

EMBEDDED CONTROL SYSTEMS: SOME ISSUES AND SOLUTIONS1

P. Albertos*, A. Crespo§, M. Vallés*, I. Ripoll§

*

Department of Systems Engineering and Control (DISA)
§Department of Computer Engineering (DISCA)

Universidad Politécnica de Valencia
P.O.Box. 22012, E-46071, Valencia, Spain.

pedro@isa.upv.es, alfons@disca.upv.es, mvalles@isa.upv.es, iripoll@disca.upv.es

Abstract. Embedded control systems are becoming ubiquitous in control applications.
They combine the properties of computer embedded system with newly designed
complex controllers where flexible, safe and reconfigurable operations are required. The
aim of this paper is to grasp the main features of these systems, analyse the main
problems and present some solutions already developed by the authors. A new concept on
the control kernel of an application is also introduced and some conclusions are drafted.
Copyright © 2005 IFAC.

Keywords. Real-time control, embedded systems, optional tasks, alternative controllers,
integration of control design and implementation.

1. INTRODUCTION1

The strong increasing presence of embedded systems
(ES) in products and services creates huge
opportunities for the future in different areas such as
industrial control systems, avionics, health care,
environment, security, mechanics, … (Chinook,
2004). Thus, there is a growing scientific interest on
conceptual and practical tools for their development
(Dreamtech, 2002). In particular, their use in control
applications is becoming very popular.

RT control applications on ES require the best use of
the available computation resources. Among the main
advantages they offer are the reduced price and size,
broadening the scope of possible applications: mass-
production systems due to the cost reduction and
specific accurate applications for their reduced size
and high performances. But the most important

1 This project has been partially granted by the CICYT
project number DPI2002-04432

problem is the limited computational capabilities they
can use because it is well known that, in general,
short sampling periods and non-delayed control
actions allow for better control performances.

So, one of the most important issues related with ES
in control applications is related with the reliable and
optimal use of their computational resources and
what the resource shortage involves in the design and
implementation of the control algorithms. For these
applications, it is not always possible to implement
the control by using general purpose operating
systems because of the particular requirements in
terms of delays and jitter limitation. Thus, the control
computations should be implemented as real-time
tasks being executed under a specific real-time
scheduling policy.

Many works related to embedded control systems
(ECS) simplify their treatment in two different
senses, depending on the framework. In the computer
systems arena it is common to consider them just like
a new, and fundamental, application field of

computer ES and they focus on the general hardware
and software issues of ES in general. See, for
instance (Henzinger, 2003) and (Ledin, 2004). On the
other hand, authors in the control side may consider
than the hybrid character of these systems is the
kernel of the problems and immediately concentrate
the discussion on the study of hybrid control systems,
(Tiwary, 2003).

There is a strong group of researchers involved in the
interactive design of the control algorithms and their
RT implementation. In the IEEE Control system
Magazine special issue (Sanz and Arzen, 2003) an
overview of some of the related problems is
presented and it is a good reference for newcomers in
the field. The authors also belong to this group and,
as latter described, have made some contributions to
the topic.

Thus, it seems interesting to extract the main
characteristics of ES in general, those specific of ECS
and the problems they pose from the points of view
of computers, communications and control.
Moreover, the interplay between all the components
to get the best performances of the whole system
should be considered.

This paper is organised as follows. In the next
section, the main concepts behind the idea of ES as
well as the specific requirements for their application
in ECS are summarised. Some options in the design
of ECS architectures are discussed in Section 3. As
already mentioned, some of the specific problems
related to the design and implementation of ECS
have been already treated by the authors and these
results are summarised in Section 4. The new idea of
control nucleus, as a basis for essential control design
is introduced in Section 5 and some conclusions are
drafted in the last section.

2. EMBEDDED CONTROL SYSTEMS

Several roadmaps on ES state the trends and more
relevant topics (ERS 2002). In (ARTIST 2003) the
status and future of a set of selected areas are
described. The basic characteristics that can be found
in ES can be summarized as: compact and reduced
size, autonomy, reconfigurability, safety, fault-
tolerant and capable to work under missing data
operation.

The above characteristics highly condition their use
in control applications and a number of problems
arise. The general lay-out of an ECS is depicted in
fig. 1, where different sensors, actuators and
interaction with the environment are shown. Its main
characteristics are the autonomy and the limitation in
the resources. One CPU, with its own power supply,
must control a number of variables in an uncertain
environment. The problems to be considered are
related to their implementation, the computational

load and resources sharing and the control
performance degrading.

