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Abstract: The paper investigates uniform asymptotic stability (UAS) for nonlinear time-
varying (NTV) systems from the state-output viewpoint. Uniform Lyapunov stability 
(ULS) of the origin is first guaranteed by employing a new detectability condition and an 
integral inequality relating to output function. In addition to a newly developed criterion 
for attractivity, a novel result for UAS can then be proposed without assuming the ULS 
property in priori. It extends a theorem proposed by Morse to NTV systems. Moreover, 
the observability conditions often assumed in present literature can be relaxed by using   
detectability based on our approaches.             Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The paper investigates uniform asymptotic stability 
(UAS) for nonlinear time-varying (NTV) systems 
from the state-output viewpoint. Uniform Lyapunov 
stability (ULS) as well as uniform attractivity are 
treated simultaneously by employing detectability 
and an integral inequality relating to output function. 
The goal is to extend a theorem of Morse proposed in 
linear time-invariant systems (LTI) to NTV systems.  
 
Morse's theorem is closely related to the following 
Lyapunov matrix equations: 

                             ,0=++ CCPAPA TT                        (1) 
where A  and C are pp × and pq × matrices, 
respectively, and ),( AC  is a detectable pair. It is 
well-known that A is stable if and only if (1) has a 
positive semidefinite solution P (Wonham, 1985). 
Moreover, the solution is unique and can be 
described as .)(

0
dtCeCeP AtTTAt∫

∞=  If we define an 

output map as Cxy = , it can be verified that 

,)(
2

000 dttyPxx T
∫

∞=  ,0
px ℜ∈∀  where 

)()( ⋅=⋅ Cxy and )(⋅x  is a solution of Axx =  with 

.)0( 0xx = Then, the condition that ∞<∫
∞ dtty

2

0
)(  is 

equivalent to the existence of positive semidefinite 
solutions of (1). Particularly, the following result 
first discovered by Morse is readable from the 
observation above (Morse, 1990; Byrnes and Martin, 
1995). For the simplicity, it will be referred as 
Morse's theorem throughout this paper. 

Theorem 1. Let A  and C be pp × and 
pq × matrices, respectively. Then, A is stable if and 

only if ),( AC  is detectable and the following 
inequality holds: 
                        ,)(

0

2
∞<∫

∞ dtty                              (2) 

where )()( ⋅=⋅ Cxy  and )(⋅x  is a solution of Axx = . 
 
Morse's theorem is very useful for those systems 
having an output function given in priori, such as 
dissipative systems. On the extension of Morse's 
theorem to NTV systems, the main problem is how to 
define a suitable detectability condition such that a 
similar result as in Theorem 1 holds. Implicitly, this 
is related to the positive definiteness of Lyapunov 
functions. To see such relation, let P be a solution of 
(1) and PxxV T=  be the associated Lyapunov 
function. If ),( AC  is observable, it is well-known 
that V is  positive definite (Khalil, 1992). By contrast, 
it can only be guaranteed to be positive semidefinite 
under the detectability condition in general. Thus, the 
standard Lyapunov theory cannot be used due to 
lacking the positive definiteness.  
 
In present literature, observability is frequently used 
to replace detectability in order to avoid the difficulty 
described in the above. In (Anderson and Moore, 
1969), a concept of uniform complete observability 
(UCO) was defined. Moreover, they consider the 
following differential matrix equation 
     0)()()()()()()( =+++ tCtCtPtAtAtPtP TT      (3) 



     

and show that under the UCO condition, the origin of 
xtAx )(=  is UAS if and only if (3) has a uniformly 

positive definite and bounded solution P. When the 
output map is defined as xtCy )(= , the latter can be 
described as  
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0
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xtxbdyxa ℜ∈∀≥∀≤≤ ∫
∞ ττ (4) 

for some positive constants a  and b  where 
)()()( ⋅⋅=⋅ xCy  and )(⋅x  is a solution of xtAx )(=  

with .)( 00 xtx =  In LTI systems, it can also be shown 
that (4) is equivalent to (2) under the observability 
condition. Thus, the result proposed in that paper can 
be viewed as a generalization of Morse's theorem to 
linear time-varying systems (LTV). Recently, 
Morse's theorem was further extended to nonlinear 
time-invariant systems (Byrnes and Martin, 1995). 
Under the ULS condition, it was shown that the 
origin of )(xfx =  is UAS when the system is zero-
state observable and (2) holds with the output map 
defined as )(xhy = . While these results both 
generalize Morse's theorem to certain classes of NTV 
systems by using some kind of observability, it still 
has a room to be improved. Particularly, it is 
interesting to ask if it is possible to use detectability 
rather than observability to guarantee the same result 
as in Theorem 1 for general NTV systems? As it was 
explained before, it is related to the use of positive 
semidefinite Lyapunov functions in guaranteeing 
ULS and UAS. 
 
