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1. INTRODUCTION

One of the first systematic pole-placement design was
discussed in (Åström and Wittenmark (1984)). The
described method is quite general, includes both stable
and unstable, inverse stable (IS) and inverse unstable
(IU) processes. These approaches are based on a
Diophantine-equation (DE) technique for finding the
numerator and denominator of the pole-placement
regulator using an almost standard scheme given in
Fig. 1, where y u yr , ,  are the reference, process
input, output signals respectively. The polynomial
triple   R S, ,T  mean a two-degree of freedom
(TDOF) regulator connected to the plant S .
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Figure 1. Standard scheme for pole-placement design

Another approach the Model Predictive Control
(MPC) subject area (Clarke and Gawthrop (1975,
1979) became a success story (Soeterboek, 1992;
Camacho and Bordons (1999); Maciejowski, 2002)
for control theory and application in the past decades,

where the algorithms are relatively simple and robust
for even industrial applications.

2. SHORT SUMMARY OF PREDICTOR BASED
CONTROLLERS

The derivation of the classical minimum variance
(MV) regulator is based on the d-step ahead prediction
of the output in case of an additive colored output
noise. If the process model is IS
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where A B C D, , ,  are the polynomials of the process
and noise model and e k( )  is the so-called independent

white source noise.  C  and  D  must be stable to have
a unique spectral factorization. Introducing the DE

 C D F G= + −z d (2)

the MV predictor (nonlinear in the parameters and
separates the past and future) of the process output is
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providing an independent additive prediction error

y k d y k d k k d+( ) = +( ) + +( ) =ˆ | ε



  = +( ) + +( )ˆ |y k d k e k dF (4)

The well-known M V  regulator minimizing

E y k y k( ) − ( ){ }r  can be obtained by equating the MV

prediction to the desired reference signal

y k d y k d kr +( ) = +( )ˆ | (5)

Simple calculation gives that the obtained regulator
triple (Predictive Control=PC) in this case is

    R B D F=     ;        S A G=     ;        T = A C (6)

providing a characteristic equation (CE)  C = 0 and
regulator

R = =S
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The obtained regulator is a pole/zero cancellation
regulator, therefore it is applicable for stable, IS
processes only. If the tracking task is to follow the
output of a reference model Pr  and not a signal then

′ +( ) = +( ) = +( )y k d P y k d y k d kr r r ˆ | (8)

formally means the change of   T  to  ′ =T Pr T .
Several simpler forms of (1) can also be found in the
classical references for the special cases of D A=
and/or C =1. It is interesting to observe that the
noise free d-step ahead prediction of y

  ˆ |y k d k u k y k+( ) = ( ) + ( )B F G (9)

is based on the special DE

  1 = + −A F Gz d (10)

which is an MV  predictor for the case C =1 and

  D A= , when the additive "equation error" is
independent. The DE (10) corresponds to a special
reparametrization of an IS process
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The first "tuning" applications of the predictor based
regulators started by the observation that the closed-
loop transfer characteristics under the MV regulator
condition (8)
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is "quasi-linear" in the parameters of the polynomials

    R S T F, , ˜, . (Here F F= +1 ˜  is used.) So it is
relatively easy to construct an identification
algorithm to estimate these polynomials, which are
practically the same as the regulator polynomials.
Observe that the coefficients of the "quasi-linear"
form are redundant in the real process parameters. The
predictor form (12) has 4n+d-2 parameters, which is
considerably more than the number of process
parameters: 2n. (Here n is the order of   A  and   D  for

the sake of simplicity.) This large number is not
surprising, because the predictor requires to estimate
(indirectly) the noise model, too.

Since the applicability of the MV regulator is limited
for IS processes only, the applied original M V
criterion was generalized to include weighting filters
in the form of filtering the output and also penalizing
the variance of the regulator output as
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The main influence of this change was that the CE of

the closed-loop also changed to Qy uB Q A C+[ ] = 0.

It is easy to see that selecting relatively "large"   Qu

comparing to Qy  the unstable zeros of B  move

closer to the stable  A . The obtained Generalized
PC=GPC only slightly differs from the PC form.
Instead of the original output y  the filtered output

y Q y yF
y y1 y2= =( )Q Q  should be used and the

regulator polynomial   R  is changed to
′ = ′ +[R BDF . Q AC Qu y2] . The influence of the

generalized criterion sometimes was called "de-
tuning". Although the effect of Qu  on the closed-

loop system is clear it is hard to choose Qu  and Qy

such that the system behaves as desired. One way of
the optimal selection could be the combination of
simulation with the well-known and often used trial-
and-error method.

