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Abstract: For several years, a 1 m3 fixed bed anaerobic digestion process has been operated for 
the treatment of wine distillery wastewater. This reactor has been fully instrumented with the 
following variables available on-line: pH, temperature, liquid and gas flow rates, gas 
composition (i.e., CH4, CO2 and H2), concentration of bicarbonate, chemical oxygen demand, 
total organic carbon, volatile fatty acids and partial and total alkalinity. This paper deals with 
the problem of restarting the reactor after a period of time with missing information from the 
sensors. An approach has been developed to determine – while managing inherent uncertainty – 
the evolution of the inputs between the date of information loss and that of information 
recovered. It is then used together with a timed automata formalism and model checking 
capabilities to assess and analyse the induced risk in order to restart the process in safe 
conditions. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The anaerobic digestion (AD) process is based on a 
complex ecosystem of anaerobic bacterial species that 
degrade the organic matter. It presents very 
interesting advantages compared to the traditional 
aerobic treatment: high capacity to degrade difficult 
substrates at high concentrations, very low sludge 
production, low energy requirements, and a 
possibility for energy recovery through methane 
combustion. 
 
At the industrial scale, AD processes have been 
widely used since the late seventies and today, more 
than 1,400 digesters are referenced through the world 
(Totzke, 1999). Many of these processes are used for 
the treatment of residues from agro-industrial (i.e., 
sugar, corn processing…) and beverage industries 
(i.e., beer, wine, canning, distilleries…) although 
many other types of wastes from other origins are 
considered (e.g., petrochemical, wood processing …). 
 
However, many industrials are still reluctant to use 
anaerobic treatment plants in spite of their efficiency 

because they can become unstable under some 
circumstances. Disturbances like variations of the 
process operating conditions can lead to a 
destabilization of the process. This is due to the 
accumulation of intermediate toxic compounds 
resulting in biomass elimination. The reaactor takes 
then several weeks to several months to recover (see 
for example (Lardon et al., 2004)). During this 
period, the unit cannot be used anymore and the 
wastewater is rejected into the natural environment 
(e.g., rivers) without any treatment. It is therefore a 
great challenge for instrumentation and control 
sciences to make this process more reliable and 
usable at industrial scale. The first step – and maybe 
the most important one – is to follow dynamically 
(i.e., using on-line sensors) the key process variables. 
The second step is to rebuild the trajectory of the 
system in case of information loss (sensor failure for 
example). The goal is clearly to assist the operators 
and the engineers in the task of diagnosis before 
restarting the reactor, because their decision depends 
on the history of the system. 

 



     

2. PROCESS DESCRIPTION 
 
The schematic layout of the up-flow anaerobic fixed 
bed reactor used in the present study is shown in 
Figure 1. It is a real pilot-scale process located in the 
LBE laboratory. The working volume of the reactor is 
0.948 m3. The dilution of the influent is performed by 
adding water to raw industrial vinasses (i.e., wine 
distillery wastewater) in a 200 L buffer tank 
connected to the input line of the reactor. For a 
detailed description of the process and its 
instrumentation, see (Steyer et al., 2002). 
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Figure 1. Schematic layout of the process 

 
3. MODEL DESCRIPTION  
 
Since the late seventies, various models have been 
proposed in the literature for AD processes. The first 
model included a single bacterial population (Graef 
and Andrews, 1974). The representation of the 
process was improved by considering three stages: 
the solubilization of organic compounds, acidogenesis 
and methanogenesis (Hill and Bart, 1977), or even a 
four-population model with two acidogenesis 
reactions and two-methanization reactions (Mosey, 
1980). Thereafter, these models have been improved 
in order to get closer to the complexity of the process. 
The resulting models include several bacterial 
populations and various substrates, so the number of 
parameters may become very large (i.e., up to 26 
dynamic state concentration variables and 19 
biochemical kinetic processes as in Batstone et al., 
2002).  Because of the difficulty to precisely calibrate 
and validate these models, their direct use for 
monitoring and control purposes becomes difficult. 
 
