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Abstract: The performance of a linear, discrete high performance track following con-
troller in a hard disk drive is improved for its disturbance rejection by augmentation of a
discrete non-linear, adaptive neural network (NN) element. The neural network element is
deemed to be particularly effective for rejection of bias forces, such as friction. Theoretical
and experimental results have been obtained. It is shown theoretically that a NN-element
is effective in counteracting a non-linear, system-specific, model-dependent disturbance.
The disturbance is assumed to be unknown, with the exceptionthat the disturbance is
known to be matched to the plant actuator input range and the disturbance is an (unknown)
continuous function of the plant output measurements. In anexperiment for a laboratory
HDD-servo system, it is shown that the NN-control element improves performance and
appears particularly effective for a reasonably small number of NN-nodes.

Copyright c©2005 IFAC

Keywords: hard-disk, servo-control, friction, compensation, neural networks

1. INTRODUCTION

One significant development has characterized the
technological advancement of hard disk drives (HDDs):
the increase in track density which has now reached
about 100 kTPI (TPI=Track per inch) in commercial
products. This development has been driven by con-
sumer demand for higher storage capacity of hard
disks and a more varied application area for HDDs
which require a smaller form factor (e.g. application in
portable equipment such as cameras) or large storage
space (e.g. modern ‘video’ recorders storing digital
movies). This increase in data density and in hard disk
drive application areas implied the need of significant
advancements of the overall HDD-technology: such as
highly accurate mechanics for the low-cost Voice Coil
Motor (VCM)-actuator in small form-factor drives and
a decreased head-disk spacing around 10 nm. Further-
more, the VCM-arm has to be constructed to minimize
pivot bearing friction and other bias forces on the arm.
Despite the advancement in HDD-technology, these
forces are expected to pose a significant problem in
future high density HDDs (Gonget al., 2002) for the
demanded higher accuracy of the servo-control task,
in particular for track following and short span track
seeking.

It has been acknowledged that the modelling task
for bias forces, in particular for friction, is complex

1 This work was completed during a two year Senior Research Fel-
lowship of Guido Herrmann at the A∗-Star, Data Storage Institute,
Singapore.

(Hensenet al., 2003; Oboeet al., 2001; Wanget
al., 1994). In actual fact for high precision servo-
control systems, it is necessary to investigate friction
in smaller dimensions, leading to complex continuous
static or dynamic models on the micro-level which
depend on both position and velocity of the actuator
(Dupont et al., 2002; Wanget al., 2001). One way
of dealing with the problems of bias forces is to in-
troduce appropriate servo control techniques which
can compensate for these complex but continuous bias
forces. Linear techniques such as an increased low fre-
quency controller gain are not sufficient to overcome
this non-linear effect, since it has been shown that the
non-linear effects, such as friction hysteresis, affect
in particular head position changes of about 1µm.
Hence, non-linear methods are necessary for compen-
sation (Gonget al., 2002; Herrmannet al., 2005).
Furthermore, the model is not easily obtained for
this position-dependent and time-varying bias force.
Hence, adaptive neural network compensation appears
to be most suitable. The advantages of using neural
network techniques for compensation of bias forces
have been already tested by Geet al. (1998, pp. 172)
in closed loop adaptation for robotic systems and by
Huanget al. (1998) for HDDs (off-line estimation).
Most recently a NN-controller with on-line adaptation
in closed loop has been tested by Herrmannet al.
(2002) and Herrmannet al. (2005) for a HDD-servo
control system. This controller was particularly devel-
oped for manipulators with rigid body dynamics (Ge
et al., 1998). The NN-controller structure combining
a linear PI(D)-control element with a non-linear adap-



tive NN-control term has shown to be effective for a
Voice Coil Motor-actuator in a hard disk drive. Hence,
it is here of interest to evaluate the effectiveness of
NN-control in combination with a discrete linear, high
performance track following controller. Thus, the ap-
proach is to design at first a high performance track
following controller which achieves a desired band-
width combined with suitable stability margins. The
second step is then to design a NN-controller for bias
force compensation. This NN-control element is aug-
mented to the linear high performance controller. This
appears to be feasible as non-linear bias force effects
are usually observed in low frequency (Abramovitch
et al., 1994) which can be compensated by the non-
linear NN-element; the linear controller acts in high
frequency. This procedure is desirable as a custom-
designed industrial linear track following controller
can be continued to be used and the non-linear control
element acts as an ‘add-on’.

