REAL-TIME PATH PLANNING IN UNKNOWN ENVIRONMENTS USING A VIRTUAL HILL
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Abstract: The artificial potential field based path planning has been most wisely used for
local path planning because it provides simple and efficient motion planners for practical
purposes. However, this approach has a local minimum problem which can trap a robot
before reaching its goal. The local minimum problem is sometimes inevitable when a
mobile robot moves in unknown environments, because the robot cannot predict local
minima before it detects obstacles forming the local minima. The avoidance of local
minima has been an active research topic in the potential field based path planning. In this
study, we propose a new concept using a virtual hill to escape local minima that occur in
local path planning for a mobile robot. A virtual hill is located around local minimum to
repel arobot from local minimum Copyright ©2005 |FAC
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1. ITRODUCTION

Artificial potential field methods provide simple and
effective motion planners for practical purposes (Lee
and Park, 1991). These approaches have been widely
applied to path planning of a mobile robot and a
manipulator (Borenstein and Koren, 1989; Chuang,
1998; Chuang and Ahuja, 1998; Chuang et al., 2000;
Guldner and Utkin, 1995; Haddad et al., 1998;
Hwang and Ahuja, 1992; Tsa et al, 2001,
Vadakkepat, 2001; Veelaert and Bogaerts, 1999).
The applications of artificial potential field for
obstacle avoidance was first developed by Khatib
(Khatib, 1985; Khatib, 1986). This approach uses
two types of potential, which are a repulsive
potential field to force a robot away from obstacles
or forbidden regions and an attractive potential field
to drive the robot to its goal. The robot moves under
the action of the artificial force which is proportional
to the negative gradient of artificial potential. The

robot is driven from the positions with the higher
potential to that with the lower potential.

However, the path planning by the artificial potential

field approach has a major problem, alocal minimum
problem, which can trap a robot before reaching its
goa. The local minimum problem is sometimes
unavoidable in local path planning, because the robot
can detect only local information on obstacles. In

other words, the robot cannot predict local minima
before experiencing the environment. An avoidance

of alocal minimum has been an active research topic
in potential field based path planning (Chang, 1996;
Cho and Kwon, 1996; Connolly et al., 1990;

Connolly, 1992; Janabi-Sharifi and Vinke, 1993;

Kim and Khosla, 1992, Lee and Park, 1991;

McFetridge and Y ousef-1brahim, 1998; Park and Lee,
2003; Rimom and Koditschek, 1992; Volpe and
Khosla, 1990). However, the previous solutions were
limited to simple formations of obstacles or available
for path planning in known environments.



In this research, a virtual hill concept is proposed as
an idea to escape loca minima. The virtua hill is
located around the local minimum point to repel the
robot from this point. This technique is useful for
local path planning in unknown environments.

2. POTENTIAL THEORY

In this section, we review the attributes of the
attractive potential function and the repulsive one
adopted in this study. The attractive potential
function used in this study is the conical well
proposed by Andrews (Andrews, 1983). This
function is quadratic within a given range and the
value of the function increases linearly in the outer
range. Therefore, it is adaptable for path planning in
wide environments. The conical well is described by
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where Jy is the radius of the quadratic range, K, is
the proportiona gain of the function and

d :"p- P goa " , where P is the position vector of the
robot and Py isthe position vector of the goal. The

attractive force F,, is obtained by the negative
gradient of the attractive potential:
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The conical well provides a force with constant
magnitude for distances larger than dy .

The second category of potential, the repulsive
potential, is necessary to repel the robot away from
obstacles that dostruct the robot's path of motion in
the global attractive potential field. The repulsive
potential functions have a limited range of influence
to prevent an obstacle from afecting the motion of a
robot when it is far away from the obstacle. The
following repulsive potential function is the FIRAS
function proposed by Khatib. This function uses the
shortest distance to an obstacle as

where I o represents a potential field's distance limit
of influence and is the shortest distance to an
obstacle. The selection of the distance I depends

on the maximum speed of the robot and the control
period. The repulsive force is driven as
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where Pg, is the position vector of the closest
obstacle in the xy -coordinate system.
The total potential can be obtained by adding
together the sum of the attractive potential and
repulsive potential. The total force is obtained by the
negative gradient of aglobal potential

=- NUatt - NUrep (6)
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3. NEW APPROACH TO ESCAPE LOCAL
MINIMUM

3.1 Virtual Hill Concept

The local minimum problem is sometimes inevitable
because the local minima cannot be predictive in
unknown environment. A virtual hill is a new
concept to escape local minima. In the conventional
artificial potential field approach, a local minimum is
formed when an attractive forceis equal or similar to
a repulsive force. A virtual hill has the role of
repelling the robot from a local minimum. The
virtual hill generates extra force instead of attractive
force to repel the robot from a local minimum. The
extra potential is designed not to generate new local
minima and it makes possible that the robot escape a
local minimum in complex environments.