On this direction, several interesting results have 
been proposed (Bulgakov and  Kalitine , 1978; 
Aeyels and Sepulchre, 1992; Iggidr and  Sallet, 
2003). Loosely speaking, they showed that the origin 
is ULS when there is a positive semidefinite 
Lyapunov function V, that is nonincreasing along 
with all trajectories of the system and such that, the 
UAS property holds for those trajectories constrained 
in the zero locus of V. In addition that 0≤V  and the 
origin is UAS restricted in the zero locus of V , UAS 
of the origin can be guaranteed. Let us briefly 
connect such criteria to Morse's theorem. In fact, by 
defining a virtual output map as ( , )y V t x= − ,  it can 
be seen that a similar inequality like (2) holds and the 
UAS property constrained in the zero locus of V  
just  describes a detectability condition. This way, 
these results can be viewed as a vision of Morse's 
theorem  in terms of Lyapunov functions.  
 
In contrast to the approach of Lyapunov functions, 
the paper will study the ULS property of the origin 
by employing output functions. A new detectability 
condition that is necessary for UAS will be 
introduced. Then, we show that the origin is ULS 
provided that the system is detectable and satisfies an 
integral inequality related to the output function. In 
addition to a newly developed criterion given in (Lee 
and Chen, 2002), it will be shown that the origin is 
UAS when the system satisfies an integral inequality 
like (2). When reduce to continuous periodic systems, 
the proposed detectability condition is equivalent to 
the zero-state detectability condition plus a 

Lyapunov stable condition constrained in the zero 
locus of the output function. Particularly, the result 
given in (Byrnes and Martin, 1995) can be deduced 
from the proposed criterion without assuming 
Lyapuov stability in priori. For LTV systems, the 
proposed result also improves the theorem given in 
(Anderson and Moore, 1969) by relaxing certain 
conditions. Particularly, the uniformly positive 
definite property (the first inequality in (4)) of 
solutions of (3) is not necessary based on our 
approaches. In LTI systems, it will be further shown 
that the proposed detectability condition is equivalent 
to the classic one. Then, our main result is reduced to 
Theorem 1. This indicates that the proposed criterion 
extends Morse's theorem to NTV systems without 
using extra conditions. Due to a limited space, some 
results are only stated without proofs. Readers can 
contact the author for the detailed proofs.  
 
 

2. PRELIMINARIES 
 
2.1 A basic assumption and criterion 
 
In this subsection, a basic assumption will be made. A 
related result that guarantees the basic assumption will 
be proposed. In this paper, we study a nonlinear time-
varying system described as 

),( xtfx =                                            (5) 
),( xthy =                                            (6) 

where x is contained in an open and connected subset 
(i.e., a domain) X of pℜ  with X∈0 , qy ℜ∈ , and  
f and h are all measurable functions defined on 

X×∞),0[ , such that f(t,0)=h(t,0)=0 for all 0≥t . 
Assume that f  satisfies the Caratheodory condition 
so that the existence theorem and extension theorem 
of solutions of (5) are satisfied (Hale, 1980). 
Throughout this paper, we denote ),,( 00 xttφ  as a 
trajectory of (5) starting from 0x  at time 0tt = ,   

22
2

2
1 pvvvv +++= , p

pvvvv ℜ∈=∀ ),,,( 21 ,  

and the Lebesgue meaure of a set pS ℜ⊆  as S . 
Let I be any interval. It is said that a statement )(tP  

holds for almost all t in I if { } 0)( =∈ falseistPIt  
(Lang, 1983).  
 
A basic assumption that will be used throughout this 
paper is given as follows.  