Figure 1. ECS structure

I.- From the implementation point of view:

i) The same resource must be shared between

different tasks. As a result of this competition for
the CPU use, the timing of the tasks is not fully
determined and the time delays and jitter should be
taken into account.

ii) Alternative control algorithms should be ready
to get the control of the process. Working in a
changeable environment, the control goals and
options may change and the control algorithms
should be adequate to new scenarios.

iii) Working conditions, such as priority, allocated
time and memory or signals availability may
change. Thus, complexity, structure and basic
properties of the control system will change.

iv) Variable delays should be considered, (Cervin,
2003). The synchronicity of signals cannot be
ensured anymore.

v) Validation and certification. Any embedded
control system should be proved to be reliable and
safety operation should be ensured.

II.- From the computational point of view:

i) Economic algorithms should be designed. To save

as much as possible computation time.
ii) Easy update of information should be provided.

To use the shortest time in controller changes.
iii) Hybrid systems should be considered. Logic,

discrete time and continuous time information
should be merged.

iv) CPU use measurement and optimisation. Being a
scarce resource, the current use of the CPU should
be measured and corrective actions should be
applied to optimise its use.

v) Optional tasks must be considered. Control
algorithms should be split into mandatory and
optional parts, the last ones being only run if time
is available.

Process to
control

Environment

ECS

CPU
Bat
tery

S1

Si

Memory

A1

Ai

vi) On-line scheduling. Based on the current control
goals as well as the availability of resources the
required tasks should be scheduled in the most
performing way.

vii) Memory saving. Being also a limited resource,
computation tasks should rely on few data, also
providing a reduced number of intermediate results
to reduce memory storage capacity and accessing
time.

viii) Economic hardware redundancy. To increase the
reliability, hardware redundancy may be
implemented if its cost, size and involved
complexity is affordable.

ix) Fault detection and isolation As well as
reconfigurability, to allow an autonomous
behaviour.

III.- From the control algorithm point of view,
specific design methodologies should be used:

i) Reduced order models. The complexity of the

controller is directly related to the complexity of
the plant. More properly, it is related to the
complexity of the model used in the design. Thus
model reduction techniques should be considered
to simplify either the plant model or the designed
controller.

ii) Decision and supervisory control. Changes in
the environment and availability of resources
should be monitored and changes in the
operation mode should be decided by an upper
level of control.

iii) Hybrid control systems. There is also a lot of
research on this topic. It is interesting to point
out that some authors dealing with ECS only
focus on the hybrid character of the controller as
there is the need of combining discrete and
continuous time dynamics. But this is just one,
although fundamental, property of the ECS.

iv) Multimode control. A control problem cannot be
approached in the same way if the environmental
conditions change. Thus, the control strategy
must consider changes in the controller and
caution should be taken to guarantee the correct
operation (stability is the minimum) of the
controlled system.

v) Sampling rate changes. It is well known that, in
general, the quality of the digital control
decreases if the sampling period increases. Thus,
if resources are available, the control tasks
period should be reduced and this implies
changes in the controller parameters as well as in
the stored information.

vi) Non-conventional sampling and updating
patterns. The signals sampling and the control
action delivering time instants should be
appropriated for the required controlled plant
dynamics and the available resources. This
implies the option of different sampling rates
(multirate control) and to consider the lost of
synchronicity.

vii) Missing data control. Data availability is not at
all guaranteed in any operating condition. Thus,
control algorithms should cope with missing data
situations.

viii) Event-triggered control. Most control algorithms
are time driven. The sampling-updating pattern
is regular and synchronous, with a constant time
interval between actions (periodic actions). But
dealing with harsh and uncertain environments,
some activities are triggered by external events.
And these events may happen randomly and at
any time.

ix) Degraded and back-up (safe) control strategies.
Different control requirements should be
considered, according to the operating
conditions. In emergency cases, a degraded
behaviour should be accepted, ensuring the
safety of the operation.

x) Fault-tolerant control. There is a lot of research
and literature on this topic. It is crucial for ECS
as there is no option to externally reconfigure the
control structure. Thus, supervisory control
involving fault detection and isolation as well as
a decision system to select the most suitable
controller must be considered. Alternatively,
time invariant fault tolerant controllers can be
considered if a degrading of performances is
allowed in faulty conditions.

xi) Battery monitoring and control. Any
autonomous system should adapt its activities to
the available power. The monitoring and control
of the on-board batteries will result in forced
changes in goals and control structures.

And altogether, the integration of control design and
computer control implementation is crucial to
achieve the best control performances.