On the contrary, a simple model was chosen in the 
present study assuming that two main bacterial 
populations are present (Bernard et al., 2001). From 
these considerations, a mass-balance-based model 
consisting of six ordinary differential equations was 
derived. The state variables of this model are linked 
to on-line measurements of the gas flow rates. By 
locating the biological variability in dedicated terms, 
namely the kinetic reaction rates, the model 
circumvents the lack of reliability of the bacterial 
growth modelling. The use of such models for 
monitoring and control design has been proven to be 
reliable over the years because it minimizes the 
number of assumptions during model construction 

(Steyer and Bernard, 2003). This mass-balance model 
forms also the basis for a software sensor that uses the 
available on line measurements of gases flow rates. 
 
A drastic simplification of the digester ecosystem (Cf. 
Figure 2) was thus assumed during the model 
development. In fact, the corresponding reaction 
scheme was considered as a summary of the main 
mass transfer throughout the digester, i.e., the two 
steps included in the model were: 
• Acidogenesis: the population of acidogenic bacteria 
(X1) consumes the organic substrate (S1) and 
produces CO2 and volatile fatty acids (S2) through an 
acidogenesis step: 

S1 → X1 + S2 + CO2 

• Methanogenesis: the second population (X2) uses the 
volatile fatty acids in a methanogenesis step as 
substrate for growth and produces CO2 and methane. 

S2 → X2 + CH4 + CO2 

The total inorganic carbon is stored in the medium as 
bicarbonate and dissolved CO2 form. A variable Z 
represents the total alkalinity within the digester. 
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Figure 2. Main biological pathways in the anaerobic 

digestion reaction scheme 
 

The model equations are then the following: 
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 The inputs are the influent concentration of organic 
substrate, volatile fatty acids (VFA), alkalinity and 
inorganic carbon, which are denoted S1

in, S2
in, Zin and 

Cin respectively. Bacterial growth rates were chosen 
as a Monod model for X1 and a Haldane model for 
X2: 
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3. HYBRID MODELLING FOR DIAGNOSIS 

 
As said previously, the main drawback of the 
anaerobic treatment plants is related to their 
instability and the difficulty to recover from an 
unexpected disturbance. This paper focuses on the 
problem of recovering the system in case of sensors 
failure. More precisely, two questions have to be 
answered in order to assess the risk associated to the 
restart of the process: (i) how long the microbial 
populations spent in specific states (sometimes 
critical ones)? and (ii) what is the trajectory followed 
from a starting point corresponding to the date of 
information loss (sensor failure occurrence) to the 
arriving point where the data is totally recovered? 
 
In other words, the type, the amplitude and the 
duration of process inputs disturbances the system 
had to face during this interval of information loss 
have to be determined and analysed. The approach we 
have developed combines continuous simulations 
with uncertainty management of the previously 
presented model and discrete analysis with a model 
checker of timed automata of the system. The 
continuous simulation aims to verify the validity of 
the inputs while the discrete analysis aims to check 
the reachability of some states. 
 
3.1 Temporal abstraction for hybrid modelling 
 
In the following, we consider a generalisation of 
model (1) that is a non-linear piecewise continuous 
system described by an ordinary differential equation 
(ODE) system such as: 
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where nξ Ξ∈ ⊆ ℜ , with Ξ a n-dimensional state 
space, ( , )g p tζ = , mζ Ζ∈ ⊆ ℜ , with Ζ a m-
dimensional input space, and p P∈  a parameter. It is 
assumed that we have only a partial knowledge of 
both the initial state ( )0tξ  and the input variables 
values ζ that can be estimated by: 
 0 0 0, ( ) ( ) ( )i i ii t t tξ ξ ξ− +∀ ≤ ≤  (4) 
 ( ) ( ) ( ), , j j jj t t t tζ ζ ζ− +∀ ∀ ≤ ≤  (5) 

with {1,..., }i n∈ , {1,..., }j m∈ , 2( , )i i iξ ξ Ξ− + ∈  and 
2( , )j j jζ ζ Ζ− + ∈  ( iΞ Ξ⊂  and jΖ Ζ⊂ ). 