Main principles for the theoretical foundation for this
discrete NN-control strategy have been taken from
Ge et al. (1998) and Wanget al. (2001) and in par-
ticular from Geet al. (2003). As discussed before,
it is assumed that the non-linearity is an (unknown)
continuous function of the output measurements: In
a HDD, these measurements are the position error
signal and an estimate for the velocity. In particular,
it is assumed that the bias forces can be modelled
as fully matched to the range space of the actuator:
Although this assumption is not fully accurate for
practical systems, it appears to be suitable for a HDD-
servo system, since pivot friction and flex cable forces
are bias forces acting likewise the VCM at the pivot of
the actuator arm. In particular, Herrmannet al. (2005)
have shown this approach to be successful. More com-
plex NN-controller structures as discussed by Wanget
al. (2001) would have to be used in any other case.
Hence, this article presents the necessary theoretical
background and experimental results showing the ef-
fectiveness of the approach for this suggested NN-
approach.

2. THE NOMINAL CONTROL SYSTEM WITH
MATCHED NON-LINEARITY

Consider a linear discrete system with matched un-
known non-linearity:

xp(k+1)=Apxp(k)+bpu(k)+bpf(Φ(y(k))),

y(k) = cpxp(k) (1)

for Ap ∈ R
n×n, bp, c

T
p ∈ R

n×1. The system un-
certainty, an unknown non-linearity or system depen-
dent disturbance, is expressed withf as an unknown
function of the vector valued functionΦ(y(k)). As f
enters the system viabp, it is matchedto the range of
the actuator. The functionΦ(y(k)) is known where

Φ=Φ(y(k)):Rψ→R
φ, y(k)=[y(k) y(k−1) · · · y(k−ψ+1)]T

andψ, φ ∈ N
+. Hence, the functionΦ(y(k)) may be

dependent on the time history of the measurable signal
y but not necessarily on the whole time history.Φ is
continuous inRψ and remains bounded in a compact
subset ofRψ, the set for the time history of the output
measurement, so that:

‖y(k)‖ < K : ‖Φ(y(k))‖ < L, K,L > 0

where the Euler norm‖·‖ is used. For reasons of
brevity, the abbreviationΦk = Φ(y(k)) may be used.

The major problem in this case here is the lack of
exact knowledge off . However, it is assumed for

the uncertaintyf , that it is a continuous, non-linear
function inΦ:

f : R
φ → R,

and remains bounded for any compact subset inR
φ.

Assumeu(k) = uNL(k) + uL(k) and there exists a
linear controller

xc(k + 1) = Acxc(k) + bcy(k),

uL(k) = ccxc(k) + dcy(k), (2)

exponentially stabilizing the plant of (1) foruNL = 0
andf = 0 while achieving ultimate boundedness for
f 6= 0. The control input termuNL(k) is used later
to compensate for the non-linearityfk = f(Φ(y(k))
more efficiently.

Remark 1.For many practical plants, it is always rea-
sonable to assume that the model is strictly proper by
introducing a very fast first order pole achieving the
strictly proper characteristic. For the high frequency
range, it is then assumed that the model is not reliably
determined creating some extra, possibly very minor
model uncertainty. ◦

The closed loop system is represented by:
[

xp(k+1)
xc(k+1)

]

=
[
Ap+bpdccp bpcc
bccp Ac

]

︸ ︷︷ ︸

Ag

[

xp(k)
xc(k)

]

︸ ︷︷ ︸

xg(k)

+
[
bp
0

]

︸︷︷︸

bg

(uNL(k)+fk)

(3)

where the measurable output of the overall closed loop
is:

yg(k) =
[
cp 0
0 I

]

︸ ︷︷ ︸

Cg

[

xp(k)
xc(k)

]

.

This defines the nominal discrete system(Ag,bg, Cg)
for which a non-linear neural network term is designed
to compensate for the non-linearityf .

3. DESIGN OF THE NON-LINEAR ADAPTIVE
COMPENSATOR

This Section has been inspired by the work by Geet
al. (2003) on the discrete NN-control for a special
class of non-linear systems. Hence, the approach by
Ge et al. (2003) has been simplified and suitably
adjusted to suit the closed loop system(Ag,bg, Cg)
with unknown uncertainty/disturbancef .

