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Abstract: The development of a Self-Tuning Neuro-Fuzzy Generalized Minimum 
Variance (GMV) controller is described.  It uses fuzzy expert knowledge of the 
dynamic weightings to meet desired closed-loop stability and performance 
requirements.  The controller is formulated in a polynomial system approach mixed 
with a Neuro-Fuzzy model and Fuzzy Self-Tuning mechanism.  The proposed method is 
applied to a model of the Continuous Stirred Tank Reactor with Cooling Jacket and is 
compared with a PI controller, GMV controller with the correct model and a Fuzzy-PI 
controller.  Simulation results are presented to demonstrate the performance of the 
proposed method. Copyright © 2005 IFAC 

 
Keywords: Self-Tuning Control, Neuro-Fuzzy Modeling, Nonlinear Control. 
 

 
 

 
1. INTRODUCTION 

 
The polynomial approach was used to develop the 
Minimum Variance (MV) controller in the 60’s.  This 
included a colored noise disturbance signal and was 
suitable in different forms for minimum and non-
minimum phase systems (Åström , 1979). The GMV 
controller including an additional costing term of the 
control signal was developed by Clarke and Hastings-
James  (Hastings-James, 1970; Clark and Hastings-
James, 1971).  Clark and Gawthrop introduced the 
GMV Self-Tuning controller which took advantage of 
the characteristics above mentioned (Clark and 
Gawthrop, 1975).   Grimble used a GMV structure in 
order to control nonminimum phase systems in 
(Grimble, 1981). Additionally, Grimble designed linear 
systems using GMV control laws (Grimble, 1988).  
This was followed by the Generalized H∞ controller 
obtaining a dynamic costing solution using the dynamic 
cost weightings (Grimble, 1994).  

Up to this point, all the algorithms were applied to 
stochastic linear systems in the discrete time domain. 
Founded on these ideas, Grimble developed the GMV 

controller for nonlinear multivariable processes with 
time varying properties (Grimble, 2003).  This had the 
structure of the Smith Predictor and therefore could be 
called a Nonlinear Smith Predictor.   

Fuzzy Logic has been applied in many areas with 
success.  It is a qualitative representation of the natural 
process using fuzzy rules (Pinto, 2001b).   Fuzzy 
identification uses also fuzzy rules to identify the 
objective model.   This model has been used to control 
plants using adaptive Neuro-Fuzzy (NF) controllers and 
models (Jang , et. all., 1997; Babuška, 1998).  The 
Tuning of controllers always represent a challenge 
because it is usually heuristic and trail-error based.  The 
fuzzy tuning mechanism has been reported before in 
some previous works in order to tune several types of 
controllers (He et all. , 1993; Molengraft, 1995; Wang , 
1997; Mudi and Nikhil ,1999; Pinto ,2001a; Babuška 
et. all., 2002). The advantages of these structures are 
the capacity to adapt the parameters of the controller to 
the changes of the parameters of the plant and also save 
time in the process of tuning the controller.  



The main contribution of this article is to design and 
apply the Self-Tuning Neuro-Fuzzy GMV 
(STNFGMV), which uses the fuzzy expert knowledge 
of dynamical weightings (Error Weighting and Control 
Weighting) to tune the controllers. Also, other 
important feature of this controller is that we only need 
input-ouput data of the plant in order to identify the 
nonlinear model.  This controller is based on a 
polynomial system approach mixed with the Neuro-
Fuzzy (NF) model and the Fuzzy Self-Tuning 
Mechanism.   The STNFGMV is applied to a model of 
the Continuous Stirred Tank Reactor with Cooling 
Jacket and is compared with a PI controller, GMV 
controller with the correct model and the Fuzzy-PI 
controller heuristically designed and used in (Mudi and 
Pal Nikhil ,1999; Pinto 2001a, 2001b). Also this 
controller gives us the possibility to control nonlinear 
systems with delay.  Simulation results are presented to 
demonstrate the performance of the proposed method. 

2. STNFGMV CONTROLLER 

The STNFGMV controller has a structure formed by 
the Neuro-Fuzzy GMV controller and the Fuzzy Self 
Tuning Mechanism. The general structure of the 
STNFGMV is shown in  Figure 1.   This NFGMV is a 
hybrid controller that mixes the stochastic control 
(controller colored by white noise zero-mean) with the 
NF modeling. 

