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Abstract: Application of the data driven modelling framework entitled Grid of
Linear Models to derive a predictive model for a fed-batch fermentation process is
presented. The modelling framework utilises a large number of local linear models
to approximate the behaviour of the non-linear process. Industrial data from a fed-
batch fermentation has been supplied by Novozymes A/S. A model for the process
has been identified based on these data. The model possesses good predictive
capabilities and it is intended to be implemented in a model predictive control

framework. Copyright(©) 2005 IFAC.
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1. INTRODUCTION

Fed-batch processes play a very important role
in chemical and biochemical industry. Fermen-
tations are widely used in biochemical industry
and these are most often carried out as fed-batch
processes. Present control schemes do not uti-
lize the full potential of the production facilities
and may often fail to achieve uniform product
quality and optimal productivity. Application of
advanced multivariable control schemes can help
solve this problem. However the introduction of
model based control strategies is considered dif-
ficult because suitable models are not readily
available and require a significant investment in
experimental work to develop. First principles
engineering models can be used but the usually
limited knowledge of the regulatory network in
the micro-organism makes them very time consu-
ming to develop. Another strategy is to use a
purely data-driven approach where only limited
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prior knowledge of the process is required. A
new methodology for generation of such black-
box models has recently been developed (Bonné
and Jgrgensen, 2003). This method is called Grid
of Linear Models (GoLM) and it is developed for
estimation of models for batch and other periodic
operations. The resulting models are large Linear
Time Invariant (LTI) models which capture the
time varying dynamics of fed-batch processes rat-
her well.

In this paper the GoLM method is used to gene-
rate a model for a fed-batch fermentation process
for later use in a Model Predictive Control (MPC)
framework.

The paper is structured as follows: Section 2
gives an introduction to the industrial process
studied. Section 3 gives an overview of the model
approach used. Section 4 describes the selection of
variables used in the model. Section 5 shows how
the modelling identification has been carried out.



A validation of the identified model is given in 6.
Finally a discussion is given in section 7.

2. PROCESS DESCRIPTION

The process studied is fermentation of the filamen-
tous fungi Aspergillus oryzae for production of the
enzyme amylase. The cultivation is initiated by
inoculation of a seed tank with the desired strain.
When a certain criterion has been satisfied, as
specified in the recipe, the contents are transferred
to the main fermentation tank. The main fermen-
tation tank contains an initial amount of substrate
and the main fermentation process starts as soon
as the inoculation has occurred. Only the main
fermentation will be considered in this paper and
will be referred to as the fermentation. The star-
ting time of data sets used in this work correspond
to the transfer to the main tank. The fermentation
is carried out in two phases, initially as a batch
phase and later as a fed-batch phase. Aeration
and addition of ammonia takes place during the
batch phase and the pH is kept at a constant
level. When the initial substrate has been consu-
med by the microorganisms the fed-batch phase
is initiated. Feed dosing is started at a low level
and increased to its final value within a certain
amount of time. Aeration and ammonia addition
continue throughout the entire fermentation. The
main objective of the batch phase is to produce bio
mass which acts as a catalyst for the production
of enzyme which takes place in the fed-batch
phase. The process is run a predefined manner
according to the given recipe. The fermentors are
equipped with sensors for online measurements of
different properties and these measurements are
constantly monitored by process operators. If one
of the monitored variables is outside the operating
region specified in the recipe action is taken by the
operators and one or more of the inputs to the
process are manipulated. Samples are taken from
the fermentor at regular intervals for laboratory
analysis. These off-line measurements are not used
for control purposes but for later evaluation of the
batch. The quality of the batch is evaluated as
the activity of the produced enzyme in the end of
the batch. Successful operation of the fermenta-
tion requires that certain conditions are fulfilled
during the process. Substrate feeding is necessary
for product formation, but a high feeding rate
can lead to production of excess biomass which
increases the viscosity and decreases the oxygen
transfer rate. It is known that production of the
enzyme is repressed if the level of dissolved oxygen
becomes too low. One of the control problems is
thus to maintain the substrate feeding rate within
these limits.
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Fig. 1. Sketch of the fermentor. Inputs to process
are shown on the left side and outputs are
shown on the right side.