3. ECS ARCHITECTURES

In industry, most of the ES are based on
microcontrollers and PLC’s (Programmable Logic
Controllers). Microcontrollers provide most of the
basic features to implement basic control systems
(processor, input/output, converters) but normally
they provide low computation level and application.
They often have no operating system, or a specialized
embedded kernel (often a real-time operating
system), or the programmer is assigned to port one of
these to the new system. Small kernels with specific
services are used for these kind of systems to develop
several tasks. Its capacity of adaptation and
reconfiguration are very limited and its use is
constrained to well very known and simple control
systems (printers, modems …).

The need of a higher computation power can be
improved by the use of DSPs. These microcomputers
whose hardware, software, and instruction sets are
optimized for high-speed numeric processing

applications play an essential role for processing
digital data in real time.

Most of the industry control applications use PLCs
which provide a wide range of input/output and
communication protocols. However, the
programming languages have not evolved as in other
software technology and there are many different
ladder diagram languages to develop applications. In
general, these languages provide poorly
programming structures and the kernels do not
provide most of the features offered by the real-time
operating systems. Some initiatives (PLCOpen),
focused around the standard IEC 61131-3, are trying
to adopt a norm in the design and operation of the
programming interface.

However, the new embedded systems are
characterized by growing software complexity and
functionalities where embedded software dominates
the development cost and schedule. The old way of
developing software for each embedded project from
scratch is giving way to the need to reuse software,
and build on existing software wherever possible.

Also the embedded (real-time) operating systems are
providing more and more new services to fulfil the
new needs. Examples of these embedded operating
systems are: embedded Linux (several distributions),
Windows CE, VxWorks, QNX, OS-9, etc. The
diversity of operating environments and platforms
poses a real challenge in deploying software across
multiple platforms and configurations. The use of
embedded operating systems providing POSIX
interface facilitates the portability and reusability of
the applications.

The embedded operating system usually should have
the following characteristics (Ripoll 2002):

• Configurable and scalable: the design of
operating systems based on components permits
the selection of the appropriated ones to build the
specific kernel for the embeddable application.

• Innovative techniques in scheduling to select the
most efficient for the application combining
different policies at several levels of scheduling.

• Resource management allowing the use of
Quality of Service techniques improving the
efficiency and flexibility of a real-time system. An
efficient approach to real-time resource
management consists in applying feedback control
theory to real-time scheduling. So, a scheduling
strategy naturally adapts to the application needs
and the resources allocated to an application are
automatically updated to its needs.

• Fault-tolerance mechanisms which are able to
make the results available on a timely basis even if
this fact could lead to a functioning in "degraded
mode". This is a pre-required quality for real-time
embedded systems.

• Small footprint to embed the system in different
configuration.

• Multi-platform. The embedded operating system
has to be portable or recompilable for different
processor architectures.

• Power aware techniques. Development of
systems supporting dynamic power management
strategies based on dynamic voltage/frequency
scaling for tuning the power-performance trade-off
to the needs of the application.

• Efficient memory management including special
forms of memory management that limit the
possibility of memory fragmentation, and assure a
minimal upper bound on memory allocation and
de-allocation times.

4. SOME PREVIOUS RESULTS

There is a lot of literature providing solutions to some
of the issues above. In particular, the authors have
presented alternatives to some of the previously
discussed problems. Due to the lack of space, the
readers are addressed to these papers and
the references herein.

- Controller design under non-conventional sampling

patterns. Improvements in the control
performances are achieved by taking into account
the sampling pattern when designing the
controllers (Albertos, 1999, 2001).

- Controller parameters and data updating under
sampling rate changes. As below described,
changes in the CPU load demand changes in the
control tasks periodicity. (Albertos, 2003a).

- On-line re-scheduling. To take into account
changes in the control relevance of some actions
(Albertos, 2000).

- Missing data control. Using reliable output
estimators (virtual sensors) to cope with scarce or
missing data, due to communication congestion or
data acquisition systems failures in uncertain
environments (Sanchis, 2002).

- Scheduling policies to enhance quality of service
(Hassan, 2002), (Mazario, 2004).

- Real-time task model to minimise the output jitter
in control tasks (Balbastre, 2000, 2004).

- Algorithms for dynamic memory allocation in real-
time systems (Masmano, 2004).

- Development of open components for real-time
embedded operating systems (OCERA, 2002).

5. CONTROL KERNEL

As previously discussed, changes in the operating
conditions require changes in the controller. Under
any working condition, the system must keep some
basic properties. If this is not the case, the emergency
routines should take care of the system by moving it
to a safe, even shut-down, situation.

