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Abstract: It is still common practice in industry to handle the thickness control problem of
a rolling mill around a working point. The assumption of linearity is no longer valid if the
mill is operated in a wider working range. In a reversing mill this is especially the case when
the plate enters and leaves the mill stand from pass to pass. A non-linear control strategy is
proposed to improve the regularity of the thickness at the ends of the plate in order to decrease
the amount of the plate to be cut off by the crop shear. The performance of the controller is
examined using an advanced simulation model of a finishing mill. Copyright c° 2005 IFAC
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1. INTRODUCTION

With a heavy plate production of 2 mill. tons in 2003,
DILLINGER HUETTE GTS (DH) is the major Euro-
pean heavy plates producer. In the plants in Dillin-
gen, Germany, and Dunkirk, France, plates of big di-
mensions are produced. Lengths of up to 50 meters,
widths of up to 5.5 meters and thicknesses coming
up to 400 millimeters are by no means uncommon.
There is an ever increasing demand for higher quality
of the rolled steel products on the market and for
higher productivity of the plants. From a control the-
oretic point of view quality primarily is a byword for
holding the closest possible plate thickness tolerances.
Depending on the special type of rolling, whether hot
or cold, whether thin strip or heavy plate, different
effects limit the achievable performance of the over-
all closed-loop control system. Several MIMO (multi-
input multi-output) controllers have successfully been
designed for multi-stand mills, see, e.g., (Nakagawa
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et al., 1990) or the H∞-approach in (Grimble and
Hearns, 1999), to control the thickness and the inter-
stand tension, and for single-stand mills, see, e.g.,
(Pedersen and Wittenmark, 1998), to enhance the
product quality over the plate width. Often controllers
are based on linear process models, what in general
is no big drawback, as in many cases the mill is pre-
dominantly operated close to a fixed working point.
For scenarios where the mill is operated in a wider
working range it is useful to take into account the
non-linear behavior of the system, see., e.g., (Kugi et
al., 2000). When rolling plates in a reversing mill the
assumption of linearity certainly is violated whenever
the plate enters and leaves the mill stand. When enter-
ing with the leading plate end - in the following called
plate head - the rolling force rapidly meets the desired
force of, in our case, up to more than 90MN. The
leaving end is referred to as the plate tail in the fol-
lowing. The entering of the plate is surely the biggest
but not the only disturbance to the process. As there
may be several minutes between the moment when the



plate leaves the reheat furnace and the end of its pass
schedule its edges become significantly colder than its
filet part. The huge resulting hardness variations are
a second disturbance to the process which in context
with conventional control concepts yield a consider-
able over thickness, in particular at the ends of a plate.
While the mean temperature profile of the plate is
more or less well known it is in contrast not possible to
measure the plate thickness directly in the roll gap due
to the hostile industrial environment. Often, as in our
case, the only thickness measuring device is located
many meters behind the mill stand and cannot be used
for control purposes within one pass. Thus, there is a
strong need for well adapted models and for a deep
understanding of the process in order to develop new
control concepts for the stand which help to increase
the productivity of the plant. To achieve the highest
plant performance and the best product quality even
in future times, we choose to make a mechatronic
approach where the constructional setup as well as the
controllers, the actuators and sensors are redesigned
and optimized from a synergetic point of view.

The paper is organized as follows: In a first step, a
mathematical model of the mill stand and its compo-
nents is given in Section 2. Special emphasis is laid on
the derivation of a rather simple dynamic mill stand
model considering all essential effects arising in prac-
tice. In Section 3 we will compare some simulation
results of the plate thickness with measured data at the
plate head to validate the derived model. Section 4 is
devoted to the controller design. The controller con-
sists of a servo compensating pressure controller in the
innermost control loop and a non-linear outer control
loop for the plate thickness. A few simulation results
are presented in Section 5 and a short discussion on
the control concept and the simulation results is given
in Section 6.

2. MATHEMATICAL MODELING

The mill stand under investigation is a four-high stand
equipped with an upper and a lower bending traverse.
The principal mill configuration is depicted in fig. 1.
The back-up rolls serve to avoid too strong bending
of the work rolls and are itself supported by the tra-
verses and the hydraulic back-up roll bending (BURB)
systems. The bending of the work rolls can be in-
fluenced with hydraulic work roll bending (WORB)
systems. Chocks in which the rolls are mounted allow
the rolls to move vertically in the mill housing. The
upper elements (traverse, back-up roll and work roll)
can be positioned outside a pass with a screw system,
while a hydraulic positioning system allows to change
the position of the lower elements during a pass. A
detailed mathematical formulation of the components
of the mill is given in the following.
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Fig. 1. Four-high stand of the finishing hot rolling mill
in Dillingen.