Since f is continuous inΦ, the non-linearityf =
f(Φ) can be arbitrarily closely modelled (Geet al.,
1998; Wanget al., 2001) via

f(Φ) = w∗T s(Φ) + ǫ

for some neural network basis function vectors(Φ) ∈
R
l and a respectively large enough numberl ∈ N

+

of neural network nodes. The vectorw∗ is the optimal
weight vector while the neural network basis function
vector satisfiessT (Φ)s(Φ) ≤ l. The scalarǫ ∈ R is
the modelling error for which|ǫ| usually decreases for
an increasing numberl of neural network nodes.



Consider the non-linear controlleruNL as follows:
uNL = −ŵT (k)s(Φk). (4)

Hence, the non-linearity is cancelled by an estimate
f̂(k) = ŵT (k)s(Φk) for which the weight update law
is:
ŵ(k + 1) = (1 − σ)ŵ(k) − Γs(Φk)y(k), σ > 0 (5)

for a positive definite symmetric matrixΓ ∈ R
l×l,

Γ > 0, and a forgetting factorσ, 0 < σ < 1. Hence,
the estimation error for the weightsw∗ is defined by:

w̃(k) = ŵ(k) − w∗.

Using this approach, stability of the overall control
system with augmented NN-controller can be summa-
rized by the following Theorem:

Theorem 1. There always exist NN-controller param-
eters1 >> σ > 0 and λmax(Γ) small enough and
λmin(Γ

−1)σ >> 0 large enough so that the linear
closed loop control system from (3) augmented with
a neural network controller from (4) and a weight
update law as from (5) is ultimately bounded stable.♦

Using ideas of Geet al. (2003, Theorem 1 & 2), a
sketch of the proof of Theorem 1 is provided in the
Appendix discussing also the possibility for optimiza-
tion of the two adaptation law parametersΓ andσ.

Remark 2.As shown in the Appendix (see also Geet
al. (2003, Theorem 1 & 2)), persistent excitation of
the NN-estimation algorithm, adapting in closed loop,
is not necessary. However, it will be discussed for the
experiment later that excitation caused indirectly via
disturbances can be beneficial. ◦

Note that the parameter choice of a largeλmin(Γ
−1)σ

and a small value forλmax(Γ) andσ assures stability
but effectively equates to disabling the adaptive NN-
controller, achieving nominal linear controller perfor-
mance only. Hence in this case, the learning algorithm
is chosen as slowly acting as possible retaining the
NN-weight estimateŝw(k) close to its initial value
ŵ(0). However, in practice, it is rather of interest to
obtain a NN-controller which actsimprovingon the
overall control system behaviour. In the next section,
the concept of the NN-controller will be used to coun-
teract non-linear bias effects on a linear track follow-
ing controller of a hard disk drive servo-system.

4. BIAS EFFECTS IN TRACK FOLLOWING OF A
HARD-DISK DRIVE SERVO-SYSTEM

In hard disk drives, bias effects are usually caused
by bias forces such as forces due to the flex cable or
the pivot bearing friction. For application of the NN-
approach, it is important that these forces are matched
to the range space of the actuator, i.e. the input dis-
tribution matrix bg, so that the non-linear control
signaluNL can compensate for them. Although this
matching condition is not necessarily satisfied, it may
be assumed that a significant part of the bias forces
can be regarded as matched. For instance, pivot non-
linearities due to friction or bias forces due to the flex
cable can be regarded as matched as they (together
with the driving force of the VCM) affect the VCM-
actuator at the pivot. However, bias forces caused by
tribological effects due to head-disk interaction can-
not necessarily be regarded as matched. The VCM-
actuator is not fully rigid so that the dynamics of the

VCM-arm, the read-write head suspension will always
distort the force which is in actual fact then causing
the bias force at the pivot due to head-disk interac-
tion. Furthermore, the head position measurement (the
position error signal) can be regarded only as an ap-
proximated image of the actual pivot position. Thus, it
is assumed here that the VCM-actuator is sufficiently
stiff to allow the application of the NN-technique.

