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Abstract: A behaviour-based control is considered as the best approach to control
autonomous robots. In the near future, autonomous robots like mobile service
robots are expected to assist people in a common environment such as houses
or offices. Such situations require natural interaction between people and the
robots. One way to facilitate this is by using a natural language interface (NLI).
Unfortunately the major problem with natural language is that it is always
ambiguous. Up to now, there is no existing NLI processor that can well solve
the ambiguity problems for human-robot interface. This paper presents a new
methodology for creating an intelligent NLI processor for a mobile service robot
that uses a behaviour-based control. The methodology uses a fuzzy approach and

history knowledge. The history knowledge is an innovation in this work. Copyright
© 2005 IFAC
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1. INTRODUCTION

In previous years, robots have become the most
suitable tools in dangerous workplaces like a nu-
clear plant. However, in recent years, research
on robotics has been focused on mobile service
robots. These robots are expected to assist or-
dinary people and perform their tasks in human
living areas such as in offices, houses, hospitals
and so on. The existing development of this type
of robots are: an office secretary robot (Asoh et
al., 2001), a purchaser robot that buys a cup of
coffee (Nakauchi and Simmons, 2002) and a tour
guide robot in a museum (Burgard et al., 1999).
The mobile service robots are autonomous robots.
Nowadays, a behaviour-based control is seen as
the best approach to control autonomous robots
(Arkin, 1998; Hasegawa and Fukuda, 1999). The
architecture of the approach can be divided into

three levels: the highest, middle, and lowest.
The highest level concerns with task-oriented be-
haviour, the middle with an obstacle-avoidance
behaviour, and the lowest with an emergency be-
haviour. As the mobile service robots are expected
to assist human users, the users should be able
to instruct the robot to perform duties. An in-
struction from a user is defined as a user-task
behaviour. Thus, a human-robot interface will be
required to convert from a user-task behaviour
into a task-oriented behaviour.

The interface is considered flexible if it allows a
human user to convey the user-task behaviours
in a natural language. This feature can be facil-
itated through the use of natural language in-
terface (NLI). However, an NLI for a robot is
more complex than a regular computing system,
because the robot perceives its world and acts to



a sequence of user-task behaviours. The major
problem of NLI is almost all natural language
sentences are ambiguous. In a real life, people
reduce this ambiguity by using their cognitive
such as they recall what had happened in the past
and so on. The NLI is considered as an intelligent
interface if it is able to resolve the ambiguity
problem by checking what had occurred in the
past.

To the best of our knowledge, no attempt has
been made to convert an ambiguous user-task
behaviour into an ambiguous task-oriented be-
haviour, and NLIs for robots are still immature.
Thus, a new methodology for creating an intel-
ligent NLI processor that is able to convert an
ambiguous user-task behaviour into an unambigu-
ous task-oriented behaviour is presented in this
paper. The new methodology is an integration of
fuzzy grammar and history knowledge. This paper
is organised as follows. Section 2 gives examples of
user-task behaviours. Section 3 gives a brief back-
ground of natural language understanding. Fuzzy
approach and history knowledge are presented in
Section 4. The semantic interpretation is discussed
as well. A summary and implementation issues are
discussed in Section 5.

2. USER-TASK BEHAVIOUR

Two scenarios below demonstrate user-task be-
haviours that should be converted into task-
oriented behaviours. As user-task behaviours are
represented in sentences, for the rest of this paper,
a sentence term is used in representing a user-task
behaviour.

Scenario A

An old lady is sitting on a chair and a robot is in
its position. Suddenly, the old lady feels that she
would like to have a cup of coffee

Lady: “I: make a cup of coffee”.

The robot moves toward the target, that is a
coffeemaker. The lady sees the robot’s action.
Lady: “II: bring it here”

Scenario B

An old lady finds a dirty plate in the sink and
requires the robot to wash it.

Lady: “I: wash the plate in the sink”.