These basic properties should be captured by a kernel
representation of the system in order to apply an
essential control. This control should be able to
ensure the system stability under a shortage of
resources. Thus, in this case the system will fall
under this essential control, until more resources
(options) become available.

General speaking, the kernel representation implies a
reduced order model of the system as well as a
mechanism to transfer from a normal, extended
model, to the kernel and vice versa. Thus, a simple
algorithm to transfer between models, also recovering
the involved data, should be provided.

The kernel concept must consider to cope with
essential goals connected to safety in the operation as
well as different resources’ shortage, such as lost of
data or time limitation. Let us discuss the model
reduction issue under time constraints.

5.1 Transfer between models

Assume a standard (Albertos, 2004) state space
representation of a discrete time plant such as:

[][]Tkk

k
kk

xxCCy

u
B

B

x

x

AA

AA

x

x

2121

2

1

2

1

2221

1211

12

1

=









+
















=









+ (1)

where k,x1 represents the “fast” components of the

state vector and k,x2 the “slow” ones. Under some

operating conditions constraints, a partial model is
enough to compute the appropriate control action:

a. The time allocated for control computation is

reduced and a safe operation (with degraded
performances) is foreseen. Thus, the sampling
period may be enlarged and only the slow part of
the plant model could be considered.

b. Under an emergency condition, a quick reaction
of the control is expected. The sampling period
is reduced and the slow behaviour of the plant
may be considered as unchanged.

In both cases a reduced model of the plant is
desirable and a change in the model parameters
should be implemented. A similar reasoning will be
applied if dealing with the controller model. Different
techniques can be applied to get a reduced order
model. See, for instance (Albertos, 2004, p. 86).

Deleting the slow dynamics implies to assume

k,k, xx 212 =+ in (1). That is:

kk,kkk,k, uDxCy;uBxAx +=+=+ 1111111

where

()
()

()
() 2

1
222

21
1

22211

12
1

22121

21
1

2212111

BAICD

AAICCC

BBAIAB

AAIAAA

−

−

−

−

−=

−+=

+−=

−+=

In this case, to go back to the full model (1) at time k,
the state vector should be updated to:

() () kk,
k

u
BAI

O
x

AAI

I

x

x








−

+







−

=







−−

+

2
1

22
1

21
1

222

1

On the other hand, looking for a safe slow model, the
assumption of an “immediate” change in the fast

modes is equivalent to assume that k,x1 is an input

to the reduced model. That is:

k,k,k

kk,k,k,

xCxCy

uBxAxAx

1122

212122212

+=
++=+

In this case, to go back to the full model and initialise
the full state vector, the state variables should be
measured or estimated through the output vector.

5.2 Changes in the sampling period

The DT model (1) of a continuous time plant
corresponds to a nominal sampling period, T. If, for
any reason, the control tasks are re-scheduled, their
periodicity will be changed. It is well known
(Albertos, 2000) that, for control purposes, faster
sampling rates allow for better control performances
than slower ones. So, according to the CPU use, the
sampling rate of the control algorithms (and, in the
same way that of the plant models used to compute
the controller) should be adjusted.

Changes in the discretization rate of a controller
requires changes in both, the controller parameters
and the set of data handled by the control algorithm,
in order to get bumpless commutation and a reduced
degrading of control performances. Some options, as
previously mentioned, are described in (Albertos,
2003b).

5.3 Scheduling support

Both previous approaches require scheduling support
to allow mode changes in the system. A mode change
is initiated whenever the systems detects a change in
the environment or in the internal state that must
drive it from one operating mode to another allowing
the use of reduced models and the transfer between
models. Several protocols for mode changes can be
found in the literature. A survey on mode change
protocols can be found in (Real, 2004). The main
requirements to be achieved by the protocols are:
schedulability, periodicity, promptness and
consistency.

6. CONCLUSIONS

In this paper we have reviewed the main issues
related to ES with special focus on ECS. The ECS
are analysed from different point of views:
implementation, computation and control algorithm
design. It is complemented with the run-time support
analysis which discusses the requirements of the real-
time embedded operating system to fulfil the needs of
the new generation of ES. Finally, the new idea of
control kernel, as a basis for essential control design
has been introduced.

The ideas here summarised are the matter of further
research from both the theoretical and practical
viewpoints.

REFERENCES

Albertos, P. and Crespo, (1999). “A. Real-Time

Control of Non-Uniformly Sampled Data
Systems”. Control Engineering Practice.

