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Abstract: The artificial potential field based path planning has been most wisely used for 
local path planning because it provides simple and efficient motion planners for practical 
purposes. However, this approach has a local minimum problem which can trap a robot 
before reaching its goal. The local minimum problem is sometimes inevitable when a 
mobile robot moves in unknown environments, because the robot cannot predict local 
minima before it detects obstacles forming the local minima. The avoidance of local 
minima has been an active research topic in the potential field based path planning. In this 
study, we propose a new concept using a virtual hill to escape local minima that occur in 
local path planning for a mobile robot. A virtual hill is located around local minimum to 
repel a robot from local minimum. Copyright © 2005 IFAC 
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1. ITRODUCTION 
 
Artificial potential field methods provide simple and 
effective motion planners for practical purposes (Lee 
and Park, 1991). These approaches have been widely 
applied to path planning of a mobile robot and a 
manipulator (Borenstein and Koren, 1989; Chuang, 
1998; Chuang and Ahuja, 1998; Chuang et al., 2000; 
Guldner and Utkin, 1995; Haddad et al., 1998; 
Hwang and Ahuja, 1992; Tsai et al, 2001; 
Vadakkepat, 2001; Veelaert and Bogaerts, 1999). 
The applications of artificial potential field for 
obstacle avoidance was first developed by Khatib 
(Khatib, 1985; Khatib, 1986). This approach uses 
two types of potential, which are a repulsive 
potential field to force a robot away from obstacles 
or forbidden regions and an attractive potential field 
to drive the robot to its goal. The robot moves under 
the action of the artificial force which is proportional 
to the negative gradient of artificial potential. The 

robot is driven from the positions with the higher 
potential to that with the lower potential.  

 
However, the path planning by the artificial potential 
field approach has a major problem, a local minimum 
problem, which can trap a robot before reaching its 
goal. The local minimum problem is sometimes 
unavoidable in local path planning, because the robot 
can detect only local information on obstacles. In 
other words, the robot cannot predict local minima 
before experiencing the environment. An avoidance 
of a local minimum has been an active research topic 
in potential field based path planning (Chang, 1996; 
Cho and Kwon, 1996; Connolly et al., 1990; 
Connolly, 1992; Janabi-Sharifi and Vinke, 1993; 
Kim and Khosla, 1992; Lee and Park, 1991; 
McFetridge and Yousef-Ibrahim, 1998; Park and Lee, 
2003; Rimom and Koditschek, 1992; Volpe and 
Khosla, 1990). However, the previous solutions were 
limited to simple formations of obstacles or available 
for path planning in known environments. 



     

In this research, a virtual hill concept is proposed as 
an idea to escape local minima. The virtual hill is 
located around the local minimum point to repel the 
robot from this point. This technique is useful for 
local path planning in unknown environments. 

 
 

2. POTENTIAL THEORY 
 

In this section, we review the attributes of the 
attractive potential function and the repulsive one 
adopted in this study. The attractive potential 
function used in this study is the conical well 
proposed by Andrews (Andrews, 1983). This 
function is quadratic within a given range and the 
value of the function increases linearly in the outer 
range. Therefore, it is adaptable for path planning in 
wide environments. The conical well is described by  
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where 0d  is the radius of the quadratic range, ak  is 
the proportional gain of the function and 

goald = −p p , where p  is the position vector of the 

robot and goalp  is the position vector of the goal. The 

attractive force attF  is obtained by the negative 
gradient of the attractive potential:  
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The conical well provides a force with constant 
magnitude for distances larger than 0d .  

 
The second category of potential, the repulsive 
potential, is necessary to repel the robot away from 
obstacles that obstruct the robot's path of motion in 
the global attractive potential field. The repulsive 
potential functions have a limited range of influence 
to prevent an obstacle from affecting the motion of a 
robot when it is far away from the obstacle. The 
following repulsive potential function is the FIRAS 
function proposed by Khatib. This function uses the 
shortest distance to an obstacle as  
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where 0ρ  represents a potential field's distance limit 
of influence and is the shortest distance to an 
obstacle. The selection of the distance 0ρ  depends 
on the maximum speed of the robot and the control 
period. The repulsive force is driven as  
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where /ρ∂ ∂p  can be represented as  
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where cop  is the position vector of the closest 
obstacle in the xy -coordinate system.  
The total potential can be obtained by adding 
together the sum of the attractive potential and 
repulsive potential. The total force is obtained by the 
negative gradient of a global potential 
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3. NEW APPROACH TO ESCAPE LOCAL 
MINIMUM 

 
3.1 Virtual Hill Concept 

 
The local minimum problem is sometimes inevitable 
because the local minima cannot be predictive in 
unknown environment. A virtual hill is a new 
concept to escape local minima. In the conventional 
artificial potential field approach, a local minimum is 
formed when an attractive force is equal or similar to 
a repulsive force. A virtual hill has the role of 
repelling the robot from a local minimum. The 
virtual hill generates extra force instead of attractive 
force to repel the robot from a local minimum. The 
extra potential is designed not to generate new local 
minima and it makes possible that the robot escape a 
local minimum in complex environments.  