On a macro-level, friction forces or other bias forces
appear to be constant. However, on the micro-level,
a bias force requires a much more complex model:
Rather complex continuous functions depending on
velocity and position of the actuated system are usu-
ally employed to model friction characteristics (Wang
et al., 2001; Dupontet al., 2002). NN-techniques have
shown to be very powerful when modelling these bias
forces in dependence on pivot velocity and position
measurement (Herrmannet al., 2005): Hence, the
model for the bias forcef = f(Φ) in particular for
Φ is:

Φk =

[

y(k)
y(k) − y(k − 1)

]

≈

[

y(t)
Tsẏ(t)

]

where Ts is the sampling time of the practical
sampled-data control system. As for Wanget al.
(2001),f may be modelled using Gaussian radial ba-
sis functions for the NN-basis functions ofs(Φk) =

[s1(Φk) s2(Φk) · · · sl(Φk)]
T :

s(Φk) = e
−

(y(k)−cy/i)
2

σ2
y/i · e

−
(y(k)−y(k−1)−c∆y/i)

2

σ2
∆y/i

The values ofσy/i, σ∆y/i ∈ R
+ andcy/i, c∆y/i ∈ R,

are the variance and center positions for the position
measurement and the velocity estimate of the Gaus-
sian radial basis functions. These parameters need to
be chosen by the designer.
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Fig. 1. VCM-frequency responses (including voltage-to-current
driver); measured:dark; nominal transfer function:light

5. PRACTICAL IMPLEMENTATION OF THE
NN-CONTROL SCHEME

The experiments have been conducted with an up-to-
date high performance 3.5 inch VCM-actuator1 to
which a 23 mm suspension2 with read-write head was
attached. The VCM-model measurements in Figure 1
show in particular the effects of friction and other bias

1 Seagate Technology
2 A∗-Star DSI



Fig. 2.Experimental Set-up

forces in the frequency range around 100 Hz. Employ-
ing a Dynamic Signal Analyser3 (DSA) and five dif-
ferent excitation amplitudes for ten measurements, the
VCM-model measurements show below 100 Hz the
typical variation in the frequency response amplitude
caused by non-linear effects.

For the practical tests, an A∗-Star DSI designed spin
stand was used to mount the read-write head on a com-
mercial 2.5 inch disk rotating at 3300 RPM. The (hor-
izontal) position of the read-write head is measured
with a Laser-Doppler-Scanning-Vibrometer4 (LDV)
(Figure 2). From the frequency response measure-
ments for the actuator, we derived from the contin-
uous measurement the linear nominal VCM-actuator
models of 12-th order via curve fitting (Figure 1).
Using robust linear design techniques, this allowed
to design a discrete linear track following controller
of 10-th order with an open loop crossover frequency
at 1460 Hz and a phase and gain margin of 33◦ and
4.7 dB. The controller has been implemented with the
DSP based system, DS11035 , employing a sampling
frequency of1/Ts = 33 kHz. Using this nominal
linear controller configuration, the NN-controller has
been tuned. A description for this follows in the next
sections.

5.1 Neural network controller design

The characteristics of each NN-node are provided in
Table 1. Assuming good knowledge about the practi-
cal system, i.e. about the amplitude range of the po-
sition and velocity signal during closed loop control,
a good preliminary NN-controller is easily obtained.
Note that is not necessarily important to fine tune the
characteristics of each neural network basis function.
It is more important to distribute the NN-nodes over
the controller operating region. As the non-linear bias
force is unknown, only experimentation can reveal the
best choice of NN-nodes. However, it will be seen that
the number of required NN-nodes for bias force com-
pensation can be retained small for the investigated
case, minimizing the effort for on-line tuning of the
NN-controller.

The first step for design is to choose a NN-node with
centerscy/i andc∆y/i directly at the operation point,
cy/i = 0, c∆y/i = 0, for which the NN-nodei = 5
has been selected in Table 1. This node at the op-
eration point is the ‘central’ node which is used for
all investigated NN-configurations. As the next step,
four nodes where selected which are symmetrically
distributed in close proximity of the operation point,
i.e. NN-nodesi = 2, 3, 7, 8. To allow also a good

3 HP 35670A, Hewlett Packard Company, Washington
4 Polytec OFV 3001S, Polytec, Waldbronn, Germany
5 DSpace DS1103 is a product of dSPACE GmbH, Paderborn,
Germany

