

In order to hold arbitrary formations, the nodes
are placed into the desired formation and the
equilibrium forces are calculated upon each node.
Then, and equal and opposite “formation force”
is assigned to each node to bring the net force
on each node to zero. This formation force is a
constant that is held on each node as long as
this formation is desired. Note that in order to
transition from one formation to another, these
formation forces can be linearly varied and the
resultant gradual force change will more the indi-
vidual swarm vehicles from one formation to the
other.

Based on these original forces, another formu-
lation for the basic forces demonstrates identi-
cal properties while simplifying the calculations
somewhat. In this case, the cohesion force is the
same as the attraction to the center of mass (now
replaced with a virtual leader), and the separation
forces are based on a nominal distance from the
nearest neighbors. Thus, the vehicle to vehicle
interactions are defined by a linear equation anal-
ogous to the spring equation;

F ij = Kij

[
dij

x − dij
xo

dij
y − dij

yo

]
(10)

dij
x =

(√
(xj − xi)2 + (yj − yi)2

)
cos(θ)

dij
y =

(√
(xj − xi)2 + (yj − yi)2

)
sin(θ)

(11)

where dij
o is a constant and represents the initial

or equilibrium distance between two vehicles. Two
vehicles are at their dij

o when the force between
them is zero. The force is conservative, such that
it attracts the vehicles together as the distance
increases, and repels the vehicles from each other
as distance decreases. Kij serves as the new spring
constant, determining the “stiffness” of the rela-
tionship between the nodes.

In this alternate formulation, arbitrary formations
are held by altering the dij

o values for each node.
Again, formation transition can be performed by
linearly varying the dij

o values from one forma-
tion to the other and the force computation will
smoothly move the swarm from the original to the
new formation. Note that the two formulations are
very close to identical, with only the addition of
an extra degree of freedom due to the independent
spring constants.

Once the equilibrium positions have been deter-
mined it is straightforward to find dij

o and dVL
o . Eq.

10 and Eq. 13 demand that d and do for all vehicles
be equal when the vehicles are in equilibrium.
Thus:



F ij
i−1 + F ij

i+1 + FVL = 0 (12)

where F ij
i−1 and F ij

i+1 are the force between ith

node’s left and right neighbors respectively. Any
arbitrary formation can be created in this way as
long as a realistic set of distances is used.

The vehicle to virtual leader relationship is very
similar to that between vehicles except for one
important distinction: the spring constant, Kij is
chosen separately.

F VL = KVL

[
dVL

x − dVL
xo

dVL
y − dVL

yo

]
(13)

dVL
x = xVL − xi

dVL
y = yVL − yi

(14)

The difference between these two methods of com-
puting the virtual leader forces is in the direction
of the resulting force.

4. OBSTACLES

In order to deal with obstacles, we enclose them
in bounding convex polygons and impose a re-
pulsive force relationship between the vehicles
and polygon edges that is inversely proportional
to the distance between them. Because vehicles
continually recalculate their forces locally with-
out any assumptions, both dynamic (moving) and
static obstacles can be handled equally well. In
this work, we do not deal with obstacle detection
and assume that we have knowledge of obstacle
position and shape.

Fig. 2 illustrates how obstacles are enclosed by
convex polygons. Note that this method of defin-
ing obstacles has several advantages. Firstly, con-
vex polygons simplify the task of obstacle avoid-
ance by the swarm. This is done by determining
which face of the polygon the individual vehicle
lies in front of, and how far away from that surface
the vehicle is.

Secondly, the reduction of a complex obstacle
field to a simple set of convex polygons simplifies
both the calculation and the communication of
the location of the obstacles in the field to the
other vehicles. This is important in terms of the
bandwidth requirements of the communication
channel between the vehicles, as well as future ex-
tensions to simultaneous localization and mapping
(SLAM) applications.

The vehicle obstacle potential function is inversely
proportional to the distance between them and
approaches infinity as distance decreases, thus en-
suring that individual vehicles do not collide with
the obstacles. A typical function that embodies
this feature is:

F ob = Kob/ (dob) (15)

Fig. 2. Obstacle surrounded by convex polygon
with rectangular and wedge shaped obstacle
fields indicated.

Note that this computation has to be performed
for each and every obstacle within range, thus the
total obstacle force on a given node is given by:

F ob =
n∑

k=1

Kob/
(
dob

k

)
(16)

where n is the number of obstacles present, and
the distance is either the perpendicular distance
to the face or the straight distance from a vertex,
as appropriate. As seen in Fig. 2, a vehicle must
be determined to lie either in a rectangle in front
of a face, or in the wedge between two faces.
This is used to compute the virtual force on
the node of the swarm in question. In order to
determine the location of a node with respect
to the face of a polygon, we use a coordinate
transformation to determine both the location
and the perpendicular distance.

We define the nodes of the convex polygon than
encloses the obstacle in sequential order from
1 to n. Thus, the side of the polygon between
vertices 1 and 2 is defined as the vector difference
between the coordinates of the vertices. In order
to determine if a vehicle lies within the projected
rectangle emanating outward from the face, we
first translate the coordinate frame to have the
origin at vertex 1: v1 = v − ρ1.

Next, we rotate the entire coordinate frame such
that the polygon side 1 → 2 is lined up with the
y-axis. Note that the angle of rotation is defined
by the coordinates of the vertices such that:

φ = arctan
2x − 1x

2y − 1y
(17)

where 1x is the x coordinate of the 1 vertex.