2.1 Mill Stand Model

On the basis of the mill configuration as depicted in
fig. 1 a simplified mill model is derived. Here we are
only interested in the vertical behavior of the mill.
The thickness profile of the plate in the horizontal
direction is not considered in this contribution. The
schematic diagram of the mill stand model is shown in
fig. 2. The mass m2 represents the mass of the lower
mill housing, the mass m4 is built up by the upper
mill housing and the upper bending traverse. The
remaining elements are summarized in the masses m1

and m3. The safety jackets are mounted between the
upper bending traverse and the back-up roll chocks.
They are not actuated during a pass. For the depicted
model the equations of motion read as

d

dt
xi = vi, i = 1, ..., 4

mi
d

dt
vi = −mig + Fi, i = 1, ..., 4 ,

(1)

with the gravitational constant g and the abbreviations

F1 = FH − FR − FfA + F1c
F2 = −FH + FfA + FLH − d2v2 + F2c
F3 = −FSJ + FR − FfB + F3c
F4 = FSJ + FfB − FUH − d4v4 + F4c .

(2)

Here, FH = AHpH and FSJ = ASJpSJ denote the
hydraulic forces of the HGC (hydraulic gap control)
cylinder and the safety jacket, FR is the rolling force,
d2 and d4 are viscous damping coefficients of the
stand. The forces exerted by the upper and lower
housing stretch elements are given by the inverse of
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Fig. 2. Schematic diagram of the mill stand model.

the corresponding stretch functions fUH and fLH and
the initial positions x2,0 and x4,0 of the masses m2

and m4 in the form

FUH = f−1UH (x4 − x4,0) (3)
FLH = f−1LH (x2,0 − x2) . (4)

In Fic, i = 1, ..., 4, all forces are summarized which
are constant within one pass (such as balancing and
bending forces). For the chock friction forces FfA and
FfB a static friction model is used, the parameters of
which are estimated from measurement data. Stick-
slip effects are considered in the simulation model,
while only viscous friction is assumed for the con-
troller design. Given the stretch of the upper rolls

sUR = fUR (FR, F3c, F4c) (5)

and of the lower rolls

sLR = fLR (FR, F1c, F2c) (6)

the plate exit thickness hex is given by

hex = (x3 + sUR)− (x1 − sLR) . (7)

With the stretch functions fUR and fLR different
stretch effects are considered, e.g. the bending of the
rolls due to BURB and WORB forces, the flattening
between back-up and work rolls and the flattening
of the work roll sides facing the plate. The stretch
functions are physically motivated and their final rep-
resentation is adapted by means of finite-element stud-

ies and quasi-static measurements. As the only mea-
surable quantities are the displacement of the HGC
cylinder xH = x1−x2, the displacement of the safety
jacket xSJ = x4−x3, the pressure in the safety jacket
pSJ and the pressure in the HGC cylinder pH , we re-
write (7) in the following form

hex =URG− (xH − xH,0)− (xSJ − xSJ,0) (8)
+sUR + sLR + fUH (FUH) + fLH (FLH) .

Here URG = x3,0 − x1,0 denotes the size of the
unloaded roll gap. This is the size of the roll gap before
the plate enters the mill stand. In conventional mill
automation systems (8) is treated quasi-statically by
assuming all forces applied to the stretch functions
to be equal to a measurable force, mostly FH . Then,
usually a linear thickness controller, mostly a PI-
controller, is designed giving the reference signal to
a controller for the displacement of the HGC cylinder
xH in the innermost control loop. This control concept
is often referred to as gaugemeter control.

2.2 Hydraulic Positioning System

The mill under investigation is actuated by a single-
acting, single-ended hydraulic piston actuator which
allows to position the lower rolls at forces of up to
45MN per mill side. All following considerations can
easily be extended to the more general case, where
especially for mills working at lower rolling forces
the hydraulic positioning system consists of double-
acting, double-ended hydraulic cylinders, see, e.g.,
(Kugi, 2001). The mass continuity equation yields

qH

AH VH,0  pHxH

qL

Fig. 3. Single-acting, single-ended HGC cylinder.

the differential equation for the pressure pH in the
cylinder chamber

d

dt
pH = EH

(qH − qL −AHvH)

VH,0 +AHxH
, (9)

where vH = dxH/dt is the velocity, qH is the volume
flow to the cylinder chamber, VH,0 is the compressible
oil volume of the pipeline elements and AH denotes
the piston area. Furthermore, EH is the isothermal
bulk modulus of the oil and qL is the leakage flow
out of the chamber which will be neglected in what
follows with no substantial restriction of generality.
The volume flow to the cylinder coming from the
servo valve reads as



qH = fV+ (xv)
√
pS − pH − fV− (xv)