Albertos, P., Crespo A., Ripoll, I., Vallés M., and
Balbastre P. (2000) “RT control scheduling to
reduce control performance degrading“ IEEE
Conference on Decision and Control 2000..

Albertos, P. and Crespo, A. (2001). "Integrated
Design and Implementation of Digital
Controllers. EUROCAST 2001. Lecture Notes
on Computers Science. pp 385-392 Springer.

Albertos, P. , Vallés, M.,and Valera, A. (2003a)
"Controller Updating under Operational Logic
Changes". European Control Conf. (UK)

Albertos, P. , Vallés, M. and Valera, A. (2003b)
“Controller Transfer Under Sampling Rate
Dynamic Changes” IFAC Workshop on
Modelling and Analysis of Logic Controlled
Dynamic Systems. Irkutsk (Russia).

Albertos, P. and Sala, A. (2004) Multivariable
Control Systems: an engineering approach.
Springer-Verlag.

ARTIST. Advanced Real-Time Systems. Selected
topics in Embedded Systems Design. European
Project IST-2001-34820. Y2 Reports.
(http://www.artist-embedded.org/
Roadmaps/ARTIST_Roadmaps_Y2.pdf)

Balbastre, P., I. Ripoll, A. Crespo. (2000). “Control
task delay reduction under static and dynamic
scheduling policies”. Proc. of the 7th Intern.
Conference on Real-Time Computing Systems
and Applications.

Balbastre P., Ripoll I., Vidal J., Crespo A. (2004). “A
Task Model to Reduce Control Delays”. J. of
Real-Time Systems. Vol. 27, Issue 3, pp. 215-
236.

Cervin, A. Henriksson, D., Lincoln, B., Eker, J. and
Arzen, K-E. (2003) “How Does Control Timing
Affect Performance?” IEEE Control System
Magazine.

Chinook.webpage:
http://www.cs.washington.edu/research/chinook/
links.html

Crespo, A., I. Ripoll, P. Albertos (1999) “Reducing
delays in RT control: The control action
interval”. Proceedings of the 14th IFAC World
Congress, pp. 257-262,

Dreamtech Software Team, (2002). Programming for
Embedded Systems: Cracking the CodeTM. J.
Wiley.

ESR: Embedded Systems Roadmap 2002.
PROGRESS/STW: public version 1.0.
Technology Foundation of the Netherlands
(STW),(http://www.artist-embedded.org/
Intranet/Roadmaps/STWroadmap.pdf).

Hassan H., Simó J., Crespo A. (2002). “Enhancing
the Flexibility and the Quality of Service of
Autonomous Mobile Robotic Applications”.
ECRTS 2002: 213-219

Henzinger, T, Horowitz, B. and Kirsch, C. (2003)
“Embedded Control Systems Development with
Giotto” in Software-Enabled Control:
Information Technology for Dynamical Systems
(T. Samad, G. Balas, eds.), IEEE Press and
Wiley-Interscience, pp. 123-146.

Ledin, J. (2004). Embedded Control Systems in
C/C++. CMP Books.

Marzario L., Lipari G., Balbastre P., Crespo A.
(2004). “IRIS: A New Reclaiming Algorithm for
Server-Based Real-Time Systems.” IEEE Real-
Time and Embedded Technology and
Applications Symposium. pp. 211-218

Masmano M., Ripoll I., Crespo A. (2004). “TLSF: A
New Dynamic Memory Allocator for Real-Time
Systems”. ECRTS 2004. Catania (Italy).

OCERA: Open Components for Real-Time
Embedded Applications . IST 35102 European
Project. European Commission.
(http://www.ocera.org). 2002-05.

Real J., Crespo A. (2004). “Mode Change protocols
for Real-Time Systems: A Survey and a New
Proposal”. Journal of Real-Time Systems. Vol
26, Issue 2, March pp. 161-197

Ripoll, I., Pisa, P., Abeni L., Lanusse A, Saez, S. and
Crespo, A. “RTOS State of the Art Analysis”.
OCERA white paper: www.ocera.org

 Sanchis, R. and P. Albertos (2002). “Recursive
identification under scarce measurements.
Convergence analysis”. Automatica 38, 535–
544.

Sanz, R. and Årzén K-E. (2003).“Trends in Software
and Control”.IEEE Control Systems Magazine
June 2003. pp 12-15

Tiwary, A., Shankar, N., and Rushby, J. (2003).
“Invisible Formal Methods for Embedded
Control Systems”. Proc. of the IEEE. Vol 91.
N.1, pp 29-39.