(A1) For any compact XK ⊂ , there exists a 
nondecreasing function ),0[),0[: ∞→∞Kµ , 
continuous at 0 , with 0)0( =Kµ  and such that , 
whenever Kbau →],[:  is continuous, the integral 

τττ dufb

a∫ ))(,( is well defined, and ),( ⋅⋅f satisfies the 

inequality 

).())(,( abduf K
b

a
−≤∫ µτττ                            (7) 

Recall that a function g  is uniformly bounded if 
for any compact XK ⊂ , there exists a positive 



     

constant )(0 Kk  which dominates g  over K×∞),0[ . 
The following lemma shows that (A1) is implied by 
the uniformly bounded property of  f. 

Lemma 1.  Consider (5) with f being uniformly 
bounded. Then, (A1) holds. 
Proof. For any compact XK ⊂ , let )(0 Kk  be a 
positive constant which dominates f over K×∞),0[ . 
Define 0,)( 0 ≥∀= ssksKµ . Then, it can be directly 
checked that (7) holds and hence (A1) is true. This 
completes the proof of this lemma.                             ■ 
 
 
2.2 Asymptotic detectability: basic definitions and 

relations  
 
Let us recall the weak zero-state detectability from 
(Lee and Chen, 2002) and define a stronger 
detectability condition as follows. The latter will be 
used to guarantee the ULS and UAS properties. 

Definition 1. System (5)-(6) is weakly zero-state 
detectable (WZSD) if, for any unbounded sequence 
{ nt } in ),0[ ∞  and any sequence )},,({ nnn xttφ  of 
solutions of (5) which, lies within a compact subset K 
of X and satisfy the following equation 

..,0)),,(,(lim eaxttttth nnnnnn
=++

∞→
φ ,                  (8) 

there is a subsequence }{ mn of }{n  and a time 
sequence }{ ms  with mm ns ≤≤0  such that 

0),,(lim =+
∞→ mmmm nnnmnm

xttsφ .                       (9) 

It is said to be locally weakly zero-state detectable if 
WZSD holds on some open neighborhood of the 
origin. 

Definition 2. System (5)-(6) is asymptotically 
detectable (AD) if, the following conditions hold. 
(a) For any 0>ε  and any 0>s , there exists a 

0)( >εδ  such that if δ<nx ,, ℵ∈∀n  and the 
following equation 

0)),,(,(lim =++
∞→ nnnnnn

xttttth φ                          (10) 

holds for almost all ],0[ st ∈ , we have  
εφ <+

∞→
),,(inflim nnnnn

xtts                               (11) 

where { nt } is any unbounded sequence in ),0[ ∞  and 
)},,({ nnn xttφ  is any sequence of solutions of (5) such 

that Kxttt nnnn ∈+ ),,(φ ,0,, stn ≤≤∀ℵ∈∀  for some 
compact subset K of X . 
(b) If )},,({ nnn xttφ  satisfies the following equation 

0)),,(,(lim =++
∞→ nnnnnn

xttttth φ                      (12) 

for almost all t in ),0[ ∞ , there is a subsequence 
}{ mn of }{n  and a time sequence }{ ms  with 

mm ns ≤≤0  such that 
0),,(lim =+

∞→ mmmm nnnmnm
xttsφ                         (13) 

where { nt } is any unbounded sequence in ),0[ ∞ and 
)},,({ nnn xttφ  is any sequence of solutions of (5) such 

that Kxttt nnnn ∈+ ),,(φ ,0,, ntn ≤≤∀ℵ∈∀  for some 
compact subset K of X. 

It is said to be locally asymptotically detectable if AD 
holds on some open neighborhood of the origin. 
 
From the definitions, it can be seen that AD is a 
stronger condition than WZSD. More interestingly, 
the following result shows that WZSD also implies 
AD under certain standard stability conditions.  

Lemma 2. Consider a system of the form (5)–(6). 
Suppose the origin is uniformly Lyapunov stable. 
Then, the system is locally asymptotically detectable 
if and only if it is locally weakly zero-state detectable. 
In addition that pX ℜ=  and solutions are globally 
bounded, the system is asymptotically detectable if 
and only if it is weakly zero-state detectable. 
Proof. Without loss of generality, it is sufficient to 
prove the “if” part. By the ULS property, for any 

0>ε  there exists a constant 0)( >εδ  such that, for 
any sequence )},,({ nnn xttφ  of solutions of (5) with 

,, ℵ∈∀< nxn δ  the inequality 

2/),,( εφ <+ nnnn xtts holds for all 0>s  and all 
.ℵ∈n  This results in 

.0,2/),,(inflim >∀<≤+
∞→

sxtts nnnnn
εεφ  Thus, 

condition (a) in Definition 2 holds. Now suppose that 
the systems is locally weak zero-state detectable. Then, 
there is an open set U  containing the origin such that 
WZSD holds on U. Since the origin is uniformly 
Lyapunov stable, there is also an open subset U~  of U 
containing the origin such that, every solution 