The virtual hill approach is applied when the robot is
trapped by a local minimum. The judgment whether
arobot is trapped by alocal minimum or not should
be preceded before an application of a virtual hill
method. In real-time path planning, the obstacles are
detected by range sensors of a robot. The analytic
searching of a local minimum requires intensive
computational time and that is inadequate for real-
time path planning. For fast judgment whether the
robot is trapped by a local minimum or not, the
following criterion is defined :
Local-minimumecriterion

Whent 3 T, if [p(t)- p(t - T.)| £S. then the robot
is trapped in a local minimum, where P represents
the position vector of the robot, T, is the time

interval, and S, is set to the minimum distance that
the robot moves for T, in the non-local minimum



condition. S, isset to avery small value because the
distance between P(t) and P(t- T.) has a very

small value when the robot is trapped in a locd
minimum.

When a robot is trapped by a local minimum, a
virtual hill is generated and a robot moves by
repulsive potential and extra potential until escaping
local minimum area. As paosition of the virtua hill,
the trapping obstacle is defined as the closest
obstacle from the robot when the robot is just trapped
by local minimum. The position vector of the
trapping obstacle is denoted as P, . The trapping
obstacle may have mgjor influence on trapping a
robot because the closest obstacle generates the
largest repulsive force which is opposites to an
attractive force.

3.2 Extra Potential

The extra potential is to overcome local minimum
problems. That is defined as

Uexl :_kay +ke2r2 (7)

where k, and k,, are proportional gainsand ' is
the distance between a robot and its closest obstacle.
Y isdefined asthe path integral :

y =Q¥ (8)

where 9 is defined as a path-of-the-cl osest-obstacles
which represents the trajectory of the closest obstacle
when arobot movesin alocal minimum area. 9 can
be expressed as
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where {; isthe time at that arobot is just trapped by
a loca minimum, t is arbitrary time, and t,
represent the time at that the robot just escapes a

local minimum area. Q represents the position
vector of the closest obstacle. The closest obstacle

Py is discretely detected by range sensors and the
continuous function Q(t) is interpolated from the
detected obstacles as shown in Fig. 1. Q satisfies
following equation :

Q(t)=pe (t) where i =01, K (10)

Then Y can be expressed as
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where Q =dQ/dt.Y (t) means the displacement
between Q(t,) and Q(t), which increases along
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9 as shown in Fig. 1. ¥ satisfies the following
expressions::
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€ is defined as the tangent vector of 9 and it is
expressed as

Q
& =7 12
[ (2
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where €, is the normal vector and €, isbinormal
vector of 9 asshowninFig 1.

In this study, it is assumed that the outline of
obstacles is differentiable because the outline of real
obstaclesis continuous and acritical edge of obstacle
may be smooth in a micro world. Consequently, we
can assume that Q is differentiable except the start
point and the final point because it is interpolated
obstacle-line. If the path 9 is continuous and smooth
at an arbitrary point B on contour 9 and apoint A is
an arbitrary point in the space, and aline AB isthe
closest line from A to 9, AB is aways a vertical

line to 9. Therefore, the line Ww may be always

vertical from Q because P, is the closest point on
Q . The normal vector can be expressed as
- p- pm

Ip- Po

(14)

where P, is detected by range sensors. In the path
planning on a two-dimensional plane, €, and € are

always on the XY -plane, and then a binormal vector
€, is always on the k -axis. That means €, =K or
€, =-K . InFig. 1, & istangent vector of 9and €,
is able to be obtained by (14) and then the direction
of € isdetermined by €,. Therefore the direction of
9 is determined by €, because € is the tangent



vector of 9. €, isdefined as
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where B ° (pgoal - pm)' (p(ts) - Po). In the extra

potential function,- K.y term may drive a robot to

direction of 9 because the robot moves from a high
energy-position to alow energy-position in artificial
potential approach. The conditional expression (15)
isto set the direction of 9 to goal side.