2.1 Awvailable data

Production data from an industrial fermentation
plant has been made available by Novozymes A/S
for use in the BatchPro project. The data set
contains data from batches which have been run
with the same strain under similar conditions.
The basic recipe used is the same for all batches
but in some cases operator intervention has been
necessary because certain process variables have
exceeded the limits specified in the recipe. The
data set contains data from a total of 54 batches
leading to both satisfactory and unsatisfactory
final enzyme activity. 17 of the batches supplied
do not contain all the desired variable trajecto-
ries and are discarded immediately. Thus only
37 batches have undergone further treatment. By
closer inspection 13 of the 37 remaining batches
have had problems with one or more of the mea-
sured variables. Among these erroneous measu-
rements are: DOT values, gas analysis measure-
ments (CER and OUR) and unreliable enzyme
activity measurements. These 13 batches have
been discarded to avoid modelling of corrupt data,
and only 24 batches are used for actual modelling.
The variables in these data sets are given in table
1.

There is a total of 21 variables, where of 17
are available as on-line measurements whereas
4 are only available as off-line measurements.
Three of these are sampled every 12 hours but
the enzyme activity, which can be considered the
quality variable for the process, is only measured
once every 24 hours. The on-line variables are
sampled every 10 minutes and they all contain
1153 samples, corresponding to a batch length
of 192 hours. The Oxygen Uptake Rate (OUR)
and Carbon Dioxide evolution Rate (CER) are
calculated by the control system installed at the
fermentation plant. The system also calculates the



Table 1. Variables available from data
set supplied by Novozymes A/S

Variable Type Sampling rate
Time On-line 6h—1
Air flow On-line 6h~1
NHjs flow On-line 6h—1L
Accumulated NH3 flow On-line 6h—1L
Dissolved O» tension On-line 6h1
pH On-line 6h—1
Feed flow measured On-line 6h—1
Accumulated feed flow On-line 6h~1
Feed flow set point On-line 6h~1
Back pressure On-line 6h1
Bottom pressure On-line 6h~1
O3 uptake rate (OUR) On-line 6h1
Accumulated Og uptake On-line 6h1
COz2 evolution rate (CER) On-line 6h1
Accumulated CO9 evolution  On-line 6h1
Respirative quotient (RQ) On-line 6h~1
Weight On-line 6h—1
Laboratory pH Off-line 2day T
Refractive index Off-line 2day—1
Volume percent of mycelia Off-line 2day !
Enzyme activity Off-line 1day !

Respirative Quotient (RQ) as the ratio between
CER and OUR.

3. MODELLING FRAMEWORK

The framework used for modelling the fermen-
tation data is termed ”Grid of Linear Models”
(GoLM) (Bonné and Jgrgensen, 2003). The appro-
ach is purely data-driven and only limited prior
knowledge of the process is required. The time
span of the entire process is subdivided into grid
points, each containing a Linear Time Invariant
(LTT) model. This framework has been implemen-
ted as a toolbox for Matlab. The methodology
is suited for modelling repeated batch processes
or other periodic processes. The distance between
the grid points can either be constant or de-
pendent on the operating region of the process,
ie. reflecting the process dynamics. The current
version of the toolbox supports three different
linear time series models: Finite Impulse Response
(FIR), Auto Regressive with eXogenuos inputs
(ARX) and Auto Regressive Moving Average with
eXogenuos inputs (ARMAX). The time series mo-
dels are represented as state space (SS) models as
well. In this study only the ARX structure has
been applied.

The following time series have been defined:

e Input variables u; € R™=(*)
e Output variables y; € R (")
e Disturbance variables w; € R ®)

and corresponding to the input and output vari-
ables are their reference trajectories, @; € R"«(*)
and 7, € R™® respectively. The ARX model
parameterisation is applied to describe the output
deviation ¢; — y; at sample time t as a weighted

sum of the past ny(t) input and n,(¢) output
deviations formulated as:
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Here ny(t) and ny(t) € [1, ..., define the model
orders of the local ARX model at each grid point,
while a; ; € R (D19 () and b, j € R (D:u(d) gre
the parameters of the local ARX model.

Having an operation with N sampling points,
the input w, output ¥, shifted output y°, and
disturbance w profiles are defined as:
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The ARX model can then be formulated in matrix
form:

g-y=—A@" -y )+Ba— u)+w (3)

where A,B are structured lower block triangular
matrices.

3.1 Batch to Batch Modeling

The disturbance profile w is composed of con-
tributions from a number of sources which can
be subdivided into repeated disturbances e.g. re-
cipe/input bias, model bias and erroneous rea-
dings, and random disturbances e.g. process up-
sets with no correlation between subsequent bat-
ches.