),,( 00 xttφ of (5) with Ux ~
0 ∈  lies within a compact 

subset of U. Thus, (b) also holds on U~  in view of the 
WZSD condition. Thus, local weak zero-state 
detectability implies local asymptotic detectability 
under the uniformly Lyapunov stable condition. In 
addition that pX ℜ=  and solutions are globally 
bounded, all solutions having the initial conditions 
contained in a compact set of pℜ  must be contained 
in another compact set of pℜ . In this case, it is easy 
to see that (b) in Definition 2 is equivalent to the 
WZSD condition. This completes the proof of the 
lemma.                                                                         ■ 
 
In (Lee and Chen, 2002), it was shown that WZSD is 
a necessary condition of UAS. In view of Lemma 2, it 
can be deduced that AD is also a necessary condition 
of UAS. Particularly, the following result is readable 
from Lemma 2 and the result given in that paper. 

Lemma 3. Consider a system of the form (5)–(6). 
Then, the system is locally asymptotically detectable 
if the origin is uniformly asymptotically stable. In 
addition that pX ℜ= , the systems is asymptotically 
detectable if the origin is uniformly globally 
asymptotically stable (UGAS).  
 
 
2.3 Specification to continuous periodic systems 
 
In this subsection, the AD condition will be further 
characterized by the zero-state detectability condition 
and a Lyapunov stable condition constrained in the 
zero-locus of the output function for continuous 



     

periodic systems. First, let us extend the definition of 
zero-state detectability as follows (Byrnes and Martin, 
1995).  

Definition 3. System (5)-(6) is zero-state detectable 
(ZSD) if for any solution ),,( 00 xttφ of (5) satisfying 

,,0)),,(,( 000 ttxttth ≥∀=φ  we have 
.0),,(lim 00 =

∞→
xtt

t
φ  

 
In addition that the following condition holds: 

(C1) for any 0>ε , there exists a 0)( >εδ  such that 
for any 0>s  and any solution ),,( 00 xttφ of (5) 
satisfying δ<0x  and 

,,0)),,(,( 0000 stttxttth +≤≤∀=φ  we have 
εφ <+ ),,( 000 xtst ,  

it is called as strongly zero-state detectable (SZSD).  
 
It is said to be locally (strongly) zero-state detectable 
if (SZSD) ZSD holds for all 0x contained in some open 
neighborhood of the origin. 
 
Now, the following proposition can be proposed. Its 
proof is omitted due to a limited space 

Proposition 1. Consider a system of the form (5)-(6) 
where f and h are both continuous periodic functions 
with the same period. Then, local asymptotic 
detectability is equivalent to local strong zero-state 
detectability. In addition that pX ℜ=  and solutions 
are globally bounded, the system is asymptotically 
detectable if and only if it is strongly zero-state 
detectable.                                                                   ■ 
     
In LTI systems, it is straightforward to see that the 
usual detectability is equivalent to SZSD. Moreover, it 
can be directly checked that SZSD (AD) and local 
SZSD (AD) are the same in this case. Thus, the AD 
condition is equivalent to the classic detectability 
condition. Particularly, the following result is readable 
from Proposition 1. 

Corollary 1. Consider a system of the form (5)-(6) 
where Axf = and Cxh =  for some matrices A and C. 
Then, it is AD if and only if (C, A) is detectable.       ■ 
 
 

3. MAIN RESULTS 
 
3.1 A new stability criterion for ULS 
 
In this subsection, we study the ULS property with the 
help of output functions. First, let us consider the 
following technique assumption. Recall that a subset S 
of X is called as an invariant set if every solution 

),,( 00 xttφ  of (5) starting from Sx ∈0  cannot leave S 
(Khalil,1992). 

(A2) }0{=S  is an invariant set. 
Remark 1. It is easy to see that (A2) holds when either 
the origin is ULS or the uniqueness theorem of 
solutions holds.                                                            ■ 
 
Under (A2), the following technique lemma can be 
proposed. Its proof is omitted here. 

