PROSTHETIC PROTOCOL DEFINITION REALIZING AN APPLICATIVE PROFILE BASED
UPON I’°C STANDARD

Stefano Banzi*, Elena Mainardi*, Angelo Davalli+

* Dipartimento di Ingegneria - Universita degli Studi di Ferrara
+ Centro Protesi LN.A.I.L. di Vigorso

Abstract: The paper will present the definition of a Prosthetic Bus, specifing an
application profile based on I?C standard. Aim of this definition is to realize an upper
limb prosthesis control oriented bus, wich grants an efficient sensors and actuators
management, with the possibility both of centralized and distributed control, trought
the transmissione and reception of high level command and data.

The enlarge possibility and reconfigurability of the system will be necessary aspects
on following discussion. Copyright © 2005 IFAC

Keywords: protocols, application, byo-medical systems, sensors, motors, motion

control

1. INTRODUCTION

In order to improve complex, innovative and simple
control strategies for users with different levels of
amputation, it has been necessary, in an active
prosthesis for an upper limb, a network of
autonomous intelligence coordinated by a master unit
directly interfaced with the patient. Actually, the
prosthesis used at the Prosthesis Center I.N.A.LL.
(Istituto Nazionale Assicurativo per Infortuni sul
Lavoro, which has many European and sometimes
Worldwide contacts) are realized with four
mioelectric sensors, three motorizations related to
hand, elbow and wrist, one positioning sensor for the
elbow motor and a central control unit which realizes
the data elaboration, the control of the movement,
and also the communication with the outside world
through serial interface RS-232 or Bluetooth®
(A.Davalli et al, 2000)

Notwithstanding the high efficiency of the above
described system, there’s much more the need to

carry out distributed control strategies to help the
patients doing “complex” but necessary tasks as, for
instance, eating. In order to do this, it’s necessary to
introduce a high number of sensors (positioning,
speed, for the vocal control,...) and implement
architectures with distributed intelligence not
manageable with the actual system. Then it’s
obvious, considering also the introduction of a motor
for the movement of the shoulder and by
consequence the increasing of the architectural
complexity, the needs to realize a Prosthetic Bus
projected on purpose for a system derived by the one
described.

This bus must be fully compatible with the actual
reality, but guarantee the possibility of improvement
of several aspects as type and number of sensors
(position, sliding, temperature, vocal control,...) and
actuators, interface system and control modules. This
bus will use the I*C standard.

Fig.1: LN.A.L.L. Prosthesis for upper limb.

The discussione concerning the protocol is articulute
in the following way:

e In section 2 will be described the causes of
the chioce of I?C bus.

e In section 3 will be presented a general
overview on I°C bus.

e In section 4 will be discussed the
specifications on prosthesis control
applicative profile.

e In section 5 will be presented the
conclusions of the work and suggested some
future developments

2. BUS CHOICE

The choice of the I2C standard, as substrate to use for
the protocol definition, occurred after a careful
analysis of the existing standards, of their
potentialities and of their limits. During the analysis
we consider a series of specifications deriving from
the used prosthetic system and from the actual and
future needs of project.

The more pressing specification are:

e Lines number. This feature has a great
importance because a high number of
conductors would cause an unsustainable
size inside the prosthesis and increase the
chance of system breaks.

e Used voltage levels. As the previous one,
this is a fundamental specification, because
the maximal voltage of the rechargeable
batteries in the prosthesis is 7.2V.

e Standardization. The high standardization
on international scale of a bus facilitates the
finding of the devices, widening the

e possibilities to realize effective and efficient
controls.

e The presence of integrated controllers and
transceivers in the used microcontrollers or
similar, is guarantee of further reduction of
space and possibility of breaks.