The robot moves toward the target (sink) and per-
forms its duty. The lady sees the robot’s actions.
Lady: “II: store it into the cabinet”

The robot stores the plate into the cabinet

In examples above, only sentence I in the Sce-
nario A is not ambiguous. The sentence wash the
plate in the sink is ambiguous because it can be
understood as either the plate should be washed
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Fig. 1. Generating an unambiguous task-oriented
behaviour

in the sink or the plate in the sink should be
washed. Both of sentences II in both scenarios
are ambiguous because of the pronoun . Fig.
1 illustrates that natural language (NL) proces-
sor uses history knowledge to resolve ambiguity
in sentences to create unambiguous task-oriented
behaviours. Only the top application is concerned
in this paper.

3. NATURAL LANGUAGE
UNDERSTANDING

3.1 Syntactic Processing

Syntactic processing is a process of assigning a
parse tree to a sentence. Syntactic processing re-
quires a grammar. The grammar is a formal speci-
fication of the structures allowable in the language
and it is usually represented as G=(Vy,Vr,P,s).
The symbols are explained below.

e Vy: a set of non-terminal symbols that
do not appear in the input strings, but
are defined in the grammar. Examples of
non-terminal symbols are: sentence (S), im-
perative sentence (IS), Noun Complement
List (NCL), Noun Complement (NC), verb
phrase (VP), noun phrase (NP), and prepo-
sitional phrase (PP).

e Vp: aset of terminal symbols that are prim-
itives or classes of primitive symbols in input
strings. Examples of terminal symbols are:
Noun, Verb, Preposition, Adjective, Determi-
nant (Det), and Adverd.

e P: a set of production rules, each of the form
A — (3, where « is a non-terminal symbol
and a string of symbols from the infinite set
of strings in (Vp U Vi )*

e s: a starting symbol

Let oy be a string in (Vp U Vy)* and o — 3 be
a rule in P. If a is in ay, we can obtain a new
string from «; by substituting « with 8. The new
string is also a string in (VrUVy)*. (The symbol *
indicates a free manoid X* over the set X). Now,
let as denotes the new string. as is said to be
derivable from A, in G.



The derivation can be expressed as a; — as. Let
aq, g, a3,.., Gy, be strings in (VpUVy)* (M > 2).
If the are a; — ag, a1 — 4y, then oy, is said
to be derivable from «; in G. The sequence of
derivations a; — «a, ..., Q1 — Quy 18 referred to
as a derivation chain from a; to a,,. A grammar
G defines a language L(G). A string s is a valid
sentence in L(G), if and only if s = S.

3.2 Semantic Processing

Semantic processing is a process of converting a
parse tree into a semantic representation that is
precise and unambiguous representation of the
meaning expressed by the sentence. Semantic pro-
cessing can be conducted in two steps: context
independent interpretation and context dependent
interpretation. Context independent interpreta-
tion concerns what words mean and how these
meanings combine in sentences to form sentence
meanings. Context dependent interpretation con-
cerns how the context affects the interpretation of
the sentence. The context of the sentence includes
the situation in which the sentence is used, the
immediately preceding sentences, and so on.

4. NATURAL LANGUAGE PROCESSOR
4.1 Fuzzy Approach

Fuzzy approach is used by extending a regular
grammar into a fuzzy grammar. In a fuzzy gram-
mar, the same terminal and non-terminal symbols
as in a regular grammar is used, and an additional
label, called a plausibility function is added in
each grammar rule. A regular grammar rule is
presented as

a—f3 (1)

where « is a nmonterminal symbol, 3 is a nonter-
manal or terminal symbol, or both symbols and —
is a production rule. In a fuzzy grammar, a rule is
modelled as

atp (2)

where p is a plausibility function in each fuzzy
grammar rule, and p € [0, 1] indicates the plau-
sibility for substituting a with 8 in a parsing
process.