 
The virtual hill approach is applied when the robot is 
trapped by a local minimum. The judgment whether 
a robot is trapped by a local minimum or not should 
be preceded before an application of a virtual hill 
method. In real-time path planning, the obstacles are 
detected by range sensors of a robot. The analytic 
searching of a local minimum requires intensive 
computational time and that is inadequate for real-
time path planning. For fast judgment whether the 
robot is trapped by a local minimum or not, the 
following criterion is defined :  
Local-minimum-criterion  

When at T≥ , if ( ) ( )a at t T S− − ≤p p  then the robot 

is trapped in a local minimum, where p  represents 
the position vector of the robot, aT  is the time 

interval, and aS  is set to the minimum distance that 

the robot moves for aT  in the non-local minimum 



     

condition. aS  is set to a very small value because the 

distance between ( )tp and ( )at T−p  has a very 
small value when the robot is trapped in a local 
minimum.  

 
When a robot is trapped by a local minimum, a 
virtual hill is generated and a robot moves by 
repulsive potential and extra potential until escaping 
local minimum area. As position of the virtual hill, 
the trapping obstacle is defined as the closest 
obstacle from the robot when the robot is just trapped 
by local minimum. The position vector of the 
trapping obstacle is denoted as top . The trapping 
obstacle may have major influence on trapping a 
robot because the closest obstacle generates the 
largest repulsive force which is opposites  to an 
attractive force.  
 
 
3.2 Extra Potential 
 
The extra potential is to overcome local minimum 
problems. That is defined as  
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where 1ek  and 2ek  are proportional gains and ρ  is 
the distance between a robot and its closest obstacle. 
ψ  is defined as the path integral :  
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where γ  is defined as a path-of-the-closest-obstacles 
which represents the trajectory of the closest obstacle 
when a robot moves in a local minimum area. γ   can 
be expressed as  
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where 0t  is the time at that a robot is just trapped by 

a local minimum, it  is arbitrary time, and kt  
represent the time at that the robot just escapes a 
local minimum area. Q  represents the position 
vector of  the closest obstacle. The closest obstacle 

cop  is discretely detected by range sensors and the 

continuous function ( )tQ  is interpolated from the 
detected obstacles as shown in Fig. 1. Q  satisfies 
following equation : 
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Then Ψ  can be expressed as 
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where /d dt=Q Q& . ( )tψ  means the displacement 

between ( )0tQ  and ( )tQ ,  which increases along  

 

Fig. 1. Concept of γ  
 
γ as shown in Fig. 1. ψ  satisfies the following 
expressions :  
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te  is defined as the tangent vector of γ and it is 
expressed as   
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te  satisfies  (13) 
 

t n b= ×e e e                          (13) 
 

where ne  is the normal vector and be  is binormal 
vector of  γ  as shown in Fig 1.  

 
In this study, it is assumed that the outline of 
obstacles is differentiable because the outline of real 
obstacles is continuous and a critical edge of obstacle 
may be smooth in a micro world. Consequently, we 
can assume that Q is differentiable except the start 
point and the final point because it is interpolated 
obstacle-line. If the path γ  is continuous and smooth 
at an arbitrary point B on contour γ and  a point A  is 
an arbitrary point in the space, and a line AB  is the 
closest line from A to γ , AB  is always a vertical 

line to γ . Therefore, the line copp  may be always 

vertical from Q  because cop  is the closest point on 
Q . The normal vector can be expressed as  
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where cop  is detected by range sensors. In the path 

planning on a two-dimensional plane, ne  and te  are 
always on the xy -plane, and then a binormal vector 

be  is always on the k -axis. That means b =e k  or 

b = −e k . In Fig. 1, te  is tangent vector of γ and ne  
is able to be obtained by (14) and then the direction 
of te  is determined by be . Therefore the direction of 
γ  is determined by be  because te  is the tangent 



     

vector of γ . be  is defined as 
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where ( ) ( )0( )goal to tot≡ − × −B p p p p .  In the extra 

potential function, 1ek ψ−  term may drive a robot to 
direction of γ  because the robot moves from a high 
energy-position to a low energy-position in artificial 
potential approach. The conditional expression (15) 
is to set the direction of γ  to goal side.  
 