Table 1.NN-node characteristics in dependence on
the node no.i (Ts = 1/33000)

i cy/i [µm] c∆y/i [µm] Γi,i

1 -1 -0.2 35·Ts
2 -0.333 -0.0666 60·Ts
3 0.333 0.0666 60·Ts
4 1 0.2 35·Ts
5 0 0 200·Ts
6 -1 0.2 35·Ts
7 -0.333 0.0666 60·Ts
8 0.333 -0.0666 60·Ts
9 1 -0.2 35·Ts

and accurate model slightly more further off from the
operation point, four more NN-nodesi = 1, 4, 6, 9
are to be tested. From these nine nodes, NN-node-
configurations are tested which are always symmetric
with respect to the central node. The variance values
areσy/i = 20√

17
andσ∆y/i = 20√

5·17
for all nodes to

retain a reasonable overlapping of all nine Gaussian
radial basis functions. The learning coefficientsΓ =
diag(Γ1,1,Γ2,2,Γ3,3, · · · ,Γ9,9) have been chosen as
large as possible so that they allow maximal learning
speed (Table 1). The forgetting factorσ = 4 · Ts
was selected to retain stability of the estimation algo-
rithm but to allow fast adaptation. Using these design
characteristics, several combinations of the NN-nodes
have been tested for which the results are provided in
the next section.

5.2 Experimental results

Three different tests have been conducted:

(1) Error rejection measurement through sine-sweep
excitation of the position demand signal using a
DSA

(2) FFT measurement of the position error measure-
ment using a DSA

(3) Small step responses

All of the three differentexperiments confirm that the
augmentedNN-controller can improve track follow-
ing, in particular, error rejection in the low frequency
region is increased: Thus, steady state errors are sig-
nificantly reduced (see Figure 3(a) versus 3(b)), once
the neural network control element is activated. Simi-
lar characteristics are observed for the FFT-recordings
and the error rejection responses: Consider Figure
4(a) versus Figures 5(a), 6(a), 7(a) and 8(a) in the
frequency range up to 100 Hz. The FFT-amplitude
is reduced by more than 10 dB when using the NN-
element. The appropriate choice of NN-nodes assures
an even better result of a 20 dB reduction as seen for
Figure 4(a) versus 6(a). Similar results are also ob-
served for the error rejection response in the frequency
below 100 Hz as observed for 4(b) versus Figures
5(b), 6(b), 7(b) and 8(b). Improvements of the error
rejection of more than 15 dB in the low frequency
range are possible.

(a) linear control only (b) 3 NN-nodes (NodeNo.:2,3,5)

Fig. 3. Step response (2µm/V ) (response is averaged; includes
envelope of responses (grey shaded)) (physical units: see
upper left of each image)

Although for the error rejection responses, the error
is always reduced for increasing numberl of NN-
nodes, it is observed for the FFT-recordings that the



10
2

10
3

10
4

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(a) |FFT|of posit. meas.[µm] 6
10

1
10

2
10

3
10

4
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(b) Error rejection

Fig. 4.FFT and error rejection for linear controller only
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(b) Error rejection
Fig. 5. FFT and error rejection for control with 1 NN-node

(NodeNo.:5)
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(b) Error rejection
Fig. 6. FFT and error rejection for control with 3 NN-nodes

(NodeNo.:2,3,5)
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(b) Error rejection
Fig. 7. FFT and error rejection for control with 3 NN-nodes

(NodeNo.:1,4,5)
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(b) Error rejection
Fig. 8.FFT and error rejection for control with 9 NN-nodes

improvement is dependent on the choice of the NN-
node characteristics: Thus, it is important to obtain at
first a good model of the non-linear disturbance by
selecting the correct NN-node center values close to
the operation point (see Figure 5(a) and 6(a)) while
center pointscy/i andc∆y/i too far off from the opera-
tion point can even act slightly destructive (Figure 6(a)
versus 7(a) and 8(a)) (Nevertheless, the NN-controller
has been always acting in a positive and improving
manner.) Furthermore, it must be also noted that in
this casean increaseof the NN-node numberl does
not necessarily further improveoverall performance

as it is obvious from Figure 8 versus Figures 5, 6
and 7. Hence, among those tested configurations, it
appears that the neural network control element with
three NN-nodes (NodeNo.:2,3,5) is the most suitable.