Using the trigonometric relationships between
sin φ and cos φ and the coordinates, we can write
the Rotation matrix as:

Rφ =




cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1


 (18)

where



sin φ =
2x − 1x√

(2y − 1y)2 + (2x − 1x)2
(19)

cosφ =
2y − 1y√

(2y − 1y)2 + (2x − 1x)2
(20)

After further manipulation, we arrive at the fol-
lowing relationship for the coordinates of the ve-
hicle, v, expressed in the rotated and translated
frame:

v1→2 =
1
λ

[
(2y − 1y) v1,x − (2x − 1x) v1,y

(2x − 1x) v1,x + (2y − 1y) v1,y

]

(21)
where λ =

√
(2y − 1y)2 + (2x − 1x)2, and is the

length of the polygon face from 1 → 2. In order to
find if the point is contained within the projection
of the polygon face, we simply examine the y-
coordinate of v1→2:

0 ≤ v1→2
y ≤ λ (22)

If v1→2
y satisfies Eq. 22, then the vehicle is within

the projected rectangle, and the perpendicular
distance is found from the x-coordinate of Eq. 21

If the case of being within the projection of
the face, dob

k is simply the length of the line
perpendicular to and extending from the edge to
i. In the case of the wedge, dob

k is the distance
between the closest vertex and i. Variations in the
functions themselves can have a large effect of the
behavior of a flock. Changing Eq. 15 such that the
denominator is cubed keeps the sign value while
significantly changing the magnitude of repulsion
from an obstacle:

F ob = Kob/ (dob)
3 (23)

5. VIRTUAL LEADER MOTION AND
SWARM CONTROL

Up to this point we have discussed how the
artificial potentials are determined, and how the
resultant forces are computed. This will achieve a
static flock formation, but will not result in useful
motion of any kind. Motion of the flock is achieved
by moving the virtual leader, which in turn drags
the rest of the swarm. This is a great advantage
of this methodology, as only a single trajectory
need be planned: that of the virtual leader. The
flocking methodology will take care of resolving
the collision free paths for each member of the
flock.

Movement of the group is achieved by advancing
the virtual leader along a path in discreet steps.
Every movement of the virtual leader causes a
change in dVL for each vehicle i, in turn changing
FVL. It is the total force acting on any given vehi-
cle which dictates the nature of its movements.

Ftot = F ij
i−1 + F ij

i+1 + FVL + F ob
1 + ... + F ob

n (24)

Fig. 3. A group of vehicles moving between 2 ob-
stacles. Total force is shown as solid arrows,
net obstacle force as dotted arrows.

Control of the flock is performed by proportional
feedback, and is very suitable to distributed im-
plementation. At each step, the net forces on each
node are computed, and a displacement is calcu-
lated that is proportional to that displacement.
The displacement is limited to a maximum at
each step, which is important when dealing with
obstacle fields that rise very quickly. Note that
each node needs only the information about its
own location, the location of the obstacles (defined
by vertices), the location of its nearest neighbors,
and the location of the virtual leader. This data,
which presents very modest requirements on the
intra-vehicle communications channel, represents
a complete model required to compute the forces
in this lightweight methodology, and thus the con-
trol.

Note also that the constants Kij , KVL and Kob

need not be time invariant; it may be desirable to
give a certain obstacle a higher value of Kob keep-
ing vehicles further at bay. Within the structure
of this approach there exists tremendous room
for variation. In the artificial potential functions
described in this paper, the ratio Kij to KVL to
Kob can have a massive effect on the behavior of
the flock and its performance.

6. SIMULATION STUDIES

In order to test this lightweight flocking method-
ology, a simulation study was used to determine
the effectiveness of this method for navigating a
flock through an obstacle field. A MATLAB simu-
lation was designed to move flocks of several sizes,
ranging from 5 to 100 vehicles, through various
numbers of obstacles. No attempt was made to



simulate vehicle dynamics, nor were any simula-
tions of obstacle detection capability included.

Various combinations of the spring constants, Kij ,
KVL, and Kob, and proportionality gains for the
feedback control were used in the simulations.
Fig. 3 and Fig. 4 show the flock going through
a set of obstacles. The base formation of the flock
used in these simulations is the circular formation
described in Section 3. The virtual leader is at the
center of the circle.

Visual analysis of trial runs shows promising re-
sults. In all cases tested, the flock is able to navi-
gate in such a way as to avoid collisions between
the obstacles and the vehicles with each other.
Indeed, visually, the metaphor of liquid flowing
is shown to be very apt. Computationally, this
methodology is very simple to implement, and
requires very little in the way of intra-vehicle com-
munication. These computational requirements
are well within the capability of the embedded
microcontrollers typical of a small autonomous
vehicle.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a computationally lightweight
method of planning the path of multiple au-
tonomous vehicles moving in a flock formation,
using artificial potentials, virtual leaders, geomet-
rical object modeling and proportional feedback in
position computation. Control is distributed such
that each vehicle determines its behavior based
on low bandwidth information from the other
vehicles. Because of the modest requirements for
individual knowledge and simple rules governing
motion, this approach is suitable for implemen-
tation in the embedded systems typical of small
autonomous robots. Simulation studies, without
dynamics taken into account, show it to be robust,
even in complex environments. Current limita-
tions in the framework include certain obstacle
types that split the flock into sub-flocks. Group
cohesion remains an issue of further exploration.
Dynamics must be included in further simula-
tions, as the vehicles cannot be made to jump
instantaneously from one position to the next.
Future work includes experimental demonstration
of this framework a number of small autonomous
vehicles. The challenge in this would be accurate
obstacle modeling and real time communication
of the position of the virtual leader.
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