Other specifications, as the transferred frame format,
the bus access control or the ISO/OSI levels
implemented, have all been considered for
completeness only, but they hadn’t particular
importance. Also the maximal speed of transmission
hasn’t played an essential rule in our choice because,
notwithstanding the desired control type is real-time,
the timings which we refer to, are related to the
human physiology of the voluntary muscular
activation and then their order is about ten
milliseconds.

Carried out studies (A.S.Poulton, et al,. 2002) have
explained how an excessive structured and rigidly
defined bus as LONWorks Bus, doesn’t allow to
realize a profile suitable to manage an efficient
prosthesis control. For the same reason, some buses
oriented to the industrial control (Profibus, FIP, P-
NET) or to the data transfer in computer science
(USB, Firewire, Ethernet) have been rejected. Good
choices, represented by CAN or SPI, have been
rejected due to the high complexity of the protocol
towards the need of not excessive data transmission
(CAN) or the necessity of additional hardware for the
device addressing (SPI). An optimal found solution,
which offer a great quantity of sensors and
microcontrollers with integrated controller, an
efficient but not rigid package format, a reduced
number of lines and TTL tension levels is the I*)C
standard (R. Busse, 2002).

3. I)C BUS

I?)C (Inter-Integrated Circuits) is configured as a
Multi/Master-Multi/Slave bus, with CSMA/CA
access to the physical mean. It’s formed by two
bidirectional lines (SCL, Serial Clock; SDA, Serial
Data) connected to a positive tension through two
pull-up resistors, and to the transceivers of the
devices with open-collector technology (open-drain).

+Vpp
pull-up
resistors Ro Ro
SCL (Serial Clock Line)

[Tsak T —! I E T
|
|

SDA (Serial Data Line)

|
SCLKENT DATAN1
! out J out Jr;

Fig. 1: 12C bus Electric scheme

The connection of the devices with the two bus lines,
through an open-collector configuration, allows an
hardware synchronization of the clocks of the
masters. This configuration realizes, in fact, a logic
AND between the clocks inserted in the SCL line.
The data can be exchanged with a speed which varies
from 100Kbit/s (standard-mode) to 400Kbit/s (fast
mode), the number of connectable devices depends
only on the capacitive limit of the bus of 400pF. Due
to the different technologies connectable to the bus
(CMOS, NMOS, Bipolar,...), the logic level 0 and 1
are not fixed, but they depends on the battery
voltage. The communication starts with a Start
character which is immediately followed by the
address of the device interested by the message (in
our case we’ll use an addressing with 7 bits followed
by 1 writing/reading bit). Every transmitted byte will
be followed by a bit of acknowledge (ACK) of the
receiving device. The package ends after the sending
of the Stop character by the master.

RAT ‘ A ‘ DATA E

| |_ DATA TRANSFER REDJ

(READ) (MBYTES + ACKNOWLEDGE)

SLAVE ADDRESS

DATA

5

A

SLAVE ADDRESS ‘ RV

A ‘ DATA

DATA

w |7

|— DATA TRANSFERRED J

(n BYTES + ACKNOWLEDGE)

‘ S A

0 (WRITE]

[] FROM MASTER TO SLAVE & = ACKNOWLEDGE (SDA LOWY)
T = NOT ACKNOWLEDSE [SDA HIGH)
N S = START CONDITION
[] FROM SLAVE TO VASTER B n v

Fig.2: I?C standard frame

For the reasons explained above, I2C is very versatile
implementing an open frame and not oriented
towards any particular application (Philips
Semiconductors, 2000). But this generality makes
necessary a greater attention in the definitions of the
prosthetic profile specifications. Besides defining
that series of specific commands for the actuators
control and for the data communication of the
sensors to the controller, it will be necessary to
realize techniques of harror handling (as an algorithm
for the CRC calculation) present in the LLC of the
level 2 ISO/OSI standard, but not present in the
considered standard (ISO/IEC 7498-1, 1994).