5.3 Discussion

The result appears to indicate that a model of low
complexity is sufficient to achieve good disturbance
rejection. It is in particular of interest to see, that a NN-
control element with the maximum of nine NN-nodes
is not able to improve on the result for three NN-nodes
(NodeNo.:2,3,5). This seems to point to the problem
of over-learningor over-fitting: For a large number of
NN-nodes, the adaptation algorithm attempts to match
the given measurements as accurately as possible cre-
ating a highly complex model. In case of noise this
can lead to the modelling of a wrong representation
which does not represent the actual physical distur-
bance phenomenon. Nevertheless, it has been shown
that it is possible to choose the right combination of
nodes from a set of nodes well distributed over the
operation area. The overall number of available nodes
does not need to be large so that it is easily possible to
find the ‘optimal’ choice.

As discussed for Theorem 1, persistent excitation of
the NN-algorithm is not necessary. However, as for
many practically applied adaptive algorithms, it has
been noted that external excitation is advantageous.
Thus, it has been observed that non-model based
disturbances (in particular Non-Repeatable Run-Out
disturbances), such as windage, noise, disk flutter,
bearing defects etc., appear to improve indirectly the
performance of the NN-control element since these
disturbances keep the learning process of the NN-
controller excited and keep the bias force identifica-
tion running. Thus, these disturbances can be benefi-
cial to the presented NN-control scheme, continuously
learning in closed loop. However, it is certainly not
desirable to have these disturbances too large.

6. CONCLUSION

A neural network control strategy has been presented
which works as augmentation to an existing discrete
linear controller. Atheoretical result has been pro-
vided proving stability and performance not worse
than the nominal linear controller.

It has been shownexperimentallyfor all investigated
configurations and any investigated number of NN-
nodes, that theNN-controltechniqueimproves perfor-
manceas it is effective in compensating for low fre-
quency bias effects. These bias forces have been iden-
tified as pivot friction and also to a certain extent as
head-disk interaction. The neural network controller
appears to be especially effective for the low number
of three NN-nodes in contrast to the results for nine
nodes. A reason for this might be over-fitting and over-
learning of the NN-learning algorithm. It has to be
investigated if this in general the case for hard disk
drives, as this can simplify the tuning of the adaptation
algorithm considering a small number of NN-nodes
only.

Appendix A. PROOF OF THEOREM 1

The proof combines linear system theory with ideas
from Ge et al. (2003, Theorem 1 & 2) on discrete
NN-control: Consider a symmetric positive definite
Lyapunov matrix:P > 0 for a Lyapunov function

6 The amplitudes are the result of a root-mean-square averaging
process



candidateV (k) = xTg (k)Pxg(k) + w̃T (k)Γ−1w̃(k)
where

ATg PAg − P < 0

Employing (3), (5) and the relation2w̃(k)TΓ−1ŵ(k) =

w̃(k)TΓ−1w̃(k) + ŵ(k)TΓ−1ŵ(k) − w∗TΓ−1w∗, the
value of∆V (k) = V (k+1)−V (k) can be computed
as

∆V(k)=

[
xg(k)
w̃(k)
ŵ(k)

]T

M1

[
xg(k)
w̃(k)
ŵ(k)

]

+σ(w∗TΓ−1w∗)

+2xTg(k)A
T
gPbgǫ−2ǫbTgPbgs(Φk)

Tw̃(k)+bTgPbgǫ
2(A.1)

where the symmetric matrixM1 satisfies:

M1 =




M11 −(ATgPbg+C

T
g )sT(Φk) C

T
gσs(Φk)

T

∗ M12 0
∗ ∗ (σ2−σ)Γ−1



 ,

M11 =ATg PAg−P+CTg s
T(Φk)Γs(Φk)Cg

M12 =s(Φk)b
T
gPbgs(Φk)

T−σΓ−1 (A.2)

It is well known that±2aTb ≤ aTa + bTb for
two vectorsa,b ∈ R

h, (h ∈ N
+). Hence, from this

inequality and (A.1), it follows:

∆V (k)≤

[
xg(k)
w̃(k)
ŵ(k)

]T

M1

[
xg(k)
w̃(k)
ŵ(k)

]

+ σw∗TΓ−1w∗

+ δ1x
T
g(k)A

T
gPAgxg+

(
1

δ1
+

1

δ2
+ 1

)

bTgPbgǫ
2

+δ2w̃
T(k)s(Φk)b

T
gPbgs(Φk)