  In addition, the NF modeling is a hybrid intelligent 
system, it mixes two concepts of the artificial intelligent 
as Artificial Neural Networks (ANN) and Fuzzy Logic 
(Jang , et. all., 1997; Babuška, 1998).   The hybrid 
algorithm takes advantage of the individual 
characteristics of the ANN and FL in order to make the 
physical meaning clear, using the fuzzy rules and the 
acquisition of the expert knowledge by the training as 
an ANN.  To tune the NFGMV controller by trial and 
error, much time was spent in order to find appropriate 

values for the control weighting cP .and error 

weighting cF . 
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Fig. 1.  General Structure of the Self-Tuning Neuro-
Fuzzy Generalized  Minimum Variance Controller 

3.  MODELS AND SIGNALS PRESENT IN GMV 

The polynomial models of system are defined by the 
next equation: 

[ ] [ ]okrdokrd BECAWWW ,,,, 1−=                  (1) 

where dW , rW and okW  are the disturbance, reference 

models and linear part of nonlinear plant respectively. 

In addition A , dC , rE , okB  are polynomials in the 

forward shift operator ( )1−z  without any common 

factors. All the analysis and mathematical development 
are included in (Grimble, 2003).  The nonlinear time-
varying plant model: 

( ) ( )( ) ( )( )tuWDtuWty kk==               (2) 

and  

kokokk WBAWW 1
1−==                             (3) 

where kD  is delay of the nonlinear plant and okW  is a 

stable/unstable linear time invariant block with any 
unstable modes of the nonlinear plants. 

The pseudo output function ( )toφ  is: 

( ) ( ) ( )tuFtePt cco +=φ                          (4) 

where cP  and cF  are the control  weighting and error 

weighting. They are defined with the polynomial 
structure as: 

    ( ) ( ) ( )1111 −−−− = zPzPzP cncdc                    (5)         

and 

  ( ) ( ) ( ) ( )11 1 1 1
c k ck k cd cnF z DF z DF z F z

−− − − −= =          (6) 

where 
ck

F  is the control weighting without 

delay and
k

D  is the plant time delay.  

The combined white noise signal is defined by: 

( ) ( ) ( )1111 −−−− = zDzAzY fff                  (7) 

where fY is strictly minimum phase and fD  is a 

strictly Schur polynomial.  

The spectral factor is derived from the power spectrum 
of the combined noise signal and it is expressed as: 

 
∗∗∗ += ddrrff WWWWYY                     (8) 

 



In order to design the NFGMV it is necessary to cover 
the following conditions: 

0 0
k

f cd cn fA P F z G P D
−+ =                         (9) 

and 

11 −− = APPA cncff                                 (10) 

Equation (9) is called the Diophantine equation with a 

solution ( )00 F,G  with ( )kFdeg 0 < . 

All the assumptions and mathematical development can 
be found in (Grimble, 2003) giving as a result the next 
pseudo output function: 
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and the control law defined for the minimum variance 
of the input is defined as 
 

( ) ( )( ) ( ) ( )( )teYPAtuWYFFtu fcdfkfck

111
0

1 −−−− −=        

(12) 
 
Finally, applying the GMV controller is possible to 
predict k step ahead the pseudo-output and find the 
correct output for following the reference signal. 

4. NEURO-FUZZY MODELLING USING  

The Takagi-Sugeno-Kang (TSK) model uses the 
principle “divide and conquer” by using overlapping 
local linear models to approximate the behaviour in the 
operating range of nonlinear plants.   These local linear 
models are linear models or piece-wise linear models 
that are locally stable and so all TSK model are stable 
(Jang , et. all., 1997; Babuška, 1998). 

The TSK model uses an NARX (nonlinear 
autoregressive with exogenous input) input-output 

model.  It defines the predicted output ( )ty  at a future 

time instant and is part of the function of the regressor 

vector ( )tz , consisting of a finite number of past 

inputs and outputs (Babuška, 1998): 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]'uy ntu,,1tu,tu,nty,,1tyt −−−−= LLz             

(13) 

where un  and yn  define the dynamic order of the 

inputs and outputs delayed in order to cover the 
complete requirement for the adequate approximation 
of the nonlinear system. 
 
The NARX model is defined by: 

( ) ( )( )tzfty =                                        (14) 

This model is defined by means of the qualitative 
characteristic of the nonlinear system using Fuzzy 
rules. The Fuzzy rules are given as: 

( ) ( ) N,2,1,i;btaythenAistIf:R i
T
iiii L=+= zz          

(15) 

where iR , iA , ( )tz , iy , ia  and ib  are the i-th 

fuzzy rule, the i-th fuzzy set, the regressor vector,  the i-
th linear model, the i-th consequent parameter vector 
and  the i-th scalar offset, respectively.  In addition, N 
is the numbers of the rules. 
 