3. SHORT SUMMARY OF GTDOF
CONTROLLER SCHEME

A generic two-degree of freedom (GTDOF) scheme
was introduced in (Keviczky, 1995) for open-loop
stable processes. This framework and topology is
based on the Youla-parametrization (Maciejowski,
1989) providing all realizable stabilizing regulators
(ARS) for open-loop stable plants and also capable to
handle the plant time-delay.
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Figure 2. The generic TDOF  (GTDOF) control
system

A GTDOF control system is shown in Fig. 2, where
w  is the output disturbance signal. The optimal ARS
regulator of the GTDOF scheme can be given by an
explicit form
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where

Q Q P K P G So w w w w w= = = +
−1 (15)



is the associated optimal Y-parameter furthermore

Q P K P G Sr r r r r= = +
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−1(16)

assuming that the process is factorable as
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where S+ means the inverse stable (IS) and S−  the

inverse unstable (IU) factors, respectively. z d−

corresponds to the discrete time-delay, where d  is the
integer multiple of the sampling time. (In a practical
case the factor S−  can incorporate the underdamped
zeros and neglected poles providing realizability, too).
It is interesting to see how the transfer characteristics
of the closed-loop looks like:

y P K S y P K S w= + −( ) =r r r w w1

= + −( ) = +−
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where y t  is the tracking (servo) and yd  is the
regulating (or disturbance rejection) independent
behaviors of the closed-loop response, respectively.

So the delay z d−  and S−  can not be eliminated,

consequently the ideal Pr  and Pw design goals are

biased by the G Sr − and G Sw − . Here Pr  and Pw are
assumed stable and usually strictly proper transfer
functions, that are capable to place desired poles in
the tracking and the regulatory transfer functions,
furthermore they are usually referred as reference
signal and output disturbance predictors. They can
even be called as reference models, so reasonably
Pr ω =( ) =0 1 and Pw ω =( ) =0 1 are selected. The

unity gain of Pw ensures integral action in the
regulator, which is maintained if the applied
opt imiza t ion  provides  the  cons t ra in t
G Sw − =( ) =ω 0 1. It is easy to check that the ARS

optimal GTDOF regulator in (13) gives the M V
regulator if the reference model   Pw = G C  is selected

and   S+
− =1 A B  is used.

An interesting result was found in (Keviczky and
Bányász (1999)) that the optimization of the GTDOF
scheme can be performed in H2 and H∞ norm spaces

by the proper selection of the serial Gr  and Gw

embedded filters attenuating the influence of the
invariant process factor S− . Using H2 norm a D E
should be solved to optimize only these filters and
not the whole regulator itself. If the optimality
requires a H∞ norm, then the Nevanlinna-Pick (NP)
approximation is applied. The order of the DE (and
the NP  approximation) for this task is usually
considerably lower than in case of the original
formulation (Åström and Wittenmark (1984)).

It is important to note that the general pole-
placement using the DE technique mentioned in the
Introduction gives an explicit algebraic solution for
stable processes. This solution corresponds to the
regulator (14) obtained in the GTDOF scheme.

4. COMPARISON OF MPC AND GTDOF
CONTROLLERS

Let us find the G P C  form of the optimal A R S
regulator in the G T D O F  scheme. After some
straightforward block manipulations the GTDOF
control system can be transformed to a much simpler
form shown in Fig. 3.
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Figure 3. Simplified form of the GTDOF control
system

Introduce the following notations
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Here we assume that  S− = B-  (it contains only the

invariant unstable zeros) and in this case Gr  and Gw

have only denominators. The equivalent form
comparable to Fig. 1 can be seen in Fig. 4 and it is
assumed that the same optimality criterion is used to
determine Gr  and Gw , therefore they are equal.

The one-to-one comparison gives the following
results

      
R A B= GBB BB+ w w w -−( )−z d ;       S B= wAA  ;       T B= wAA (20)
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Figure 4. Equivalent form of the GTDOF control
system corresponding to the  R S T, ,  pole-
placement and GPC

One of the advantages of the previous analysis is that
it makes possible to calculate the necessary orders of
the unknown GPC  regulator polynomials to be
estimated. It is also easy to observe the high
redundancy in these parameters and the relatively high
percentage of those parameters which are apriori
known from our design goals (bold letters are used to
indicate the unknown parameters). It is also clear that
the linearity in the parameters is lost if only the
unknown parameters are to be estimated. On the other
hand it is also clear that the unknown 2n parameters
are the process parameters   AA BB BB, + -,  and  GGw.



(However,   GGw depends on the selected optimality

criterion and   BB-.)