A fuzzy grammar (G) generates a fuzzy language
L(G) in the following manner. A string S of sym-
bols in Vr is said to be in the language L(G) if
and only if s — 5, i.e. S is derivable from s. When
Tr is a parse tree generating S, the plausibility of
Tris

min{u(s — a1), ..., ulay, — S)} >0 (3)

where s — a1,01 — ag,...,a,, — S is the
derivation chain from which Tr is constructed,
and p(a; — @;41) is the non-zero pi + 1 such that

peit+1) .
(a; "= aip1) € PVi=0,...,m,

if g = s and a1 = S. The restricting fuzzy set
F, is defined as

Fy={Tr} (4)

and its membership function is

min{u(s — a1), ..., play, — S)}
if S —Tr S (5)
0 otherwise,

HFs (TT) =

where —7,. is the chain s — a1, a1 — a9, ..., —
S from which Tr is constructed. As previ-
ously mentioned, the sentence may be ambiguous.
When the sentence is ambiguous, the syntactic
processor can generates more than one T'r. The
restricting fuzzy set Fy for a group of T'r can be
defined as

Fs = {GT’I“} (6)

and its membership function is

prs(Gry) = {max(Try,...,Try)} (7)

In using a fuzzy grammar, it is important to
define p for each grammar rule. In this work, for
rule o 5 B, p is defined as a function of the
symbols in G and the symbols that have been
processed. p is context dependent. Consider a
wash the plate in the sink sentence is parsed. Using
the fuzzy grammar mentioned above, the syntactic
processor generates two parse trees (Fig. 2) with
its plausibility values as shown in Table 1. By
using Equations (5) and (7) consecutively, the
processor decides that parse tree (B) as a unique
parse tree.

Table 1. Generated rules and its plausi-
bility values for each parse tree (parse
tree (A) and parse tree(B))

Rules(A) I Rules(B) II
S — IS 1.0 S—1IS 1.0
IS — VP 1.0 IS —> VP 1.0
VP — Verb NP PP 04 VP — Verb NP 0.8
Verb ~ wash 1.0 Verb ~ wash 1.0
NP — Det Noun 0.8 NP — Det Noun NCL 0.6
Det ~ the 1.0 Det ~» the 1.0
Noun ~» plates 1.0  Noun ~» plates 1.0
PP — Prep NP 0.7 NCL — NC 1.0
Prep ~ in 1.0 NC — PPL 0.7
NP — Det Noun 0.8 PPL — PP 0.5
Det ~» the 1.0 PP — Prep NP 0.7
Noun ~» sink 1.0 Prep ~ in 1.0

NP — Det Noun 0.8

Det ~» the 1.0

Noun ~» sink 1.0
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Fig. 2. Two parse trees for an ambiguous sentence.
Parse (A) corresponds to the meaning that
the plate should be washed in the sink, and
parse (B) to the plate in the sink should be
washed.

4.2 History Knowledge

History knowledge is a sequence of user-task be-
haviours that occurred in the past. For each of
user-task behaviours, a unique parse tree is ob-
tained and stored in the history database dy-
namically. Technically, the history database keeps
three types of information: unique parse trees, a
sequence number, and priority values.

Unique Parse Trees

A stack (st) of unique parse trees of all user-
task behaviours are kept in a history database
as history knowledge. For an example, when a
user gives a sentence wash the plate in the sink, a
parse tree (B) in Fig. 2 is considered as a unique
one, thus it is kept in the st. If a user gives n
sentences, where n is a number of required user-
task behaviours to complete a certain duty, then
n parse trees will be stored in each st. If there is
a number of duties that the robot can perform,
there will be a number of st in the database.

A sequence number

For each of the parse trees in the history database,
it is given a sequence number that can be denoted
as st,, in which = represents the ordering number
of the parse trees in the stack. For an example, the
first parse tree in the stack (st) can be labelled as
st1, and if there is n parse trees in the stack, thus
the last parse tree can be labelled as st,,.