 
3.1.1 Uncertainty representation.  
To handle the uncertainty due to the lack of 
information on the initial state and input variables, we 
define ζ <  and ζ >  according to the influence of the 

interval bounds on the derivative’s values (taking 
{1,..., } \{ }k m j= ): 
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From (6) we can rewrite (3) as the double ODE 
system: 

 
0 0

0 0

( , )
( )

( , )
( )

f
t

f
t

ξ ξ ζ
ξ ξ

ξ ξ ζ
ξ ξ

− − <

− −

+ + >

+ +

 =


=

 =
 =

&

&

 (7) 

With the property , , ( ) ( ) ( )i i it i t t tξ ξ ξ− +∀ ∀ ≤ ≤ , Eq. 
(7) can approximate the system (3) by introducing 
uncertainty on the initial state (Eq. (4)) and the 
system inputs (Eq. (5)) if the cooperativity property is 
verified on the system’s dynamics (Smith 1995). 
Cooperativity simply states that the off-diagonal 
elements of the Jacobian matrix of a dynamic system 
are positive or equal to zero (additional details can be 
found in Gouzé et al., (2000) or Moor and Raisch 
(2002)). 
 
3.1.2 Thresholds  
To represent the continuous system dynamics in a 
discrete formalism, the first step is to divide the state 
space. For this, each iξ ’s domain is partitioned 
according to thresholds into a finite number of 
intervals that can be considered as qualitative states. 
Thresholds are defined from expert knowledge; e.g., a 
liquid flow can be qualified as “low”, “medium”, 
“high” and “critical”. iL  denotes the ordered set of 
thresholds in the ith dimension, that is, with 

{ }1i ,...,n∈  and iΩ ∈� : 

 ( ) { },0 ,, ,...,
ii i iL l l Ω< =  (8) 

The continuous state space Ξ  is divided according to 
the i

i

Ω∏  thresholds by the mapping: 

 { } { }1: 1,..., ... 1,...,X iD Ξ Ω Ω→ × ×  (9) 

with the assumption that ,0 ,, ,
ii i il l iΩξ  ∈ ∀  . A 

rectangular partition is thus obtained (Cf. Figure 3). 
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Figure 3. Translation of a continuous state space (a) 

by thresholds (b) into a discrete space state (c). 
 
3.1.3 Discret approximation 
 The idea is then (i) to consider as discrete states the 
faces of the cell and (ii) determine the state transitions 
from the simulation output of the continuous system 



     

within each cell as was done by Kowalewski et al., 
1999. These authors defined a grid on each face of the 
cell and simulated all the trajectories from each grid-
point or bounded to it. In comparison, our approach 
depends upon each considered initial state and 
focuses on handling uncertainty by propagating the 
interval ,ξ ξ− +    within the cells by simulating Eq. 
(7). 
 
3.1.4 Timed automaton representation 
 Introduced by Alur and Dill (1994), a timed 
automaton is composed of a finite state machine and 
the expression of continuous time. This formalism 
allows timed constraints to be introduced using 
variables named clocks. In the present study, the 
system trajectory between two thresholds w and v is 
represented by the time window [τmin, τmax] which can 
be modelled in the timed automata formalism (Cf. 
figure 4 where w < v) by: 
• s1 and s2, two locations with associated 

propositions " "∆w  and " "∆v  respectively,  
• x, a clock, 
• maxτ≤x , the invariant of s1, 
• ( )1 2, , , ,minτ∅ ≥ ∅s x s , the edge. 
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t
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Figure 4. Timed automaton representing a trajectory 

from threshold w to v. 
 
Using this approach and performing the synchronised 
product with Kronos (more details about Kronos can 
be found in Yovine 1997) of all the timed automata 
generated for each dimension of the system, yields a 
single timed automaton. This automaton has one 
clock without reset and it globally represents the 
system dynamics for the considered time period. 
More complete description of the methodological 
aspects can be found in (Helias et al., 2004) 
 

4. METHOD FOR DETERMINING THE INPUTS 
 
4.1  Type of inputs of the reactor 
 
Expert knowledge on the process makes it possible to 
identify some relevant types of inputs. Typical inputs 
are made of irregular successive steps of different 
amplitude. Therfore only three types of inputs have 
been considered in case of sensor information loss: a 
constant, positive or  negative step. 
 