4. INAIL Prosthetic Bus (IPB)

INAIL Prosthetic Bus (IPB) is, in fact, a
communication protocol which amplify and complete
the functionality of the I*C bus. Essentially it
maintains the structure to realize a Master/Slave type
architecture with access to the physical mean through
the polling of the master control unit; we also define

four types of packages, a series of commands for the
distributed and centralized control of a prosthesis for
an upper limb, and an errors and transferred data
management which allows to optimize the band of
the conductor and the fault-confinement. The general
package for data exchange is composed of a start
character immediately followed by the address (as
the 12C specifications forecast), an information byte,
six bytes of useful data, a CRC byte and a stop
character. The following fields will be examined
separately afterward.

The choice of the Master/Slave architecture with
polling access has the purpose to make deterministic
the timings in which every peripheral device is
interrogated or commanded by the central controller.
As already explained, in fact, the not urgent real time
of the arificial arm controlled by a human, doesn’t
make necessary multi/master policy for ecritical
actuators or sensors. Knowing the acquisition timing
of the signals, which must be compatible with the
sample frequencies of Shannon, gains then a great
importance in order to avoid the loss of useful
information for the control.

The main purpose is to make a safe communication
of data and commands between a central control unit
and an indeterminate number of peripheral units with
the task to condition the entry signals from the
sensors actually present or forecast, realize the
received commands from the central unit, or make a
distributed control, receiving from the central
controller an angular position set-point only.

4.1 Packages used by IPB

In order to realize this, as explained before, we have
defined four types of package; the element which
characterizes the package is the byte immediately
after the address, called information field. This field
contains information related to the following bytes ,
distinguishing command packages from data transfer
packages.

In particular, the first two bits of this field
communicate to the addressed device if it’s going to
receive a simple command (for instance a reset), a
parameters command (for instance a speed set-point)
or some useful data, for instance, an on-line
calibration.

The eighth bit of the addressing field yet indicates,
where required, the necessity of the Master to obtain
information from a slave (for instance the data
related to a sensor or the device status); in that event
it won’t be necessary the sending of the information
field.

The four packages are:

e Package for data or command with
parameters sending (DC, Data or Command
packet). These data or commands can be
sent by the Master to the slave during every

cycle, and then every ten milliseconds
(various tests show that, nowadays, an
execution cycle of the program doesn’t last
more than 14 milliseconds), or one time
every different program cycles or only when
necessary (for instance in the event of on-
line calibration of the device). In the first
situation, the loss of a package won’t turn
out critic, because the same data will be
transmitted again in the immediately
following cycle. The receiving device, after
elaborating the CRC, will decide to use or
not the received data. In the second
situation, instead, it will be a necessity of
the master to obtain a confirmation from the
slave, of the effective correct data reception.
The protocol forecast, then, a further
interrogation of the master in order to obtain
a status check packet. In the event of missed
answer, the central controller will send
again the package.

e Package for the data request (RD, Request
Data packet). It’s a packaet which uses a
writing addressing of the slave (by the
eighth bit of I’C addressing byte); this
device won’t needs other commands to
transmit all elaborated data to master. So, in
this packet, an information field is not
necessary. Immediatly following data field,
slave device will transmit a CRC calculated
on data sended only. Afetr that, master will
verify the correctnnes of requested and
obtained packet, and will re-request to
peripheral device the packet, in case of
critical data is corrupted.

e Command packet without parameters
(NDC, No Data Command). An example for
this case should be the out-of serviceing of a
damaged device. In this particular case, data
field is not necessary and information field
is immediatly followed by CRC. A reserved
bit marks to slave, in case of critical
information, the need of send a status check
to master to confirm the reception.

e The last protocol forecast packet class is
status check (SC packet). This packet, more
to confirm a correct data reception, also
indicate slave device activity or inactivity to
central controller.

3.2 Service commands and motion control commands

With quoted above packets, and specifically with
information field, it’s possible to exchance, on
physical mean, all commands granting master device
both to manage sensors and actuators, and supervise
on network correct working, and, if necessary, shut-
off or reset badworking devices.