The controller in Fig 3 can be slightly redrawn into
the form given in Fig. 5. This form is special
because the controller is splited into two parts. The
first part depends only on the design parameters and
the invariant factors with their optimal attenuation
while the second only on the model of the plant.
(Please note that this scheme is for interpretation and
not for implementation, because 1 S  is usually not
realizable.)
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Figure 5. Special form of the GTDOF controller

The generally applied   R S T, ,  forms in the M P C
algorithms, are easy to be used for parameter
estimation and direct formulation of self-tuning
regulators. However, the above analysis showed that
the pole-placement MPC and GTDOF controllers are
very redundant in the unknown parameters. The
polynomials strongly depend on the design and
optimization parameters. If we want to take this
internal structure into consideration the "quasi-
linearity" is lost and a difficult nonlinear parameter
estimation task remains, because the really unknown
parameters are the process parameters AA BB BB, + -,  only.
Therefore new possibilities are investigated to help
the direct identification of the plant under the
constraint of a special pole-placement controller in
the framework of the GTDOF scheme.

5. REFORMULATION OF THE MPC TO
IDENTIFY

THE PROCESS MODEL ONLY

Be M  the model of the process. Assume that the
discrete-time model is factorizable as the true process
in (17)

M M M M M z zd d= = =+ − + −
− −m m

ˆ

ˆ
B

A
(21)

where M +  means the inverse stable (IS), M− the

inverse unstable (IU) factors, respectively. z d−  and

z d− m  correspond to discrete time delays, which are
the integer multiple of the sampling time, usually

z zd d− −= m  is assumed. (To get a unique factorization
it is reasonable to ensure that S−  and M− are monic,

i.e., S M− −( ) = ( ) =1 1 1, having unity gain.) It is

important that the inverse of the term z d−  is not
realizable, because it would mean an ideal predictor

z d . These assumptions mean that M M z d
− −

−= m  is
the uncancelable invariant factor for any design
procedure.

Consider the model based controller equation of the
GTDOF scheme shown in Fig. 3
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which can be rearranged according to (12) as
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Having formulated a completely model-based parallel
closed-loop the controller equation is
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where û  and ˆ ˆy M u=  are the regulator and closed-
loop output, respectively, in the parallel loop. The
equivalent form of (23) is now

M P G M z u P G y P G yd
+ −

−−( ) = −1 w w r r r w wˆ ˆ (25)

Forming the difference of (23) and (25)
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can be obtained after some not very sophisticated
manipulations, where ∆ˆ ˆu u u= − , ∆ˆ ˆy y y= − = ε. It
is interesting to note that Fw  depends on the

regulatory, û  and ŷ  depend on the tracking properties
of the design requirements. It is easy to check that
(26) is "quasi-linear" in the parameters
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Here we used the auxiliary signal

û P K y P G S y= = +
−

r r r r r r
1 (29)

This analysis can be interpreted as a direct
reformulation of the classical adaptive M P C
providing minimal number of parameters to be
estimated to a GTDOF control design problem.

The scheme of GTDOF  control system in Fig. 2
suggests a special way for combined ID and control.
Observe that it is possible to use û k( )  as an input

signal and y k( )  as output signal generated by the

apriori part of the controller in a closed-loop to the
identification procedure.
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Figure 6. Special scheme formulating combined ID
and control strategy

Besides the above two: ˆ ,u ∆εF[ ]  and ˆ ,u y[ ]  signal

pairs it is possible to find further pairs: u y,[ ] , ˆ ,u x[ ]
or ˆ ,u e[ ] , which can also be used for closed-loop

identification of the model M  (see Fig. 6).

6. CLOSED-LOOP ID ERROR COMPARISONS

Introduce the additive

∆ = −S M   ;  ∆+ + += −S M   ;  ∆− − −= −S M (30)

and relative model errors
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In the sequel it is shown how the modeling errors of
different ID methods depend on the relative model
error l.

Open-loop ID
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r

= − ′ = ′ ≈→ ′=y Mu M u S y
u y

l l
l 0;

(32)

where ′u  used in open-loop is assumed equal to yr .

Parallel-in-loop ID
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where the ID is performed in the closed-loop between
u  and y . It is interesting to note that in this case u
depends also on the output noise w , which makes
the input correlated (caused by the so-called
"circulating noise"), therefore special further
conditions are to be fulfilled.