By adopting the batch-to-batch approach from
Tterative Learning Control (Bonné and Jgrgensen,
2003) showed how it is possible to model the
disturbance profile as a random walk with respect
to the batch index k:

Wg = Wg_1 + Vg (4)
where v = [vf vl ... vE]T € R™®N represents
the part of the disturbance sequence which is not
repeated; assumed to be zero-mean, independent
and identically distributed.

The difference between two successive operations
then becomes:
Ay, =Yr — Y1
= Ayl —yh-1) -
+wg — Wi
= AAYY — BAuy, + vy,

B(Uk — ’Ulkfl) (5)



This is a model with an ARX structure, indepen-
dent of the reference profiles (g,%) and of repeated
disturbances.

3.2 Model Identification

For the estimation of the model parameters and
model orders, a Least Squares (LS) methodology
can not be used directly due to the many local mo-
dels. However an interrelation between models in
neighbouring grid points can be expected, especi-
ally when time difference between the grid points
are shorter than the time constants of the relevant
process dynamics. Using Tikhonov regularisation
the model parameters can be estimated by solving
the extended LS problem:

O = arg mein (Y - X0)"(Y — X0)

+ (ALO)T(ALO)] (6)
= (XTX + LTA’L) ' XTY

where the penalty ALO is a column vector of
weighted differences between parameters in neig-
hbouring grid point models. L being a structured
penalty matrix, maps the parameter vector 8 into
the appropriate parameter difference where the
diagonal regularisation matrix A finally weights
these differences. The interdependency between
the grid point models is determined by the choice
of structure of the penalty matrix L and the
values in the regularisation matrix A (Bonné and
Jorgensen, 2003).

The model orders and regularisation weights can
be estimated based on minimisation of the mean
square prediction error obtained from using the
proposed model on a validation data set. Different
model properties can be obtained depending on
the choice of prediction horizon for the prediction
error e.g. one step ahead or pure simulation for
the full batch length.

4. VARIABLE SELECTION

The supplied data set contains a total of 21 vari-
ables (including time) but not all of them contain
useful information for the model estimation, eg.
some of the variables may be highly correlated. To
facilitate the variable selection Multi-way Princi-
pal Component Analysis (MPCA) has been ap-
plied (Kosanovich et al., 1994; Gregersen, 1999).
9 of the 24 batches have been selected for the
analysis. All available variables except time have
been used in the analysis. Common for all bat-
ches is that they have no operator interference.
The feed flow rate has been maintained at the
predefined level and the batches have been run

exactly according to the specified recipe, ie. the
substrate feed rate is the same for all batches.
The purpose is not to model the influence of the
feed rate but to investigate which process outputs
are connected to the enzyme formation and to
derive a control strategy which can control the
outputs and indirectly force the process in the
desired direction. As the batches are carried out
using a predetermined batch operations model, it
is expected that the trajectories of the measure-
ments are very similar for all batches. The aim
of the analysis is to identify which variables are
responsible for the variations in product quality.

The first step in the analysis is to calculate mean
trajectories for all the variables for the 9 bat-
ches and subtracting this mean trajectory from
the actual trajectory. These deviation trajectories
thus represent the difference from the mean batch,
see figure 2.
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Fig. 2. Difference trajectories for the 9 batches
used for the MPCA analysis. Here DOT is
shown, the same procedure has been used for
all the variables.

The deviation trajectories have been stored in a
three-way matrix X (J x K x I), where J is the
number of variables, K is the number of samples
from each batch, and I is the number of batches.
In this case the dimensions are 20 x 1153 x 9, as
time is not included in the analysis. The matrix X
is unfolded to a two-way matrix as seen in figure 3.
This two-way matrix is called X (J x IK). Each
column in X represents a certain variable for all
batches and all points in time. Each column is
mean centred and scaled to unit variance (auto
scaling).

The variance captured by each principal compo-
nent (PC) is shown in figure 4. The two first PC’s
capture a relatively large part of the variance and
the variance captured by PC 3 and 4 is signifi-
cantly lower. Another drop appears from the 4th
to the 5th PC and from here the decrease is almost
linear. The cumulated variance captured by the 4
first PC’s is 54.8 %.
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Fig. 3. The difference trajectories have been orga-
nised into a 2-dimensional structure and are
unfolded by stacking them underneath each
other.