The extra force is the negative gradient of extra
potential. By the principle of superposition, the extra
force can be expressed as

Fo = NU,, =k Ny -k, R(r?)  (16)

A robot can detect obstacles by range sensor but they
cannot detect absolute outlines of obstacles.
Therefore, the outline of obstacles should be
estimated by discrete obstacle-points. In Fig. 1,

P(t,) isthe position vector of arobot when the robot
just trapped by local minimum, and then the position
vector of the closest obstacle is expressed as Py, (t,)

or P, . Consequently, P, (%) is the position vector
of the closest obstacle from P(t) . Theny (p(t))
can be approximately expressed as

)=§[ferdlal

where ||DQ,|| isadisplacement of 9 shownin Fig. 1.
Then Ny (p(t‘- )) can be expressed as
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By the definition of gradient and the principle of

superposition, Ngeéi."DQ,Hg can be expressed as
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because DQ | is mdependent term with respect to
the displacement of Q at ti, and then we obtain
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||DQ || ||E°?||) (|| ()i = (20)

(16) can be obtained from Egs. (16)-(20)
Ny =¢ =¢ g (21)

where, €, and &, are obtained by (14) and (15).
Then we can simply get NY by (21) and that is
very available for a real-time path planning. The

N(r 2) term of the extra force is derived as
N (r 2)

By (21) and (22), Fu.

:2(p 'pco) =2r €, (22)

can be expressed as
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In (23), the extra force is composed of two parts
which are K€ and - 2K, €, . First part is the force

in direction of the tangent vector of 9 . Second part
isin direction of the negative normal vector of 9 and
it attract the robot to the closest obstacle. The second
component of the force is to prevent the robot

diverging too far from an effective path. The most
strong point of the proposed extra potential is that it
does not generate new local minimum. We proof that
asfollows:

After a robot is trapped by a local minimum, the
robot moves under the action of the force generalized
by arepulsive force and an extra force until the robot
escapes the local minimum area. The total force is
expressed as

F=F,*+F, (24)

If €, of (14) is substituted into a repulsive force, a
repulsive force can be expressed as
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The local minimum is defined as the point at which

the negative gradient of the artificial potential is zero.

In other words, the artificial force is zero at a local
minimum. On the other hand, in the total force of

(26), € and €, are independent each other and

K48, * Obecause € isunit vector and K,, is not zero.
Therefore, the totoal force Fis always not zero. A
local minimum is the point which satisfy F=0.
Hence, the generalized potential always has not local
minima. Fig. 2 shows the formation of the extra
potential field with respect to a closed aisle and Fig.
3 showsthetotal potential.

4. EXPERIMENTS

We performed various experiments to evaluate the
virtual hill approach. It is assumed that a robot
initially does not have any information on the
environment, and it can detect obstacles up to 1.5m
from itself. The values of parameters are adequately
set by atrial and error method. In Fig. 4, the obstacle
has the shape of aclosed aisle. Therefore, the robot is
trapped in a loca minimum. In the same
environment, Fig. 5 shows that the robot can escape
the local minimum by the virtual hill approach, and it
can successfully reach its goal. These results of the
experiments show that this technique is useful for
concave obstacles and for deep aisle-shaped
obstacles. The robot can successfully reach its goal
by the virtual hill approach, as shown in Figs. 6-8.
To evaluate the generality of the proposed algorithm,
experiments are done in several environments. The
results of the experiments show that the proposed
path planner has good generality.

5. CONCLUSIONS

In this study, we proposed the virtual hill concept to
escape local minimums in local path planning based
on the artificial potential field approach. The virtual
hill with the extra potential is located at the trapping
obstacle when robot is trapped in a local minimum.
The extra potential is added to the global potential,
and it repels the robot from the local minimum.

The extra potential is designed not to have any new
local minima. The concept of a new path 9 is newly
proposed. 9 represents the path of the detected
closest obstacles after a robot is trapped by a local
minimum. The extra potential function has the term
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of ¥ which is defined as the path integral of 9. In
real-time navigation, obstacles may be continuously
detected by a robot and then ¥ will continuously
increase with respect to time. The extra potential is
designed to be inversely proportional to Y
Therefore, this potential field dose not have a local
minimum because the potential continuously changes
with respect to time. The results of the experiments
and experimentsin the various environments showed
that virtual hill approach did not generate a local
minimum and the robot could successfully escape a
local minimum area.
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