4.2 Introducing thresholds 
 
The thresholds are defined so that the starting point 
(i.e., sensors information loss) and the arrival point 
(i.e., sensors information recovery) are delimited by a 
given interval. This is done after the temporal 

abstraction procedure previously described has been 
applied and the automata for each dimension (S1, S2, 
C, Z, DCO, qgas) have been obtained. These 
thresholds will help to determine the duration of the 
starting and arriving states using the obtained 
automata and the Kronos model checker. In 
particular, the existence of an input evolution from 
the starting point to a given arrival process state will 
be checked. If we consider that the predicate of the 
starting state is init and S1 a threshold delimiting the 
values at the starting point, the question submited to 
the Kronos model checker will be: Does a path exist 
so that the threshold is overstepped after tD time 
units?, which is expressed by the following formula: 

init ⇒ ∃◊ ( 1 1S S∆ ∇∨ ) Dx t∧ >  
 
4.3 First step of the method 
 
• First phase 

The values of the unknown process inputs at the 
starting date tD are expressed as intervals describing 
the imprecision InDi=[In-

Di In+
Di]. The thresholds fix 

intervals delimiting the output values to be 
considered: two for the starting state and two for the 
arrival state. The system is then simulated (from date 
tD to date tA) with a constant value of inputs equal to 
the limits of the input intervals. The simulated outputs 
of the system at date tA are then compared to the 
intervals associated to the real values obtained after 
information recovery. If this verification is positive 
and if the inputs at date tD are equal to inputs at date 
tA then we conclude that the system has been 
submitted to constant inputs during the time (tA-tD) 
when the sensors information was lost. On the 
opposite, we use the timed automata of each 
dimension and, using Kronos, check the time the 
system holds in the starting state with constant inputs. 
(Cf. Figure 5). We obtain a duration di for each input 
that expresses the time the input i has been constant. 
A new start date tDk = min (tD + di) is defined. 
 
 test 

tAk Kronos 
∃⇒init ? ( ∇∆ ∨ 11 SS ) Atx <∧  ? 

ODE simulationtA

Determining interval  [tA-tAK  ] with Kronos 
 

Figure 5. Schematic representation of the approach 
 
• Second phase 

This phase aims to determine the time the system has 
spent in the arrival state with constant inputs. The 
ODE system is simulated with constant inputs value 
equal to the limits of the input intervals InAi=[In-

Ai 
In+

Ai] until the arrival date tA. The outputs of the 
system at date tA are then compared to the intervals 
associated to the real values. If the simulated outputs 
are outside the intervals, a new simulation is 

Inputs type



     

processed with new initial values. As for the first 
phase, timed automata are used to represent the 
process behaviour in a discrete space. We obtain a 
duration ai for each input that expresses the time the 
input i has been constant. A new arrival date is 
defined as tAk = max (tA - ai).  
 
•  Third phase 

It consists on the use of the dates tDk=τD and tAk=τA in 
order to build the inputs of the process. These dates 
are considered as discontinuities corresponding to a 
positive or a negative step. For example, if InDi < InAi 
, then we deduce that a positive step of the inputs is 
present between tD and tA. As for the other phases, the 
system is simulated and verification with Kronos and 
test are processed on the output values (OutAi∈  [Out-

i(tA) Out+
i(tA)]). In this phase, the objective is to refine 

the intervals containing the discontinuity. This 
process is thus repeated until the test on the outputs is 
negative. 
 
4.4 Second step of the method 
 
The objective is to refine the interval of the input. It 
consists on dividing the interval ]τD τA[ found in the 
third phase of the precedent step. We obtain two 

intervals: ] τD 
2

A Dτ τ− [ , [
2

A Dτ τ−  τA[ . For each of 

these intervals, a simulation of the ODE model and 
the test on the outputs are processed. This process is 
continued until a satisfying interval is found. 
 

5. APPLICATION TO THE AD PROCESS 
 
The data we used to illustrate our method are real 
measurements recorded on the Anaerobic Digestion 
(AD) process described in section 2. We focus on the 
interval from tD = 49h (that we consider as the start 
date when the information is lost) and tA=90h (arrival 
date) (Table 1). The initial states are as follows: S1(t0) 
∈[3 4], S2(t0) ∈[60  90], Z(t0) ∈[100  140], C(t0) 
∈[60  75]. The thresholds are chosen so as to avoid 
any intersection between those delimiting the starting 
state and those delimiting the arrival state. They are 
chosen from 10% to 50% of the output-measured 
values. 
 