Priority values

For each of the parse tree in the st, if the parse
tree contains constant nouns, each of the constant
nouns will have its priority value ¢t. The value t
gives a degree of priority of the constant noun.
The degree of t is decided based on its step in
the parse tree. The syntactic processing starts
from s which is a zero (0) step. The top of the

parse tree is s. The 0 step is considered as the
highest step. For example, in the parse tree (B),
the constant noun plate has higher priority than
the constant noun sink, because it appears in the
higher step.The process of assigning a priority
value to the constant noun is conducted during the
syntactic processing. As previously mentioned, a
fuzzy grammar rule is represented as in Equation
2. To assign a priority value, the fuzzy grammar
rule is extended into

where t is a priority function. The priority func-
tion is activated only when a grammar rule of
o % B, which a matches a terminal symbol Noun
and [ a constant noun such as plate, is recognised
by the processor. For example, when the processor
replaces the Equation 8 with the following rule

Noun % plate;, (9)

the value of t is calculated. When the processor
starts the syntactic processing, it assigns an initial
value of ¢ as t,, where ; represents a starting point
of ¢ value. When the first grammar rule of o 2 3,
is recognised, the ¢ calculation can be conducted
by using the following formula

t=t,—0 (10)

where 6 is a constant value that is decided by
the processor’s designer. Therefore, the process of
calculating ¢ values can be formalised as

ty=tg—0,tg =1, — 0, ity =tm_1—0 (11)

where ,, is the maximum number of noun con-
stants in the sentence, if and only if 13 ., noun
constants are attached at the different levels of
subparse tree. However, if there is ¢ noun con-
stants attach to the same step in a parse tree, the
process of calculating t values can be formalised
as

ty = tm — 0, (12)

where a value of ¢ is {m+1, m+2, ...,m+n}.

To understand the usage of history knowledge, a
new sentence store it into the cabinet which rep-
resents the second user-task behaviour is parsed.
Although the syntactic processor is able to gen-
erate a complete parse tree as illustrated in (i) of
Fig. 3, the parse tree is still cannot be considered
as an unambiguous one. This occurs because the
pronoun constant like it causes ambiguity in the
parse tree.

To resolve this ambiguity problem, the processor
has to use history knowledge. The processes of us-
ing history knowledge and resolving the ambiguity
are described in the following procedures:



(A) (B)
I i
I‘S I‘S
/V‘P\ VP
Verb  Pro /PP\ Verb  Pro PP
Prep NP Prep NP
Det Noun Det Noun
store it into the cabinet store it (plate) into the cabinet

Fig. 3. Parse trees for the store it into the cabinet
sentence.

(1) Identify the most recent parse tree.
In order to recognise what a pronoun con-
stant it is referring to, the processor look
up into parse trees in st. To determine the
most recent parse tree, the processor uses an
ordering number as a tool. If there is n parse
trees in st and if the st starts counting from 1,
thus the ordering of st for the stack would be
sty, sta, ..., st,. The processor can determine
that the parse tree of st,, is the most recent
parse tree.

(2) Identify the highest degree of priority.
For each of the parse trees, it has a set of
priority values. The restricting fuzzy set F
for a set of priority values can be defined as

Fs=1t; (13)
and its membership function is

vtm)}- (14)

By using the Equation 14, the processor is
able to identify the highest priority value of
the most recent parse tree.
(3) Identify the noun constant/constants.

The processor then finds a noun constant
or noun constants that its priority value
matches to the highest priority value. Once
a constant or constants has/have been iden-
tified, the processor modifies the complete
parse tree by attaching the constituent noun
or nouns to the constituent pronoun as illus-
trated in parse tree (ii) in Fig. 3. When this
process has completed, the processor stores
the unique parse tree into the dedicated st.

prs(t;) = {max(ty, ...

4.8 Semantic Interpretation

Once a unique parse tree is obtained, the processor
is able to process the parse tree semantically.
In this work, a A reduction technique (Jurafsky
and Martin, 2000) is used for the purpose of se-
mantic interpretation. The A reduction technique
has been used as an extension of First Order
Predicate Calculus (FOPC). FOPC is the most
commonly used method for representing semantic

attachments; that is, semantic attachments are
expressed as FOPC predicates. A FOPC predicate
may contains a sequence of constants, variables,
and functions that are connected by connectives
and quantified by quantifiers. A constant refers to
a specific object in the world such as a noun like
“water”. A variable represented as a symbol z is
used to infer about the object without having to
make reference to any particular named object.
Syntactically, it is the same as a single argument
predicate. In semantic attachment, each grammar
rule is attached with a semantic expression:

A — aq, ..o {{(aq.sem, ...ap.sem)}  (15)

where the expression in {} is the semantic attach-
ment, «;.sem is the semantics of the ¢ constituent
in this rule, and { is a function that constructs
the semantics of A out of the semantics of the
constituents on the right hand side of the rule.