The first-order TSK model of the nonlinear plant is 
expressed by: 

( ) ( )( )∑
=

=
N

i

ii ytty
1

zγ                            (16) 

 

( ) i

T

ii bty += za                           (17) 

 

where ( )( )ti zγ , iy  are the i-th normalized degree of 

fulfillment function (nonlinear function) and   the i-th 
piece-wise linear model, respectively.  By means of a 
mathematical manipulation it is possible to define the 
nonlinear model without delay as: 

( ) ( )( ) ( )( ) ( )( )∑
=

===
N

i

iikokkk yttuWWtuWty
1

1 zγ       

(18) 
For instance the equation (2) could be expressed as: 
 

( ) ( )( )∑
=

=
N

i

iik ytDty
1

zγ                  (19) 

 
The Fuzzy model is found by training the NF system 
(Jang, et. all., 1997).  
 

5.  THE ERROR AND CONTROL WEIGHTING 

The Error Weighting Pc and Control Weighting Fc were 
defined initially in the equations (5-6). The Error 
Weighting is expressed by: 
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where 0Pk and 0Ik , are the proportional and integral 

gain of the PI controller that can initially  stabilize the 

nonlinear plant, respectively.  The variables Pk and Ik  

are the gains computed by the Fuzzy Self-Tuning 
Mechanism and they take the initial value of zero. 



The Control Weighting is expressed by: 

( ) ( )
( )

1
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1
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1
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−

−

−
= = +

−
                 (31) 

where ρ0, a  and b  are constants for tuning the 

Control Weighting without delay ckF . The variable ρ 

is a gain introduced by the Self-Tuning Mechanism.  

The Error Weighting cP  and Control Weighting ckF  

are nonlinear filters due to their adaptation on-line in 
each sample time. 

 

6. SELF-TUNING MECHANISM 

The Fuzzy Self-Tuning Mechanism of the controller 
has been founded in the expert knowledge to tune the 
gains in the PI controller (heuristically designed) for 
the Error Weighting PC and in the dynamic effect over 
the response of ρ for the Control Weighting Fc. The 
expert knowledge was defined using Fuzzy rules with a 
structure of Mamdani’s Fuzzy System [Jang , et. all., 
1997; Babuška, 1998; Pinto, 2001a, 2001b]. The rules 

definition was obtained using the error signal ( )ke  and 

increment of the error signal ( )ke∆  as indicators of 

the dynamic behaviour of the output. The fuzzy rules 
for the Fuzzy Self-Tuning Mechanism have the 
following structure: 

( ) ( )
ZisandZiskandZiskThen

ZiskeandZiskeIF

ip ρ
∆

            (32) 

The Fuzzy Rules Base for the variables pk  and ρ are 

the same and are defined in the Table 1.  The Fuzzy 

Rules Base for the variable Ik  is defined in the Table 

2. 

Table 1. Fuzzy Rule of the Variables e(k), ∆e(k), kP  
and ρ 

 

 

 

 

 

 

 

Table 2. Fuzzy Rule of the Variable kI  

 

 

 

 

The variables pk , ik  and ρ  are nonlinear functions 

of the error and the difference of the error,  expressed 
by the next equations: 

( ) ( ) ( )( )kekefkk p ∆= ,                           (33) 

( ) ( ) ( )( )kekegkk I ∆= ,                            (34) 

( ) ( ) ( )( )kekehk ∆= ,ρ                            (35) 

The comment above mentioned defines the equations 
(30) and (31) as nonlinear digital filters.  The 

membership functions for the error signal ( )ke , 

increment of the error ( )ke∆ , proportional gain Pk  

and control weighting ρ  are shown in the Figure 2. 

The membership function for the integral gain Ik  is 

shown in the Figure 3. 

There are 25 fuzzy rules for each variable ( pk , ik  and 

ρ ). All the expert knowledge of the variables was 

obtained with the NFGMV developed in [19] and in 
order to tune the dynamic effect was observed over the 
output of the Nonlinear System.   

For the variable ik  positives values were selected 

because is the variable can only be positive.    

In the Tables 1 and 2 names of the Fuzzy set are More 
Negative (MN), Negative (N), Zero (Z), Positive (P) 
and More Positive (MP).  The fuzzy sets are defined in 
the Figure 2 and 3. 
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Figure 2.  Membership Function of the Variables 
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Fig 3.  Membership Function of the Variable Ik  

General Structure of the Self-Tuning Generalized 
Minimum Variance is shown in the Figure 4. 