25

Variance Captured (%)

2 4 6 8 10 12 14 16 18 20
Principal Component Number

Fig. 4. Variance captured by each principal com-
ponent.

Figure 5 shows the loadings of each variable on
the two first principal components. It is seen that
the enzyme activity has a relatively small loading
on both PC 1 and PC 2, indicating that it is
only responsible for a small explanation of the
entire variation of the data. The variables having
the highest loadings on PC 1 are accumulated
ammonia flow (negative loading), weight, accu-
mulated feed flow and accumulated CER. This
shows that a large part of the deviation from
the mean batch originates from accumulated va-
riables. This is not surprising as a higher total
substrate feed results in a higher weight of the
fermentor, a higher conversion of substrate and
consequently a higher oxygen demand. The lack
of correlation between the accumulated variables
and the enzyme activity shows that the product
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Fig. 5. Loadings of all variables on the two first
principal components.

yield, ie. the ratio between enzyme produced and
substrate consumed, is not constant.

An interesting observation is that there is a ne-
gative correlation between enzyme activity and
DOT. This suggests that it is beneficial for the
product formation to follow a relatively low DOT
trajectory. This hypothesis is supported by inve-
stigating PC 3 and 4 ( figure 6).
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Fig. 6. Loadings of all variables on the third and
fourth principal component.

Here it is seen that the enzyme activity has a
negative loading on PC 3 and that DOT has a
positive loading on the same PC.

The selection of variables for modelling is based
on investigation of the loadings of each variable
on the first four PC’s and on knowledge of the
process. The goal has been to keep the number
of variables as low as possible but still be able
to get good predictive capabilities and capture
as much of the variation from the mean batch as
possible. To keep the model as simple as possible
accumulated gas analysis measurements have not
been included. The actual CER and OUR mea-
surements are used instead in order to be able to
capture some of the more dynamic phenomena in
the system, eg. conversion of a suddenly changing
feed flow rate. The only input used in the model
is the feed flow set point. This is because it is



the controlled variable having the largest impact
on the process and it is intended to use this as
the actuator (manipulated variable) in the MPC
controller. The variables chosen for the model are
given in table 2.

Table 2. Variables used for modelling

Variable Type

Feed rate Input

DOT Output
EnzA Output
Weight Output
OUR Output
CER Output
Ammonia flow  Output
Air flow Output

5. MODELLING

The raw batch data has been filtered using a
Butterworth filter of 4th order. Different cut-off
frequencies have been applied for each variable.
The last few hours of the data set have been
truncated because the emptying of the fermentor
has started at this time for some of the batches. It
is not desired to model these phenomena because
the actual fermentation process is over at this
point. The data has been truncated to a duration
of 190 hours. The cut-off frequencies have been
tuned carefully for each variable in order to filter
away as much noise as possible and still not lose
too much information about the process dyna-
mics. The number of variables has been kept at
a minimum in order not to make the model too
complicated and only one input (to be used as the
manipulated variable in the controller) has been
chosen.

The 24 batches have been divided into 16 model-
ling and 8 validation batches. Both modelling and
validation batches have had operator intervention
on the feed flow set point.

The maximum order for each output/output and
input/output relationship has been set to 4.

112 grid points have been used to model the pro-
cess from t=0 hours to t=190 hours. For the first
60 hours the grid point spacing has been set to 1
hour in order to cover the very dynamic behaviour
of the batch phase. For t=61 hours to t=190 hours
the grid point spacing has been increased to 2.5
hours as the process is less dynamic in the fed-
batch phase.

6. MODEL VALIDATION

The orders of the individual ARX models rep-
resenting each relationship between inputs and
outputs are given in table 3. The model orders
do not have a direct physical interpretation but

it can be noted that the relation between the
feed flow set point (input) and all the outputs
have high model orders, supporting the fact that
variations in feed flow play a fundamental role for
the process.

The resulting GoLM model can be represented as
a State Space (SS) model. This representation has
been used for the simulations. State estimation
is carried out at each grid point by using the
actual measurements obtained at that point in a
Kalman filter. An initial estimate of the system
state is obtained by estimating the initial state
(t=0) using the initial measurements available at
this time point. The pure simulation (PS) is made
by using only this initial estimated state and all
future states are calculated based on this. The one
step ahead (OSA) simulation is obtained by using
the state estimated at each grid point to predict
the outputs at the next grid point.