Lemma 4. Consider a system of the form (5)-(6). 
Suppose (A1)-(A2) hold. Let 0>ε  be any constant, 
{ nt } be an unbounded sequence in ),0[ ∞  and 
{ }),,( nnn xttφ  be any sequence of solutions of (5) 
satisfying 0lim =

∞→ nn
x . Suppose there exists a 

sequence { }ns  such that 0≥≥ nn ts  and 
εφ =),,( nnnn xts , ℵ∈∀n . Then, .lim ∞=

∞→ nn
s  

 
To state the main result in this subsection, we need the 
following hypothesis. It plays a central role in 
guaranteeing the ULS property of the origin. 

(H1) For any 0>ε  and any compact K X⊂ , there 
exists a 0),( >Kεδ  such that for any 0ˆ 0 ≥≥≥ tss  
and any solution ),,( 00 xttφ of (5) having δ<0x  and 
contained in K on the interval ]ˆ,[ 0 st , the following 
inequality holds: 

       ).1ˆ()),,(,(
2ˆ

00 +−≤∫ ssdxths

s
εττφτ                (14) 

 
Now, the following result can be proposed. 

Theorem 2. Consider a system of the form (5)-(6) that 
satisfies (A1)-(A2). Suppose the system is locally 
asymptotically detectable and (H1) hold. Then, the 
origin is uniformly Lyapunov stable.                      
Proof. The theorem will be proven by contradiction. 
Suppose the origin is not uniformly Lyapunov stable. 
Then, there exists a 00 >ε  such that for each ℵ∈n , 

there exist a solution )ˆ,ˆ,(ˆ
nnn xttφ of (5) and a nn ts ˆˆ ≥  

satisfying nxn /1ˆ <  and 0)ˆ,ˆ,ˆ(ˆ εφ ≥nnnn xts . In the 

following, we would like to find a contradiction.  
 
Since the system is locally asymptotically detectable, 
there is a positive constant 00ˆ εε <  such that AD holds 

on { }0ε̂<ℜ∈ xx p . Then, there exist two positive 

constants 2/ˆ01 εε <  and 1T  only depending on 

0ε̂ such that, for any 00 ≥t  and 10 ε<x  every 
solution ),,( 00 xttφ satisfies 

,,2/ˆ),,( 100000 Ttttxtt +≤≤∀< εφ  by using (A1). In 
view of (a) in the definition of AD, there is also a 

110 εδ <<  such that the conclusion of (a) is true for 

1εε = . Let 2/1δδ =  and 0N be a large integer with 

δ≤0/1 N .  Since 2/ˆ)ˆ,ˆ,ˆ(ˆ
00 εεφ >≥nnnn xts  and 

0,/1ˆ Nnnxn ≥∀≤< δ , there exists two sequences 

{ }ns  and { }nt , with nnnn sstt ˆˆ <<<  and such that, 

δφ =)ˆ,ˆ,(ˆ
nnnn xtt , 2/ˆ)ˆ,ˆ,(ˆ

0εφ =nnnn xts , 

,ˆ,2/ˆ)ˆ,ˆ,(ˆ
0 nnnnn sttxtt <≤∀< εφ and

.,)ˆ,ˆ,(ˆ
nnnnn stxt ≤<∀> τδτφ   Since 

2/ˆ)ˆ,ˆ,(ˆ
0εφ =nnnn xts  and 1)ˆ,ˆ,(ˆ εδφ <=nnnn xtt , we 

have 1Tts nn +≥  for all ,0Nn ≥ by the choices of 1ε  



     

and 1T .  Using the fact that 0/1limˆlim =≤
∞→∞→

nx
nnn

 and 

Lemma 4, it can be seen that ∞→nt . Let  

)ˆ,ˆ,(ˆ
nnnnn xttx φ=  and 

)ˆ,ˆ,(ˆ),,( nnnnnn xttxtt φφ = , nttNn ≥∀≥∀ ,0 . Then, 
),,( nnn xttφ  is also a solution of (5) starting from nx  

at time ntt =  for each .0Nn ≥  Moreover, we 
have δφ == nnnnn xxtt ),,( , 2/ˆ),,( 0εφ =nnnn xts  

and .,,2/ˆ)~,,( 00 Nnsttxtt nnnnn ≥∀<<∀<< εφδ  
Replacing the sequence }{n by a suitable subsequence, 
we can assume that the limit 1)(lim TtsT nnn

≥−=
∞→

 

exists. In the following, let us divide the proof into 
two parts according to the value of T .  
(a) The case of .∞<T  Let 

