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Abstract: This paper presents a strategy to find an optimal gait for the model
of the biomimetic swimmer developed at Caltech to transit forward minimizing
control effort, or the integral of squared angular acceleration of the two joints.
According to the previous works, it is accepted that a series of sinusoidal-type
gaits generates forward transition. Using this sinusoidal gaits as initial guess for
optimization, improved gaits are found using a numerical optimization software,
NLPP Toolbox for Matlab. The performance of the determined gaits is tested

using the Simulink model. Copyright
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1. INTRODUCTION

Motivated by the previous works (Kelly et al.,
1998; Morgansen et al., 2001; Morgansen et al.,
2002; Vela et al., 2002a; Mason and Burdick, 2000)
on planar carangiform robot fish, this paper con-
siders the optimal control of a simplified planar
model of a carangiform fish. The previous re-
searchers have developed the nonlinear control
methods (Morgansen et al., 2001) and open-loop
or closed-loop controllers (Morgansen et al., 2002)
to generate the desired motion of forward tran-
sition and turning. In this paper, however, our
interest is in finding an optimal controller for a
similar or more simplified model of a carangi-
form fish numerically rather than analytically. To
this end, Nonlinear Path Planning (NLPP) Tool-
box for MATLAB, developed by Bhattacharya
(Bhattacharya, 2004), is used as the numerical
optimization tool. NLPP converts the optimal
control problem to the constrained nonlinear pro-
gramming problem using the Nonlinear Trajec-
tory Generation (NTG) software which was de-

veloped by Milam (Milam, 2003)) as a part of his
thesis. NTG parameterizes the trajectories of all
the states and inputs using splines in B-form, and
then calls subroutines of a solver for the nonlinear
programming problem, NPSOL (Gill et al., 1998).
Using NLPP Toolbox, it was possible to find a
novel type of gaits for the robot fish which is
different from simple sinusoidal gaits suggested
in previous works (Morgansen et al., 2001; Mor-
gansen et al., 2002; Vela et al., 2002a). Through
simulation tests using Simulink, the new type of
gaits is verified to be more efficient in terms of the
control effort.

2. FISH ROBOT MODEL

The mechanical fish discussed in this paper has
three links and two joints immersed in water. The
orientation of the peduncle and tail joints are
denoted as #; and 05 which are measured with
respect to the main body reference frame. x, vy,
and ¢ denotes the z and y component of the



position and orientation in the world coordinates,
respectively. The forces acting on the body are lift
and drag. Lift acting on a plate is given in (Vela
et al., 2002a) as
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where p is the fluid density, A is the area of the
plate, £, is the velocity at the quarter chord point
as measured in the body frame, and e; is a unit
vector pointing along the plate toward its leading
edge. & is computed as
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where &, and &, are velocity of the body with
respect to body frame. They are obtained from the
body velocity in the world coordinates according
to the following relation.
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where v is the velocity of the body in the inertial
world frame. Drag force D and associated moment
Mp are modelled from (Mason and Burdick, 2000)
which has a much simpler forms than the ones
from (Vela et al., 2002a).
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where the subscripts b, x, and y denote body, x-
component, and y-component, respectively. Added
mass effect is neglected. The mechanical fish has
the following dynamics
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where m is the mass of the robot fish and I is the
inertia. Since the most of the mass is concentrated
on the main body not the peduncle nor the tail,
the change of inertia due to the change of its shape
is neglected and fixed as a constant. L;, is the
x—component of the lift force on the tail, and L, ,
the y—component.

3. OPTIMIZATION PROBLEM
FORMULATION

According to (Morgansen et al., 2002), the follow-
ing sinusoidal gaits generate forward transition of
the robot.

01 = A1 Sin(wlt) (8)
92 = A2 COS(WQt) (9)

Differentiating twice, one can obtain the input
functions for forward transition.

up = —Ajw? sin(wyt) (10)

U = —Agwg COS(LUQt) (11)

After performing open-loop control simulation, it
is found that, if one applies this input the robot
at rest, it does not move straightforward since the
initial motions are not balanced without lateral
error feedback. Hence, the input is modified as

up = Ajw? sin(wit)

Uy = Apwi sin(wot — m/2) (12)
and initial condition of the joints are set as
01(0) = —Ay fwy; 02(0) = 0; (13)
01(0) = 0; 62(0) = Ay /ws.

An interesting question is whether this sinusoidal
motion is the gait that minimizes the control effort
or not. It can be formulated as an optimal control
problem with the following cost function J.
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with a set of constraints. The constraints arise
from the fact that x, y, ¢, 61, and 05 should satisfy
the dynamics specified in (7) for all t € (0,ty); the
initial and final conditions also should be given
as initial and final constraints; and the ranges
of the variables are limited due to some physical
limitations of the model, which should be given as
trajectory constraints for ¢ € (0,¢s). All of these
constraints fall into one of the following initial/
trajectory/ final constraints.

lo < fi(2(to), u(to), to) < uo (15)
I < felz(t),u(t),t) < (16)
Iy < frz(ty),ulty), ty) < uy, (17)

where z is a vector that consists of x,y, ¢, 01,05
and their derivatives; and u consists of u; and us.
The objective is to travel the distance of z > zf in
x—direction within given time ¢ = ¢; minimizing



the cost function J. Hence, the following is added
to final constraint.

z(ty) > xy (18)

ty and x; are determined through simulation
using Simulink with the sinusoidal input (12).