5.1 First step 
 

• First phase 
The system is simulated with constant inputs 
corresponding to the limit of the intervals 

Di Di DiCste In In− + =  
 (See figure 6). Simulation results are 

presented in figure 7 where one can see the data 
available before information loss (i.e., before 49h) 
and after information recovery (i.e., after 90 h). Thin 
lines corresponds to the model simulation with the 
indication of the thresholds crossings (the thresholds 
are the constant values represented by dotted lines in 
Figure 7). 
 

We can see in figure 7 that the outputs C and Z leave 
very fast their initial discrete states and the result of 
the verification with Kronos gives the interval [49 
50[. 
 Input values 

at tD= 49 
(InDi=[ In-

Di In+
Di]) 

Input values 
at tA=90 

(InAi=[ In-
Ai In+

Ai]) 
S1in 
S2in 
Zin 
Cin 

[17.4 21.7] 
[118.75 131.25] 

[198 253] 
[34 51] 

[11.31 13.81] 
[59.21 65.48] 

[44 88] 
[17 25.54] 

 
 Output Values 

at tD = 49 
(OutDi) 

Output Values 
at tA=90 
(OutAi) 

S1 
S2 
Z 
C 
DCO 
Qgas 

3.42 
73.42 

126.25 
66 

8.11 
412.68 

2.73 
33.32 

159.41 
132.72 
4.86 
208 

Table 1: Measured input and output values 
 

 
Figure 6: Interval of the inputs 

 
Figure 7: Simulated outputs 

 
• Second phase 
Similarly, when checking the arrival states during the 
second phase, we found the interval ]86 90]. 
 
• Third phase 
In the precedent phases we found tD0=50 and tA0=86. 
It should be noted that InDi>InAi which means that 
there exists a negative step in the input. This is 
illustrated in figure 8 where are presented the new 
inputs envelopes. 
 



     

This process is iterated four times and finally the 
interval [64 78] is obtained. This result implies that 
the system stayed for 15 hours in the starting state and 
for 12 hours in the arrival state. 

 
Figure 8: Form of the deduced inputs 

 
5.2 Second step 
 
Now that an interval has been found [64 78], we can 
proceed by dividing it until we obtain satisfying 
inputs (See Figure 9). We can then deduce that the 
discontinuity on the process inputs occurred between 
69 and 73h and that the system stayed for 20 hours in 
the start state and for 17 hours in the arrival state. 
This is in fact exactly what happened in practice 
(Process inputs were indeed recorded but they were 
considered as unknown in the present application). 
 

 

[ 75 78 ]
Test :  

[ 64 68 [ 
Test :  

] 68 71 ] 
Test :  

[ 73 75 [
Test :  

] 68 69 ] 
Test :  

] 71 72 [ 
Test :  

[ 72 73 [ 
Test :  

] 70 71 ] 
Test :  

] 69 70 ] 
Test :  

] 69 71 ] 
Test :  

[ 64 78 ]

Test :  

[ 64 71 ] 
Test :  

] 71 73 [ 
Test :   

] 71 75 [ 
Test :  

] 71 78 ] 
Test :   

 
Figure 9: intervals of the second step 

 
These inputs are thus used for final simulation of the 
model and the simulated model outputs are 
discretised and the encountered discrete states of the 
process are analysed using Kronos (see Hélias et al., 
2004 for an example of such an analysis). The end 
user is then advised about the possible discrete 
process states – and their duration – encountered 
during the information loss. This knowledge is very 
important to decide upon the best control strategy to 
apply after information recovery. 
 

6.  CONCLUSION 
 
In this paper we described a method that helps for 
safe restart of an anaerobic digester, after a period of 
time where some information (inputs and sate 
variables) are unknown. In order to operate a safe 
restart, it is important to have some information 

related to the behaviour of the system during this 
period of time of information loss. After the 
presentation of the physical plant and its modelling, 
we introduced a method based on both the continuous 
and the discrete model (automata obtained by 
temporal abstraction) that aims to explain the 
behaviour of the system. The inputs of the systems 
have been limited to three types given by the experts. 
The first step of the method permits to identify the 
inputs variation during the information loss. A second 
step refines the interval of time where a change of the 
inputs occurred. 
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