02/2/ˆ
11 >≥−= TTTT . We first claim that 

1),,ˆ( εφ ≥+ nnnn xttT  for large enough n. Since 

Tts nnn
=−

∞→
)(lim and 1

ˆˆ TTTT +<< , the inequality 

1
ˆˆ TtTstT nnn ++<<+  holds, for large enough n. If 

1),,ˆ( εφ <+ nnnn xttT , we have 2/ˆ),,( 0εφ <nnnn xts  

for large enough n, by the choices of 1ε  and 1T . This 
contradicts the fact that 2/ˆ),,( 0εφ =nnnn xts . Thus, 
the claim is true.  
 

Moreover, the fact nn stT <+ˆ  implies that for large 

enough n, )ˆ,ˆ,(ˆ
nnn xttφ is contained in the compact 

subset { }2/ˆ00 ε≤ℜ∈= xxK p  of  X  for all t in 

]ˆ,ˆ[ Ttt nn +  by the choice of ns . Let ε  be any positive 

constant. In view of (H1), there exists a 0),(~
0 >Kεδ  

such that (14) holds for all 0ˆ 0 ≥≥≥ tss  and all 

solutions ),,( 00 xttφ of (7) having δ~0 <x  and 
contained in 0K  on the interval ]ˆ,[ 0 st . Since 

0ˆlim =
∞→ nn

x , (14) can be applied to the solution 

)ˆ,ˆ,(ˆ
nnn xttφ  on the interval ]ˆ,ˆ[ Ttt nn +  for large 

enough n. Thus, the following inequality holds (with 

nts =  and Tts n
ˆˆ += ): 

),1ˆ())ˆ,ˆ,(ˆ,(
2ˆ

0
+≤++∫ TdxttthT

nnnnn εττφτ           

for large enough n. Since ε  is arbitrary given, this 
results in 

    0)),,(,(lim
2ˆ

0
=++∫∞→

ττφτ dxttthT
nnnnnn

. 

From the theory of real analysis (Lang, 1983), we can 
replace the sequence }{n by a suitable subsequence 
and assume that 0)),,(,(lim =++

∞→ nnnnnn
xttttth φ  for 

almost all t in ]ˆ,0[ T . By the choice of 1δ  and 

1δδ <=nx , we can concluded that  

1),,ˆ(inflim εφ <+
∞→ nnnnn

xttT , 

by virtue of (a) in Definition 2. This violates the claim 
that 1),,ˆ( εφ ≥+ nnnn xttT  for large enough n. Thus, we 

reach a contradiction. The proof of this part is 
completed.  
(b) The case of .∞=T  It can be proven along with a 
similar line by employing (b) in Definition 2, and the 
fact that .,)ˆ,ˆ,(ˆ

nnnnn stxt ≤<∀> τδτφ  This completes 

the proof of the theorem.                                             ■ 
 
 
3.2 A generalized Morse's theorem 
  
In this subsection, a generalized Morse's theorem will 
be proposed by combining Theorem 2 with a newly 
developed criterion given in (Lee and Chen, 2002). 
First, let us state a condition as follows. 

(C2) For each compact XK ⊂ , there exists 
0)( >KM such that, for all solutions ),,( 00 xttφ  of (5) 

lying within K,  
,)),,(,(

0

2
00 Mdxtht

t
≤∫ ττφτ .0tt ≥∀            (15) 

 
The following result comes from (Lee and Chen, 2002) 
by employing Theorem 1 and Proposition 3 in that 
paper. 

Proposition 2. Consider a system of the form (5)-(6). 
Suppose the origin is uniformly Lyapunov stable and 
(C2) holds. Then, the origin is uniformly 
asymptotically stable when the system is locally 
WZSD. In addition, if pX ℜ= and the solutions are 
globally uniformly bounded, then the origin becomes 
uniformly globally asymptotically stable under the 
WZSD condition.                                                        ■ 
 

Consider the following hypothesis like (2).   

(H2) There exists a function ),0[: ∞→Xβ , with 
0)0( =β  and continuous at the origin such that, for 

all 00 ≥≥ ts  and all solutions ),,( 00 xttφ  of (5) that 
can be defined on the interval ],[ 0 st ,   

).()),,(,( 0
2

00
0

xdxths

t
βττφτ ≤∫                     (16) 

 
Now, the following result that generalizes Morse's 
theorem can be proposed based on Theorem 2 and 
Proposition 2. 