It is hard to solve the optimization problem for
robot swimmer in closed form. Instead, a numer-
ical optimization software, Nonlinear Path Plan-
ning (NLPP, (Bhattacharya, 2004)) Toolbox for
MATLAB can be used. NLPP translates opti-
mal control problems like the one introduced in
this paper to nonlinear programming problems.
The current version of NLPP is based on Nonlin-
ear Trajectory Generation (NTG) software and a
nonlinear programming problem solver, NPSOL.
Once the problem is translated to a nonlinear pro-
gramming problem, NLPP calls NPSOL routines
to solve it. In NLPP, all the trajectories of states
and inputs are parameterized as splines subject to
the dynamics (7) which is translated to nonlinear
trajectory constraints. The boundary conditions
are given either as equality or as inequality con-
straints. In addition to the optimization problem
itself, important parameters for NLPP are number
of breakpoints, smoothness, order. The first three
parameters are required to determine the space of
splines that represent the trajectories. The distri-
bution and and the number of collocation points
are also important factor in NLPP because the
cost function and constraints are computed at the
collocation points. For the detailed information
on NLPP Toolbox, readers are encouraged to re-
fer to (Bhattacharya, 2004). Splines are stitched
at given breaking points with given smoothness
condition. Each spline is made up of polynomials
whose order is given as an NLPP parameter. The
complexity of the optimization problem and con-
vergence of the solution depend on the selection
of those parameters.

4. NUMERICAL EXPERIMENTS USING
NLPP

In this section, the simulation procedures to find
an optimal gait are described. The simulation
consists largely of three steps. The first step of the
experiment is running simulation with Simulink
based on numerical integration of the equations
of motion in (7) with (12) for input. The values
for A; and w; for ¢ = 1,2 are chosen according
to (Morgansen et al., 2002) as A1 = A = 0.4
and w; = we = 8. All the physical parameters
for the mechanical fish model are taken from
(Morgansen et al., 2002) and (Morgansen et al.,
2001). The drag coefficient is set to match the
simulation results with the experimental results
in (Morgansen et al., 2001); when Cy is set to

5000, and the sinusoidal input 12 is applied, the
travelled distance after 5 swimming cycles was
about 2 meters, which is close to the experimental
result shown in (Morgansen et al., 2001).

As the second step, the set of trajectories of
(z,y,®,071,02) obtained from the first step is used
as an initial guess for the optimal solution of
NLPP. Specification of an initial guess for the
solution is important when the solution space is
complex and the solution tends to converge to
local optima. When NLPP was run using a ran-
dom set of trajectories as the initial guess, NLPP
failed to find meaningful trajectories even though
various sets of NLPP parameters were tested.
Instead, as an initial guess for the NLPP solu-
tion, the set of trajectories obtained by running
Simulink with the sinusoidal inputs (12) was used.
By applying least square approximation method,
the trajectories obtained from Simulink at step 1
are converted to splines in B-form as wihch the
trajectories in NLPP are parameterized. Then,
NLPP was run to obtain a candidate for the op-
timal controller that minimizes the cost function
J in 14. For the NLPP problem formulation, the
following constraints and cost functions are used.

e Initial Time Constraints

z(0) = 0;£(0) = 0; (19)
y(0) = 0;9(0) = 0; (20)
$(0) = 0; $(0) = 0; (21)
0:1(0) =0;6,(0) = —A;1 /wy; (22)
02(0) = Ay /w3;65(0) = 0; (23)

e Trajectory Constraints
Nonlinear Constraints: the dynamics in (7);

—40 < 6 < 40; —40 < b, < 40; (24)
e Final Time Constraints
2(ty) > (25)

o Cost
t
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Then, as the third step, the optimal controller
candidate u; and us from the second step are ap-
plied to the same Simulink model used in the first
step to verify feasibility of the solution and to eval-
uate improvement in efficiency. Often, there exists
large discrepancy between NLPP outputs of the
second step and Simulink outputs of the third step
because NLPP does not guarantee that the system
dynamics which is given to NLPP as a nonlinear
trajectory constraint is satisfied for all . In NLPP,
the constraints and costs are evaluated only at
collocation points. Thus, to check the improve-
ment of the efficiency, the cost function should



2
(didy? 8,

—— NLPP output
L= = sine input

2
(drd? 6,

35

Fig. 1. Sinusoidal inputs and their NLPP results

be evaluated in the first and the last step by
directly performing numerical integration rather
than trusting cost function values computed by
NLPP. Then, the cost functions are compared to
check if the optimized set of trajectories results in
lower cost function values.