√
pH − pT

(10)
with the supply and tank pressure pS and pT , the
servo spool displacement xv and the opening char-
acteristics of the servo valve fV+ (xv) and fV− (xv),
with fV+ (xv) = 0 for xv < 0 and fV− (xv) = 0
for xv ≥ 0. In our case the valve is a three-stage
critical center 4/3 directional valve with one closed
connection. The valve is working at a supply pressure
of pS = 450 bar with a rated flow of 700 l/min.
The pressures pS and pT are measurable. All sim-
ulations are performed using further models for the
hydraulic supply system which are not presented in
this contribution. The simulation model additionally
contains a dynamic model for the servo valve. But for
the controller design the servo valve is assumed to be
ideally fast and thus xv serves as the control input.

2.3 Rolling Force Model

Up to now, an exact analytical solution of the de-
formation process in the roll gap is not known. De-
pending on the special rolling scenario a variety of
approximate solutions can be found in the literature.
In this contribution we use the model of Sims which
is one of various different models used for the hot
rolling process of steel. The interested reader may
find further details in the wide literature on rolling
processes, e.g. in the original publication (Sims, 1954)
and the references cited therein. We only want to
briefly summarize the essential parts of the model
here. Fig. 4 depicts a schematic diagram of the roll
gap. Sims’ model assumes the plate deformation to be
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Fig. 4. Schematic diagram of the roll gap.

purely plastic. In consideration of the yield condition
derived by Orowan and making some assumptions
on the friction between the work rolls and the plate,
Sims calculates the rolling forceFR by integrating von
Karman’s differential equation to, see, e.g., (Hensel
and Spittel, 1978)

FR = bm ld kfm Qf . (11)
Here, bm denotes the plate width, ld is the length of the
arc of contact, kfm is the average yield strength in the

roll gap and Qf is a factor depending on the geometry
of the roll gap. The length of the arc of contact can
approximately be calculated by

ld ≈
p
R0wr4h =

p
R0wr (hen − hex) , (12)

where the radius R0wr of the deformed work roll is
given as a function of the radius of the undeformed
work roll Rwr by Hitchcock’s formula

R0wr = Rwr

Ã
1 +

16
¡
1− ν2

¢
πE

FR
bm (hen − hex)

!
,

(13)
with the entry and exit thickness of the plate hen and
hex. Furthermore, E denotes Young’s modulus and ν
is the Poisson ratio of the rolls. The average yield
strength kfm is a function of the temperature T of the
plate in the rolling gap, the logarithmic pass reduction
ε = log

³
hen
hex

´
and the circumference velocity of the

work rolls ω. Following the propositions of Hill and
Siebel, see, e.g., (Schwenzfeier, 1979), the geometry
factor Qf has the form

Qf = xQf
+B1 exp

µ
B2

ld
hm

+B3

¶
xQf

= B4 +B5
ld
hm

,
(14)

with the mean plate thickness hm = (hen + hex) /2
and the characteristic ratio of the length of the arc of
contact and the mean plate thickness ld/hm. The pa-
rameters B1, ..., B5 are found by means of regression
analysis. With (11) - (14) we can formulate the rolling
force model in an implicit form

fFR (FR, hen, hex, T, ω) = 0 (15)

which will be used both for simulation purposes and
for the controller design. For all simulation studies the
length of the arc of contact ld from (12) is assumed
to increase and decrease in a smooth manner at the
beginning and the end of each pass.

3. MODEL VALIDATION

To validate the dynamical mathematical model of
the mill stand derived in the previous section, mea-
surement campaigns have been performed. The plate
thickness was measured with a radiometric thickness
measuring device located several meters behind the
mill stand. The plates were rolled using a conventional
gaugemeter controller. The simulated and measured
plate thickness of the plate head for one characteristic
pass are compared in fig. 5. The abrupt beginning of
the measured profile is due to a delay in the thickness
measuring device. Simulated and measured thickness
profiles match with quite good accuracy which also
motivates to use the models derived so far for the
controller design in the next section. Note that of
course the plates delivered to the customers are always
cropped and thus meet the highest quality require-
ments.
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Fig. 5. Comparison of simulation results with radio-
metric thickness measurement data for the un-
cropped plate head of a characteristic pass.