So, with thirty commands (ten reserved by protocol
and twenty programmable by user), it’s possible to

completly manage the prosthetic arm. Ten reserved
commands, indeed sufficient for a centralized and
distributed control, are subdivided into service
commands and motion control commands.

Service Command.

Acivity check: on startup this command is
sent to all peripheral devices wich have to
respond with a status check packet. If they
don’t, master device signals an allarm then
updates his active devices table. After
startup, the command can be sent to one or
more devices, to request activity/inactivity
state, or as a confirmation for received data.
Bus-off setting: used to disactivate a
peripherad device due to unexpected events
or comunication errors. After sending this
command, master module dimamically
updates his active devices table.

Bus-on setting/Reset: necessary to reset a
device or set it in bus-on mode. In this case
also, afeter sending the command, master
module dinamically updates active devices
table.

Calibration: command useful to modify
parameter in a peripheral device.

Generic data transmission: to comunicate to
slave a generic data sending. Slave, after
reception, will take care of process data.
This command should be usefull, for
instance, to comunicate information to
external world interface devices.

Motion control commands.

Right motor rotation with a speed of x%
relatively to maximum speed (where x is a
command parameter ranged between 0 and
100). This command, to send in case of
centralized control, needs a transmission
every program cycle so that related motor to
activate, always has got information on his
tasks. In case of DC motor, x directly mean
the duty cycle of PWM wave. Due to low
speed on the requested arm movemet (order
of few ten rad/s), an error on receiving this
tipe of command won’t cause badworking
on entire system.

Left motor rotation with a speed of x%
relatively to maximum speed (where x is a
command parameter ranged beetween 0 and
100). Like previous command excepted for
rotation reverse.

Right motor rotation with an ® angular
speed (@ is a parameter in rad/s). This
command is utilizable in case of presence of
an agular speed sensor only, or if it’s
possible to calculate angular speed in any
way. In this case also, due to ditributed
motion control, master (which has to
generate speed profile of controlled motor)

needs to send to slave device a value of @
every progam cycle.

e Left motor rotation with an @ angular speed
(o is a parameter in rad/s). Like previous
command excepted for rotation reverse.

e X° angle motor positioning (x is a parameter
ranged beetween 0 and 360). This command
is utilizable in case of distributed motion
control. Obviously, an absolute position
sensor is necessary on board. Master device
can send the command every cycle (as
overseen cases), to generate a trajectory, or
once. If sent once, due to information
importance, master needs a slave
confirmation with a status check packet.

Through overseen command set, and through the
possibility by user to extend it to realize specific
applications (for instance immediate stop commands
or emergency commands), or to control specific
devices, it’s possible to obtain an open control
network, versatile and functional as regards to
considered prothesic system.

3.3 Data exchanging management

Since every device can exchange variable lenght
(from 1 bit to 2 bytes) and nature data (values from
thermical or myoelectrical sensors, microswitch,
values from position sensors,...) it’s necessary, for
central controller, to know the correct composition of
every data packet from slaves. To do that, every
Slave Unit is entirely described by a table stored both
in in controller and slave memory, and called Data
Reconstruction Table (DRT).

Data position in the packet, data lenght (in bit), the
name of the system variables referred to data, and an
empty field where will be recorded the values once
received are recorded in this table. For instance, a
controller has to receive informations from a slave
acquiring data from four myoelectric sensors (1 data
bytes every one), and a temperature sensor (2 data
bytes). So in master there will be the following five
columns (one for every data to receive from specific
slave) table:

With this simple data reconstruction strategy, every

TABLE 1
FIVE ELEMENTS DATA RECONSTRUCTION TABLE
TaB.N=SLAVE N NAME

Position Position Position Position Position
1 2 3 4 5
8 bits 8 bits 8 bits 8 bits 16 bits
Myoel 1~ Myoel 2 Myoel 3 Myoel 4 Thermo
Data Data Data Data Data
Entry Entry Entry Entry Entry

device is univocally specified, and it’s so possible to

send data packets including all process data related to
a peripheral moduls. With DRT all message
interpretation errors will be avoided and the band of
the conducturs will be entirely utlilized.