 8. SIMULATION EXAMPLE 

An irreversible exothermic reaction that occurs in the 
Continuous Stirred Tank Reactor with Cooling Jacket 
(CSTRCJ) model used to test the performance of the 
STNFGMV. The Nonlinear model of the Reactor is 
expressed by: 

( ) ( ) ( ) ( )[ ]

( ) ( )
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


−+−

+−=
+
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dt
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(35) 
and 
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(36) 
 
The energy and mass balance equations are defined in 
(35) and (36), respectively.  The nominal parameter 

values in the model of the Reactor are: aC = 0.1 mol L-

1, T= 438.5 K, qc=103.41  L min-1, =q 100  L min-1, 

=0aC 1 mol L-1, == 00 cTT  350 K, V= 100 L, 

hA=7.0 x 105 cal min-1 K-1, k0=7.2 x 1010  min-1, E/R 

=1.0 x 104 K-1, H∆ = -2.0 x 105 cal mol-1 and 

== cρρ 1.0 x 103 g.  
 The time delay of the 

concentration is min5.0=k . The control objective 

is the concentration ( )tCa . The digital filter (PI 

controller) is defined by: 10=pk  and  ik =10. 

 
The initial parameters for the STNFGMV controller 
are: 
 

k =3;  Af =1 -0.8z-1 ;  Cd = 0.005;  E=0;  kp = 9;  

 ki 0= 20;  kd0 =  0;  0ρ = 6.5; a= 0.785 ;  b =1. 

 
8.1 The Neuro-Fuzzy Model of the Nonlinear Plant   
 
In order to find the adequate approximation of the free 
delay of the CSTRCJ was generated a random signal 
that covered all its operating range.  After that, were 
compared the output of the correct model of the 
CSTRCJ and the Neuro-Fuzzy (NF) model.   The NF 
model was training off-line and was expressed by the 
following fuzzy model (16 fuzzy rules):  

Rule1: If qc(t) is in1mf1 and Ca(t-1) is in2mf1 and Ca(t-
2) is in3mf1 and qc(t-1) is in4mf1 then Ca1= -
0.6326qc(t)+0.05138Ca(t-1)-0.04837Ca(t-2)+0.0099882 
qc(t-1)+0.03116 

                                            M    

Rule16: If qc(t) is in1mf2 and Ca(t-1) is in2mf2 and 
Ca(t-2) is in3mf2 and qc(t-1) is in4mf2 then Ca1= 
0.00000921qc(t)+2.371Ca(t-1)-1.344 Ca(t-2)-0.0003219 
qc(t-1)+0.04551 
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Fig. 4. Final Structure of the Self-Tuning Neuro-Fuzzy 
Generalized Minimum Variance 

The Figure 4 shown the Final Structure of the Self-
Tuning Neuro-Fuzzy Generalized Minimum Variance 
formed by the Fuzzy Self-Tuning Mechanism and the 
Neuro-Fuzzy Generalized Minimum Variance. 

8.2 Tracking Reference Test 
 
In this test the reference signal was changed in the 
extremes of operation range of the CSTRCJ. The 
reference signal Fcref  varies  from to 0.1 mol L-1 to 
0.125 mol L-1, from 0.125 mol L-1 to 0.1 mol L-1 , and 
from 0.1 mol L-1 to 0.055 mol L-1 in intervals of 10 
min. The results of this test are shown in the figures 6.  
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Figure 5. Output Signals of the Digital Filters and 

STNFGMV in the Tracking Reference Test 
 
8.3 Robustness Test 
 
In this test, the reference signal Fcref was varied from to 
0.1 mol L-1 to 0.125 mol L-1, from 0.125 mol L-1 to 0.1 
mol L-1 , and from 0.1 mol L-1to 0.055 mol L-1 in 
intervals of 10 min. The results of this test are shown in 
the figures 7. 
 
The variation of the nominal CSTR parameter are:  
 

V=95 L, hA=6.95e5 cal min-1 K-1, k0=7.25 x 1010  min-

1, E/R=1.0 x 104 K-1, H∆ = -2.2 x 105 cal mol-1, 

== cρρ 1.04 x 103 g L-1 and == pcCC 1.0 x 103 

cal K-1. 
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Fig. 6. Output Signals of the Digital Filters and 
STNFGMV in the Robustness Test 

 
 

CONCLUSIONS 

The STNFGMV simplifies the tuning of the NFGMV 
controller, because it is automatic.  The dynamic 
behavior of the STNFGMV is better than the GMV 
controller with the correct model and the PI controller 

and the PI fuzzy controller. The proposed algorithm 
saves time in the tuning process of the controller. 
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