ID based on KB parametrization

There is a natural possibility to perform ID avoiding
the above "circulating noise" issue, namely to
perform the ID between û  (see Fig. 2) and y . In this
approach (called KB-parametrization (Keviczky and
Bányász (1999))) û  depends on the apriori model
estimate M i , so only iterative scheme can be
constructed.
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where

û P K y P G M y= = +
−

r r r r r r
1 (35)

ID using internal signal x

In this case theoretically the ID should be performed
between u  and x . Unfortunately this is a tautology,
because x Mu= , however the idea can be used in an
iterative scheme, where xi+1  is calculated by the

apriori model M i  and the aposteriori model M i+1 is

obtained between xi+1  and ui . Instead another

approach is suggested here to use û  similarly to the
previous case.
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ID using internal signal e

The modeling error is special in this case
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This case - more or less - corresponds to the original
MPC using a "quasi-linear" parameter estimation ID
(12). This approach is based on the observation that
the pole-placement results in an equivalent system
equation

e S P G y P G y S e S S uF
r r r w w= −( ) = =− − + −

∗ (38)

which also provides possibility for closed-loop ID.

The five cases are summarized in Table 1, where the
different weighting factors Hj are shown for the
different cases. Note that the accuracy of the estimated
model at a given frequency is inverse proportional to
the weight in the modeling error at that frequency.
Observe that H1, H2  and H4  are low-pass filters,

where the attenuation of H4  is the highest at the
major medium frequency domain. So "good" model
estimation can not be expected around the vital cross-
over frequency ωc using these cases. H3  gives the
best weighting, because its maximum is the
geometrical mean of the tracking and regulating
bandwidths. H5  can also be used, because in this
case its maximum is at a frequency little bit smaller

than ωc. ( H P P3 w w= −( )1  has its maximum at

ωc.)



Table 1 Error weighting functions

j Type ε H j

1 εol y Mu− ′ S

2 εpil y Mu− Pr

3 εKB y Mu− ˆ P Pr w1−( )
4 εx x Mu− ˆ P Pr w

5 εe e u e u( ) − ( )ˆ P P Pr w w1−( )

7. ITERATIVE IDENTIFICATION AND
CONTROL

Only the method using the pair ˆ ,u y[ ]  is formulated

here as an iterative algorithm. Since û  depends on

the model M i, only an iterative control refinement
procedure can be performed. It's simplest - so-called
relaxation type - iteration can be built in the
following way for an off-line case using n  samples
based on εKB  ( i -th iteration is shown):

1. Start from an initial model M i. Calculate the

invariant part M i
−. Solve the DE (using H2 norm) or

the NP  problem (using   H∞ norm) to obtain the

optimal filters G Mi i
r −( )  and G Mi i

w −( )  then using a

reference signal series 
  
yr r ;i iy k k n= ( ) ={ }1, ,K

compute the process input as
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w w
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and apply to the process in closed-loop. Collect the
measured signal series

u i iu k k n= ( ) ={ }; 1, ,K   ; y i iy k k n= ( ) ={ }; 1, ,K (40)

2. Calculate the auxiliary variable series

  
ˆ , ,u k P G M y k k ni

i i i( ) = [ ] ( ) =+
−

r r r ;
1

1 K (41)

and form ˆ ˆ , ,u i
iu k k n= ( ) ={ }; 1 K .

3. Using û i  as input and y i  as output signal series,
identify a model based on the modeling step

  
M J M P Pi

M
i i

i+

∈
= ( )1 arg min ic r w

M
M, , , , ,u y (42)

to get the next iterative model estimate, where J ic is
a closed-loop identification criterion with model class
M.

4. Note that yr
i  does not necessarily change by

iteration. However, there is a possibility to optimize

the applied reference signal series yr
i+1 in this step by

a proper input design procedure or it is possible to

use the same excitation y yr r
i i+ =1 .

5. The iterative process is continued from step 1,
while a stop condition is not fulfilled.

8. CONCLUSIONS

The usually applied   R S T, ,  forms, generally applied
in MPC algorithms, can be easily used for parameter
estimation and direct formulation of self-tuning
regulators. However, the detailed comparison of the
pole-placement and predictor based controllers showed
that the d-step ahead predictors "quasi-linear" in the
parameters are very redundant considering the
unknown parameters. Therefore a new structure was
constructed to help the direct identification of the
plant under the constraint of a special pole-placement
controller in the framework of the GTDOF scheme.
This new topology clearly shows the special part of
the controller, which depends only on our design
goals (for IS processes) and on the invariant process
factor, too (for IU processes).

The modeling error of five possibilities were
investigated how the frequency weighting factor
changes by methods shaping the model error.

Then an iterative controller refinement scheme was
formulated, which can be used for off-line combined
identification and control solution.
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