Tw̃(k)

=

[
xg(k)
w̃(k)
ŵ(k)

]T

M2

[
xg(k)
w̃(k)
ŵ(k)

]

+σw∗TΓ−1w∗+
δ1δ2+δ1+δ2

δ1δ2
bTgPbgǫ

2

(A.3)

where

M2 =

[
M21 −(ATg Pbg+C

T
g )sT(Φk) C

T
g σs(Φk)

T

∗ M22 0
∗ ∗ M23

]

M21 =(1+δ1)A
T
gPAg−P+CTg s

T(Φk)Γs(Φk)Cg
M22 =(1 + δ2)s(Φk)b

T
g Pbgs(Φk)

T − σΓ−1

M23 =(σ2 − σ)Γ−1. (A.4)

As the next step, a zero element−δ3V (k)
+ δ3x

T
g (k)Pxg(k) + δ3w̃(k)TΓ−1w̃(k) is added to

the right hand of (A.3) assumingδ3 < σ. The
termsδ3xTg (k)Pxg(k) andδ3w̃(k)T (k)Γ−1w̃(k) are
included intoM21 andM22 ofM2 so that a matrixM3

is obtained usingsT (Φ)s(Φ) ≤ l andΓ ≤ λmax(Γ)I:

∆V (k) ≤ −δ3V (k) +

[
xg(k)
w̃(k)
ŵ(k)

]T

M3

[
xg(k)
w̃(k)
ŵ(k)

]

+ σw∗TΓ−1w∗ +
δ1δ2+δ1 + δ2

δ1δ2
bTg Pbgǫ

2 (A.5)

where

M3 =

[
M31 −(ATg Pbg+C

T
g )sT (Φk) C

T
g σs(Φk)

T

∗ M32 0
∗ ∗ M33

]

M31 =(1+δ1)A
T
g PAg−(1−δ3)P+λmax(Γ)lCTgCg

M32 =(1+δ2)b
T
gPbgs(Φk)s(Φk)

T+(δ3−σ)Γ−1

M33 =(σ2−σ)Γ−1.

AssumingM3 < 0, it follows

∆V (k)≤−δ3V +σ(w∗TΓ−1w∗)+
δ1δ2+δ1+δ2

δ1δ2
bTgPbgǫ

2

which implies ultimate boundedness as the terms
σ(w∗TΓ−1w∗) + δ1δ2+δ1+δ2

δ1δ2
bTg Pbgǫ

2 are bounded.
Hence, it remains to investigate under what condition
M3 < 0. From applying Schur’s Complement (Boyd
et al., 1994), the relationshipss(Φk)T s(Φk) < l,
s(Φk)s(Φk)

T < lI and standard matrix upper bounds,
it follows thatM3 < 0 if

0> (1 + δ1)A
T
g PAg − (1 − δ3)P + λmax(Γ)lCTg Cg

+
(ATg Pbg + CTg )l(bTg PAg + Cg)

(σ − δ3)λmin(Γ−1) − (1 + δ2)bTg Pbgl

+
σ2CTg s(Φk)

T s(Φk)Cg

(σ − σ2)λmin(Γ−1)
,

1>σ

0> (1 + δ2)b
T
g Pbgl − (σ − δ3)λmin(Γ

−1). (A.6)

From s(Φk)
T s(Φk) ≤ l, it can be implied that if

λmax(Γ) andσ are small enough and(λmin(Γ−1)σ)
large enough then (A.6) is indeed satisfied and the
NN-control system augmented to a linear stabilizing
controller is indeed ultimately bounded stable.
Remark 3.Although it is usual to tune the adaptation
algorithm on-line, the stability proof for the combi-
nation of a linear plant with an unknown disturbance
and a NN-controller creates the possibility for a non-
linear optimization ofΓ andσ, improving the overal
controller dynamics. In particular, the requirement
[
xTg (k) w̃T (k) ŵT (k)

]
M2

[
xTg (k) w̃T (k) ŵT (k)

]T

+ δ3x
T
g (k)Pxg(k) + δ3w̃(k)TΓ−1w̃(k) < 0 could be

expressed together withs(Φk)s(Φk)T < lI in a set of
non-convex matrix inequality conditions which could
be solved for givenδ3 to obtain an improved value for
Γ andσ. However, this is an area of future research.◦
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