3.4 Error handling and Fault Confinement

IPB specification overcasts three error types
recognition and handling: acknowledge error, form
error and CRC error.

Acknowledge bit is sent, as I?C protocol specify,
every data or addres byte received. Every non-
significant voltage level on SDA or SCL lines, and a
consequent error in exchanging data due to a
physical problem, will be notified with a not-
acknowledge and the system will take care of handle
the problem.

Form error is, otherwise, noticed when a violation of
possible bit combinations on information fields
occurs. If a binary combination not corresponding to
any protocol or user programmed command is
recognized, a form error is notified.

CRC (cyclic redundance Check) error is noticed if
redundance code calculated by receiver device
doesn’t match with code calulated by trasmitter on
the same bits sequence and sent on CRC field. A
difference between codes prove, in fact, that at least
one wrong bit is received. Laboratory tests show as
the extremely short distance among network modules
(order of ten centimeters) and the low comunication
speed (100kbit/s), cause insignificant number of
trasmission errors.

Further, since a single error on a generic packet
reception isn’t absolutely critical due to mecanical
and physiological inertness (gear and muscles
activations) better choice is a 1 byte cylic redundance
code, to avoid slowing the comunication with
useless overhead. In this case, standard CRC eighth
degree polynomial is:

X+ x?+x+1)
corresponding to binary sequence 10000011.

If one ot these error types is noticed in the system, an
error counter (EC) is increased; when EC reach a
programmable value (from 1 to 255) depending by
module importance, bugged device will be bus-offed
and an alarm cast.

A bus-off module will answer in proper way the
periodic master interrogation, with regard to slaves
status, sending a status check packet and the central
controller will take care of update active device table.
This error handling and fault confinement strategies
allow both to track comunication errors among
devices for statistics considerations, and to manage

the network in dinamical way, reducing necessity for
external intervents. Excluding dinamically incative
devices make possible, in fact, to eliminate
comunication dead times and motion control errors.
A complete master knowledge about entire network,
is necessary before startup to fulfil discussed error
handling.

4. CONCLUSIONS AND FUTURE
DEVELOPEMENT

Throught specification obtaind from study on
IN.A.LL. prosthetic systems, a new protocol, motion
control oriented and grantig both centralized and
decentralized motors control, has been realized.
Possibility of new commands programming and
exchanging more data on a single packet, take into
consideration future requirements, granting a wide
expandibility of existing system, but also a project
“ex novo” of a new upper limb prosthesis generation
including shoulder motorization.

Recognition and handling of three types
comunication errors and fault confinement strategies,
throught active devices table, make motion control
secure in efficient way, considering prosthesic
robustness and ininfluenzabilta by few wrong
packets.

Future developements overcast error probabilility
studies, related to every network module, and
protocol extension by introducing an entire system
plug and play.

To do this it’s necessary that master controller is able
to auto-update a table of all devices connected to the
network (actives and unactives ones). With this
feature it’s possible to avoid a new programming due
to each new slave introduced.

REFERENCES

A. Davalli, R. Sacchetti, S. Fanin, G. Avanzolini, E.
Urbano (2000). Biofeedback for upper limb
myoelectric prostheses. Tecnology and Disability,
Vol 13.

A.S. Poulton, P.J. Kyberd, D.Gow, and L. Sandsjo
(2002). Experience with the intelligent hybrid
arm system. Prooceding of MEC 2002.

Philips Semiconductors (2000) . [I°C Bus
Specification.

ISO/IEC 7498-1 (1994). Information technology —
Open Systems Interconnection -- Basic
Reference Model: The Basic Model