 
The extra force is the negative gradient of extra 
potential. By the principle of superposition, the extra 
force can be expressed as  
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A robot can detect obstacles by range sensor but they 
cannot detect absolute outlines of obstacles. 
Therefore, the outline of obstacles should be 
estimated by discrete obstacle-points. In Fig. 1, 

0( )tp  is the position vector of a robot when the robot 
just trapped by local minimum, and then the position 
vector of the closest obstacle is expressed as 0( )co tp  

or top . Consequently, ( )co itp  is the position vector 

of the closest obstacle from ( )itp . Then ( )( )itψ p  

can be approximately expressed  as  
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where j∆Q  is a displacement of γ shown in Fig. 1. 

Then ( )( )itψ∇ p  can be expressed as  
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By the definit ion of gradient and the principle of 
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the displacement of Q at ti, and then we obtain  

 

Fig. 2. Extra potential in closed aisle 
 

 

Fig. 3. Total potential with virtual hill 
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(16) can be obtained from Eqs. (16)-(20)  
 

t n bψ∇ = = ×e e e                       (21)  
 

where, ne  and be  are obtained by  (14) and  (15). 
Then we can simply get ψ∇   by  (21) and that is 
very available for a real-time path planning. The 

( )2ρ∇  term of the extra force is derived as  
 

( ) ( )2 2 2co nρ ρ∇ = − =p p e               (22)   
 

By (21) and  (22), extF  can be expressed as  
 

1 22ext ext e t e nU k k ρ=−∇ = −F e e              (23)  
 

In  (23), the extra force is composed of two parts 
which are 1e tk e  and 22 e nk ρ− e . First part is the force 
in direction of the tangent vector of  γ  . Second part 
is in direction of the negative normal vector of γ  and 
it attract the robot to the closest obstacle. The second 
component of the force is to prevent the robot 
diverging too far from an effective path. The most 
strong point of the proposed  extra potential is that it 
does not generate new local minimum. We proof that 
as follows :  
After a robot is trapped by a local minimum, the 
robot moves under the action of the force generalized 
by a repulsive force and an extra force until the robot 
escapes the local minimum area. The total force is 
expressed as  
 

rep ext= +F F F                         (24) 
 

If ne  of (14) is substituted into a repulsive force, a 
repulsive force can be expressed as  
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Then the total force is given by   
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The local minimum is defined as the point at which 
the negative gradient of the artificial potential is zero. 
In other words, the artificial force is zero at a local 
minimum. On the other hand, in the total force of  
(26), te  and ne  are independent each other and 

1 0e tk ≠e because te  is unit vector and 1ek  is not zero. 
Therefore, the totoal force F is always not zero. A 
local minimum is the point which satisfy 0=F . 
Hence, the generalized potential always has not local 
minima. Fig. 2 shows the formation of the extra 
potential field with respect to a closed aisle and Fig. 
3 shows the total potential.  
 

 
4. EXPERIMENTS 

 
We performed various experiments to evaluate the 
virtual hill approach. It is assumed that a robot 
initially does not have any information on the 
environment, and it can detect obstacles up to 1.5m 
from itself. The values of parameters are adequately 
set by a trial and error method. In Fig. 4, the obstacle 
has the shape of a closed aisle. Therefore, the robot is 
trapped in a local minimum. In the same 
environment, Fig. 5 shows that the robot can escape 
the local minimum by the virtual hill approach, and it 
can successfully reach its goal. These results of the 
experiments show that this technique is useful for 
concave obstacles and for deep aisle-shaped 
obstacles. The robot can successfully reach its goal 
by the virtual hill approach, as shown in Figs. 6-8. 
To evaluate the generality of the proposed algorithm, 
experiments are done in several environments. The 
results of the experiments show that the proposed 
path planner has good generality. 
 
 

5. CONCLUSIONS 
 
In this study, we proposed the virtual hill concept to 
escape local minimums in local path planning based 
on the artificial potential field approach. The virtual 
hill with the extra potential is located at the trapping 
obstacle when robot is trapped in a local minimum. 
The extra potential is added to the global potential, 
and it repels the robot from the local minimum. 
The extra potential is designed not to have any new 
local minima. The concept of a new path γ  is newly 
proposed. γ  represents the path of the detected 
closest obstacles after a robot is trapped by a local 
minimum. The extra potential function has the term 
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Fig. 4. Experiment 1 
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Fig. 5. Experiment 2 
 

 
Fig. 6. Experiment 3 

 

 
Fig. 7. Experiment 4 
 

 
Fig. 8. Experiment 5 



     

of ψ  which is defined as the path integral of γ . In 
real-time navigation, obstacles may be continuously 
detected by a robot and then ψ  will continuously 
increase with respect to time. The extra potential is 
designed to be inversely proportional to ψ . 
Therefore, this potential field dose not have a local 
minimum because the potential continuously changes 
with respect to time. The results of the experiments 
and experiments in the various environments showed 
that virtual hill approach did not generate a local 
minimum and the robot could successfully escape a 
local minimum area.  
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