The semantics for constituents using A expressions
are represented. An important operation in the
semantic attachment technique is the replacement
of the variable by the constants that have been
evaluated. The A reduction technique is used for
such replacement operations. Syntactically, A\ re-
duction is represented by A notation that extends
the syntax of FOPC to include expressions of the
following form:

Az F(z) (16)

where F is a predicate containing one or more
variables x. The generic form of the A reduction
is

ArF(2)(X) = F(X) (17)

where X is a constant. Informally, when the A
reduction technique is used, a grammar rule and
its semantic attachment can be:

A— ay, can{dzy, . Aen F(21, o zm)} (18)
where z1,...,x,, are variables, F is a predicate
containing the variables. It is assumed that a
sentence has been parsed into a parse tree, in
which the A in the above rule is the root of a sub-
parse tree. In semantic analysis of the instruction
(represented by the parse tree), the semantics of
the sub-parse tree rooted by A is calculated by

AL, oy A F (X1, ooy T ) (X)), ooy (X)) (19)
where Xi, X5...X,, are constants or predicates
that do not contain variables, which have been
calculated in analysing the sub-parse trees rooted
by «1,qs,...a,, when the semantics of sub-parse
tree rooted by A analysed.



The process of semantic attachment takes place
when a a unique parse tree is obtained. The
semantic attachment for parse tree (B) of the
Fig. 2 is illustrated in Fig. 5. In this case, we
ignore a determinant such as the because it does
not give a significant meaning in the semantic
interpretation. Fig. 5 illustrates how the terminal
symbol Pro has a semantic attachment of plate.

T wash [plate,sink]
IS wash [plate,sink]

VP wash [plate,sink]

Verb (wash) NP [plate, sink]

Det Noun (ae)y NCL

PITL(sink)

PP (sink)

N

Prep NP(sink)

/N

Det Noun
(sink)

wash the plate in the sink

Fig. 4. A semantic attachment for parse tree (B)
of the Fig. 2

S store [[plate), [cabinet]]
IS store[[plate), [cabinet]]

Vp store [[plate), [cabinet]]

Verb tore) Pro (plate) PP (cabinet)

Prep NP (cabinet)

Det Noun (cabinet)

store it (plate) into the cabinet

Fig. 5. A semantic attachment for a parse tree (ii)
of the Fig. 2

5. IMPLEMENTATION ISSUES AND
SUMMARY

After unambiguous semantic interpretation is ob-
tained, the processor converts the semantic parse
tree into an agent communication language (ACL)
message, in which a task-oriented behaviour is
represented in ACL. The details of the conversion
technique was presented in the previous paper

(Jusoh et al., 2003). In implementing this tech-
nique, the parser for searching parse trees of each
sentences is developed by using a dynamic pro-
gramming technique. The implementation work
is conducted in C language on Linux operating
system. To guide the searching process, 70 fuzzy
grammar rules have been used. The lexicon for in-
put sentences is developed in a standard English.
Because there is no existing dataset for human-
robot interaction, a dataset to test this technique
is created. In generating the dataset, interaction
between a mobile service robot and a user occurs
in a house is assumed. The dataset consist of 113
sentences in which are categorised into various
applications such as cleaning, cooking, and so on.

As a summary, this paper has demonstrated a new
methodology that can be used to better resolve
the ambiguity problem in natural language sen-
tences for autonomous robots that use behaviour-
based control. However, only a part of our on-
going research in creating an intelligent natural
language processor for human-robot interfacing is
reported in this paper.
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