The 8 validation batches have been simulated
using the model developed from the 16 modelling
batches. Results for one of these simulations is
given in figure 7 to 14. Figure 7 shows the input
signal used for the simulation and the input signal
which has been applied to the reference batch. It
is seen that the reference input reaches a constant
level after around 40 hours. The input for the
simulated system (actual input) also reaches this
level but is manipulated further by intervention
from process operators after around 70 hours.

Feed flow setpoint
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Fig. 7. Feed flow set point. Actual: Simulated
trajectory. Reference: Trajectory used in the
reference batch.

The enzyme activity (figure 8) is simulated rather
well by the model. The reference is significantly
lower than the actual and it is seen that the model
is able to capture the change in process conditions
and predict a higher enzyme activity than the
one for the reference batch. The pure simulation
follows the reference trajectory closely up to aro-
und 35 hours. It then increases and follows the
measured trajectory. The pure simulation of the
enzyme activity is especially important for control



Table 3. Model orders for the identified ARX models. Combination of outputs and
inputs (rows) onto outputs (columns).

DOT EmzA Weight OUR CER o8 Alr

flow flow
DOT 1 1 2 1 1 0 4
EnzA 2 1 0 0 4 0 0
Weight 0 0 4 4 4 1 1
OUR 0 1 4 1 1 4 0
CER 1 4 4 1 1 2 0
NHs flow 1 0 3 4 1 4 4
Air flow 3 0 0 1 0 4 3
Feed flow set point 4 4 4 4 3 2 4
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Fig. 8. Enzyme activity. OSA: One step ahead
prediction. PS: Pure simulation. Actual: Si-
mulated batch. Reference: Reference batch.

purposes because no measurements are available

during the process to give information on the
actual activity.
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Fig. 9. Dissolved oxygen tension. OSA: One
step ahead prediction. PS: Pure simulation.
Actual: Simulated batch. Reference: Refe-
rence batch.

Figure 9 shows the prediction of the dissolved
oxygen tension. The actual trajectory deviates
somewhat from the reference and the pure si-
mulation predicts something in between for most
of the simulation. The one step ahead prediction
follows the actual trajectory very well. The pure
simulation is less important in this case than for
the enzyme activity because the measurement is

available on-line but the MPC controller still ne-
eds a reliable model for prediction of the future
behaviour of the process.
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Fig. 10. Oxygen uptake rate. OSA: One step ahead
prediction. PS: Pure simulation. Actual: Si-
mulated batch. Reference: Reference batch.
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Fig. 11. Carbon dioxide evolution rate. OSA: One
step ahead prediction. PS: Pure simulation.
Actual: Simulated batch. Reference: Refe-
rence batch.

Figure 10 and 11 show the predicted OUR and
CER respectively. The simulations are quite good
but some problems occur for the pure simulation
from 30 to 80 hours for both variables.

The ammonia flow rate is shown in figure 12. Here
the model is able to predict the trajectory very
well, both for one step ahead and pure simulation.
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Fig. 12. Ammonia flow rate. OSA: One step ahead
prediction. PS: Pure simulation. Actual: Si-
mulated batch. Reference: Reference batch.

Air flow
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Fig. 13. Air flow rate. OSA: One step ahead predi-
ction. PS: Pure simulation. Actual: Simulated
batch. Reference: Reference batch.

The prediction of the air flow rate (figure 13) is
quite poor, mainly because it is caused by distur-
bances of the pressure in the air supply line which
can not be modelled. The reason for modelling
this variable is to incorporate information on the
amount of air supplied to the system in the model.
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Fig. 14. Weight. OSA: One step ahead predi-
ction. PS: Pure simulation. Actual: Simulated
batch. Reference: Reference batch.

The weight of the fermentor (figure 14) is predi-
cted very well which is due to the fact that this
variable is easy to model. The variation in weight
is to a large extent due to the accumulated feed
flow but substrate conversion and evaporation of
water also plays a role.

7. DISCUSSION

The GoLM modelling framework has been applied
to model industrial production data from a fed-
batch fermentation process. The modelling fra-
mework divides the entire batch duration into a
large number of grid points and local linear models
are fitted to each of those points. The combina-
tion of all these models is able to approximate
the behaviour of the entire process. The variable
selection has been facilitated by application of
multi-way principal component analysis on the
data, identifying the parameters having the lar-
gest impact on the process dynamics. The deve-
loped model generally possesses good predictive
capabilities and the model structure makes it well
suited for implementation in a MPC framework.
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