4. CONTROLLER DESIGN

The controller is based on a cascaded concept with a
non-linear pressure controller in the innermost control
loop and an implicit non-linear controller for the plate
thickness in the outer control loop. Applying the the-
ory of exact linearization, see, e.g., (Isidori, 1996), to
(9) and (10), we construct a simple servo compensat-
ing pressure controller yielding a closed loop

d

dt
pH = q̄H = −kp (pH − FH,d/AH) , kp > 0

qH =AHvH + q̄H
VH,0 +AHxH

EH
(16)

xv =

(
f−1V+

¡
qH/
√
pS − pH

¢
, xv ≥ 0

−f−1V−

¡
qH/
√
pH − pT

¢
, xv < 0

,

where FH,d denotes the desired hydraulic force of
the HGC cylinder and serves as the control input
for the outer plate thickness controller. The controller
parameter kp has to be chosen appropriately. In case
the piston position signal xH is strongly corrupted by
noise and cannot be differentiated w.r.t. time one can
find elegant methods to overcome this problem, see,
e.g., (Schlacher et al., 2001) and (Kugi, 2001). For the
design of the outer controller the profiles of the plate
temperature T and the plate entry thickness hen, the
circumference velocity of the work rolls ω and the
forces Fic, i = 1, ..., 4, are assumed to be known.
The forces FUH and FLH exerted by the stretched
housing elements cannot be measured. They can either
be substituted quasi-statically by a measurable force,
e.g. FH or FSJ , or can be observed with a trivial
observer. For the sake of convenience we assume that
the chock friction forces F̃fA = d1v1 and F̃fB = d3v3
are purely viscous and that the roll stretch elements are
flipped to the sides of the massesm1 andm3 where the
hydraulic cylinders are located. On these conditions
the mathematical model of the plate thickness (cp. (1)
- (2)) for the controller design can be written as

d

dt
hex = vex = v3 − v1, hex = x3 − x1

d

dt
vex =

−m3g − FSJ + FR − F̃fB + F3c
m3

(17)

−−m1g + FH − FR − F̃fA + F1c
m1

.

Based on the idea of flatness, see, e.g., (Fliess et
al., 1995) and (Rudolph, 2003), for the simplified
model (17) an implicit non-linear control law can be
designed in the following way: By applying a desired
hydraulic force

FH,d = FR − F1c +m1g − vex,dd1 −m1χ

+
m1

m3
(FR − FSJ + F3c −m3g) (18)

to the system with FR from (15), with hex from (8)
and assuming m1 = m3 and d1 = d3, we get

d

dt
vex =

d1
m1

(vex,d − vex) + χ . (19)

Choosing χ in the form

χ =
d

dt
vex,d −

µ
α1e+ α2

Z
edt

¶
− α3

d

dt
e (20)

with e = hex − hex,d the error dynamics of the outer
closed loop system is given by

d2

dt2
e+

µ
d1
m1

+ α3

¶
d

dt
e+ α1e+ α2

Z
edt = 0 ,

(21)
provided that the inner pressure controller is assumed
to be ideal. The error dynamics can be adjusted by an
appropriate choice of the controller parameters α1, α2
and α3. Anti-wind up strategies have to be arranged
for the integral part in (21) as it may happen that the
servo spool position saturates (see also fig. 8).

5. SIMULATION RESULTS

For the simulations to be presented in the following
the input thickness hen of the tail was chosen to be
equal to the exit thickness hex of the head in the
previous pass (see fig. 5). The temperature profile was
assumed to decrease to 70% of the filet temperature
at the plate tail in a smooth manner. As depicted in
fig. 6, simulation studies show that the new non-linear
controller significantly enlarges the plate length within
the required thickness tolerances compared to a con-
ventional gaugemeter controller. The corresponding
rolling force is depicted in fig. 7. The servo spool
position xv for both controllers is given in fig. 8.

6. CONCLUSION AND OUTLOOK

It is interesting to note that in the case when the dy-
namics in (17) is neglected the controller presented
here merges into the conventional gaugemeter con-
troller. Compared to conventional mill automation
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8 8.5 9 9.5 10 10.5 11
-1

-0.5

0

0.5

1

normalized plate position

no
rm

al
iz

ed
 s

er
vo

 s
po

ol
 p

os
iti

on

gaugemeter controller
new controller

Fig. 8. Servo spool position with conventional
gaugemeter controller and with new non-linear
controller.

systems we use the actual non-linear mill stretch func-
tions, which are used on-line for the pass schedule cal-
culation, and a rolling force model instead of the usual
deformation resistance and mill stretch coefficient. For
the presented controller to be feasible in practice a
forward slip model is required to track the position of
the plate. Furthermore, the entry thickness and temper-
ature profiles are needed. The control concept in com-
bination with the advanced simulator also allows us to

further investigate the influence of the performance of
certain system components on the product quality and
on the plant productivity, see, e.g., the saturating servo
valve in fig. 8. Thus, apart from the control synthesis
point of view this approach is also of great value when
dealing with questions of optimal sensor and actuator
positioning and the re-design of mill components.
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