Theorem 3. Consider a system of the form (5)-(6) 
where (A1)-(A2) holds. Suppose the system is locally 
asymptotically detectable and (H2) holds on some 
open neighborhood of the origin. Then, the origin is 
uniformly asymptotically stable. In addition that 

pX ℜ=  and solutions are uniformly bounded, the 
origin is uniformly globally asymptotically stable 
provided that the system is asymptotically detectable 
and (H2) hold with β  being locally bounded.                     
Proof. Notice that AD implies WZSD. Thus, it is 
sufficient to show that (H2) implies (C2) and (H1) in 
view of Theorem 2 and Proposition 2. Since β  is 
continuous at the origin and (H2) holds on some open 
neighborhood of the origin, we can replace X  by a 
smaller open and connected neighborhood of the 



     

origin such that β  is also locally bounded and (H2) 
holds on X  in the local case. By the local 
boundedness of β , ∞<= ∈ )(sup xM Kx β  for each 
compact XK ⊂  (Lang, 1983). Then, it is 
straightforward to see that (16) implies (15). Thus, 
(C2) can be derived from (H2) when we replace X  
by a suitable open neighborhood of the origin. In the 
following, let us show that (H1) can also be deduced 
from (H2). Let 0>ε  be any constant and XK ⊂  be 
any compact set. Since β  is continuous at the origin, 
with 0)0( =β , there exists a 0)( >εδ  such that 

εβ <)(x  for all .δ<x  Let 0ˆ 0 ≥≥≥ tss , δ<0x  
and ),,( 00 xttφ  be any solution of (5) contained in K 
on the interval ]ˆ,[ 0 st . According to (H2), the 
following inequality holds: 
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Thus, (14) holds. The theorem follows from Theorem 
2 and Proposition 2.                                                    ■ 
Remark 2. In continuous periodic systems, AD is 
equivalent to SZSD by Proposition 1. Thus, the result 
proposed in (Byrnes and Martin, 1995) can be derived 
by Theorem 3 where observability can be relaxed by 
detectability, and ULS of the origin can be replaced 
by a reduced condition-(C1).                                     ■ 
 

In the remainder of this subsection, we assume that 
pX ℜ= , xtAf )(=  and xtCh )(= . If A  is bounded, 

(A1) holds by Lemma 1. Moreover, the theorem of the 
uniqueness of solutions is true in this case (Hale, 
1980). Then, (A2) also holds. To verify (H2), let us 
make the following condition. 

(C3) For each px ℜ∈0 ,  the following inequality 
holds: 
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for any solution ),,( 00 xttφ  of (5). 
 
Under (C3), let us check (H2). Let { }peee ,,, 21  be 

an orthonormal basis of pℜ . Then, every vector 
px ℜ∈  can be described as ii

p
i evx ∑ == 1 . If the 

system is a LTV system, every solution ),,( 00 xttφ  

can be written as ),,(),,( 0100 ii
p
i ettvxtt φφ ∑ ==  with 

ii
p
i evx ∑ == 10 . By employing Cauchy inequality, it 

can be shown that the following inequality holds: 
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for all 00 ≥t  and all solutions ),,( 00 xttφ of (5). This 
implies (H2). Since UAS implies exponential stability 
in LTV systems (Khalil, 1992), the following result is 
readable from Theorem 3.  

Proposition 3. Consider a linear time-varying system 
of the form (5)-(6) where xtAf )(=  and xtCh )(= . 
Suppose A  is bounded, the system is asymptotically 
detectable and (C3) holds. Then, the origin is 
exponentially stable.                                                    ■ 
Remark 3. Notice that, (C3) can also be checked by 
employing differential matrix equation (3) given in 
section 1 where we only need the uniform bounded 
property (the second inequality of (4)) of the solution 
P, and the uniformly positive definite condition (the 
first inequality of (4)) is unnecessary. Moreover, by 
Corollary 1, the asymptotic detectability condition is 
equivalent to the usual one and (17) is equal to (2) in 
LTI systems. Thus, Proposition 3 is reduced to 
Theorem 1. Particularly, Theorem 3 generalizes 
Morse's theorem without using extra conditions.        ■  
 
 

4. CONCLUSIONS 
 
A generalization of the celebrated Morse theorem has 
been obtained by employing a detectability condition. 
Future work may consider its new applications in 
NTV systems.  
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