5. SIMULATION RESULTS

After test rums, it was noticed that the selec-
tion of the NLPP parameters — the number of
breakpoints np, smoothness s, order k, and the
number of collocation points n. — is a critical
factor for the convergence of NLPP solution and
feasibility of the solution when it was put into the
Simulink model. Testing various sets of parame-
ters, a set of NLPP parameters with which NLPP
showed a satisfactory result was determined as
(np, s,k,ne) = (2N + 1,5,9,2N + 1); when the
solution found using this set of parameters were
put into verifying simulation, the displacement
z(ty) in « increased and the control effort J de-
creased, which implies it is closer to the optimum
or optimum itself. N is the number of swimming
cycles.

In figure 1, the sinusoidal inputs and its NLPP
outputs for N = 4 are plotted. Notice that u;
has almost no difference before and after running
NLPP but us shows changes in its shape; each
peak of the sinusoidal function is indented toward
the horizon, and the collocation points coincide
with the indented peaks. By indenting each peak
of the sine function, NLPP keeps the sum of 93
at all the collocation points minimal. For uq, the
collocation points cross the zero-crossings of the
sine function and thus the sum > 6% over the
collocation points is kept minimal without NLPP
changing the trajectory.

The changes by NLPP in the trajectories of
(x,y,¢,01,02) for N = 4 are illustrated in fig-
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Fig. 2. State trajectories at each step

ure 2. The plots marked ‘step 1’ are the out-
put trajectories of Simulink when the sinusoidal
inputs applied; Marked ‘step 2’ are the output
trajectories of NLPP, and ‘step 3’ are the output
trajectories of Simulink when the inputs in figure
1 is applied. If one observes the x trajectories, the
‘step 3’ trajectory is a little bit above ‘step 1’ or
‘step 2’ trajectories, which means that the inputs
resulted by NLPP generate more efficient motion
but NLPP did not predict it. Observing the y
trajectory of ‘step 3’, one can see that it diverges
from the horizon. Since lateral error feedback is
not used, it is unavoidable. However, if the aver-
aging control scheme will be used as introduced in
(Morgansen et al., 2002) and (Vela et al., 2002q)
with the lateral error feedback, then, in general, it
is assured that the result will be improved as one
can see the improvement in this open-loop control
simulation. Notice that 05 trajectory is not just a
sine function with reduced amplitude. Rather it
resembles a sine function with its peaks clipped
at some level.

For better understanding of the new type of
input function, the whole simulation procedure
is repeated for different numbers of cycles N =
1,2,3,...,10 and the results are shown in Table 1.
x(ty) is the x position at the final time t = ¢
in the verifying simulation, the third step. This
value implies how far the mechanical fish would
swim if the optimized inputs from NLPP are used.
x¢ describes how far it swims when using the
nominal sinusoidal inputs in the first step. J is the
cost function in the third step, and Jj is the cost
function from the first step where the sinusoidal
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Fig. 3. Input function uy for N =1,2,3,4.

input is used. Except for the first case when
N =1, the new type of inputs generated by NLPP
travels further and costs less amount of control
effort from the observation that x(ts)/xzy > 1 and
J/Jo < 1 in Table 1.

Table 1. Simulation Results for N =

1,...,10

N z(ty) m(tg)/zy J J/Jo
I o011 115 581.08  1.13
2 033 117 1023.56  0.99
3059 114 1408.63  0.91
4 088 113 1776.30  0.86
5 120 111 2152.96  0.84
6 153 110 2531.08  0.82
7 188 110 2912.38  0.81
8 223  1.09 3289.94  0.80
9 260 1.08 3668.06  0.79
10 298  1.07 4045.70  0.79

Figure 3 clearly displays the type of forward gait
found using NLPP. If we cut out the glitches at
the beginning part and the ending part of 52,
we obtain a periodical function for us and it is
available for use as an input to the mechanical
fish. Further theoretical interpretation for the new
type of input is still an open problem to explore.

6. CONCLUSION AND FUTURE WORK

This paper presents a candidate of an optimal
solution for the swimming gaits of a mechanical
fish and the strategy to find it using numerical
optimization tool. The candidate solution seems
to have a higher frequency term in its motion
of the second joint. Theoretical interpretation in
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terms of geometrical phase and robotic locomo-
tion resorting to the discussion on the nonlinear
control (Vela et al., 2002a; Morgansen et al., 2001)
is left as a future work. After further work on
the given problem, a closed loop control scheme
may be developed which combines the oscilla-
tory feedback control (Vela et al., 2002b) with
the new type of open-loop controller presented in
this paper. Ongoing project includes applying the
similar numerical optimization method to explore
the possibility to discover optimal gaits for other
types of underwater locomotion such as robotic
eels shown in (Mclsaac and Ostrowski, 2000).
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