
POLMAT: MUPAD LIBRARY FOR

POLYNOMIAL MATRICES

Petr Augusta ∗ Zdeněk Hurák ∗∗,1

∗ Dept. of Control Engineering, Faculty of Electrical
Engineering, Czech Tech. University in Prague, Czech Rep.

e-mail : augusp1@control.felk.cvut.cz
∗∗ Center for Applied Cybernetics, Faculty of Electrical

Engineering, Czech Tech. University in Prague, Czech Rep.
e-mail : z.hurak@c-a-k.cz

Abstract: The paper presents a new freely available library for symbolic computa-
tion with polynomial matrices. The library is developed for MuPAD, which is an
easily accessible efficient programming language and comfortable environment for
symbolic math. The Polmat library is focused on algorithms useful in control and
filter design such as solvers for linear equations with polynomials and polynomial
matrices and spectral factorisation of polynomial matrices. Copyright c©2005 IFAC

Keywords: Computer-aided control system design, matrix polynomial equations,
polynomial methods.

1. INTRODUCTION

Polynomials and polynomial matrices turn out
convenient tools for description of dynamic sys-
tems. Ratios of two univariate polynomials are
commonly used for description of linear dynamic
systems with single input and single output
(SISO). Left or right fractions of polynomial ma-
trices generalise in a straightforward way the con-
cept of transfer functions for systems with mul-
tiple inputs and multiple outputs (MIMO). Alge-
braic manipulations with polynomials and poly-
nomial matrices can reveal various properties of
the systems being modelled obviating the numer-
ically intensive simulation, see (Kailath, 1980) for
a comprehensive overview. For instance, testing
for the location of zeros of a polynomial matrix
answers the common question about the stability
of MIMO system, testing a polynomial matrix for
column reducedness and consequently comparing

1 Supported by the Ministry of Education of the Czech
Republic under Project 1M6840770004.

column degrees of the two polynomial matrices
defining a right polynomial matrix fraction offers
itself as a procedure for testing causality of a
model, computation of the rank of a polynomial
matrix is a step in the controllability and observ-
ability analysis. But it is not only the analysis that
can be performed by working with polynomial ma-
trices. Solving linear equations with polynomials
and polynomial matrices lends itself as a basic
computational step in the pole-placement design
methodology and when combined with spectral
factorisation, it constitutes the basic computa-
tional framework for LQG, H2 and H∞-optimal
control, see (Kučera, 1979), (Hunt, 1993) and
(Grimble and Kučera, 1996) for comprehensive
overview.

The polynomial methods for control design now
provide:

(1) an alternative description of linear systems
to state-space models,

(2) methods for analysis of properties of dynam-
ical systems,

(3) methods for controller and filter design.

Their advantage is that the input-output charac-
ter of the model is conserved during the compu-
tation and is not lost as in the state-space tech-
niques, which yields the polynomial techniques
very natural and intuitive.

However, unlike the state-space techniques, which
enjoy the abundance of software libraries (both
commercial and free) for manipulating constant
matrices like solvers for Sylvester, Lyapunov and
Ricatti equations, the polynomial methods rely on
highly specialised packages that cannot be found
in common computational tools. The only com-
plete library is Polynomial Toolbox for Matlab
by (Kwakernaak and Šebek, 1998), which is a
commercial toolbox developed and distributed by
the PolyX company. Only recently, a few new
packages have been developed that slightly extend
this offer of tools for polynomial matrices to di-
verse platforms and languages:

(1) Polpack++: A C++ library for numerical
computation with polynomial matrices by
Leoš Halmo (Halmo, 2004),

(2) polynomial : Java package for numerical com-
putation with polynomial matrices by Michal
Paděra (Paděra, 2004),

(3) PTOOL-TI89: C library for numerical com-
putation with polynomial matrices for TI-
89/TI-92 programmable calculators by Petr
Štefko (Štefko, 2004),

(4) a few functions for polynomial and rational
matrices in Fortran SLICOT library (Benner
et al., 1997)

(5) a few functions for polynomial matrices in
Scilab (INRIA and ENPC, 2000)

(6) a very limited set of (not control related)
functions for polynomial matrices in Maple

The authors of the Polmat package 2 presented
in this paper aim to extend this offer with a
set of function oriented on symbolic computation
with polynomial matrices. The decision was made
to build this library atop the MuPAD system
(SciFace, 2000), which is a young but very lively
commercial project loosely mimicking Maple. A
nice feature of MuPAD is its accessibility for indi-
vidual students and researchers – it is for free for
educational and research purposes. The authors
believe that this fact might help in spreading the
polynomial computation in the control commu-
nity. The focus of MuPAD on symbolic compu-
tation was also appreciated because most of the
available tools for polynomial matrices rely on
numerical algorithms and therefore suffer from the
common problems related to rounding. Symbolic

2 Polmat package constitutes one of the outcomes of Petr
Augusta Master’s degree diploma work at the Dept. of
Control Engineering, FEE CTU in Prague (Augusta, 2005)

algorithms, on the other hand, express real num-
bers as ratios of two integers, and therefore no
errors are introduced into the computation. The
price is, however, extreme computational burden.
Even with this lowered computational efficiency,
symbolic computation can be regarded as a helper
with the development of numerical algorithms.
Not to mention the educational role.

2. INTRODUCTION TO THE POLMAT
PACKAGE

This section serves the purpose of introducing
the reader to the Polmat package, showing how
intuitive and convenient this tool is. The compre-
hensive manual is available online (Augusta and
Hurák, 2005).

2.1 Entering a polynomial matrix

Creating two polynomial matrices

A(d) =

(

d 1 − d

5 d2 d2

)

, B(s) =

(

0 1 − s

1 + s 1 − s2

)

.

in MuPAD command line is as easy as typing

>> A:=polmat([[d, -d+1],[5*d^2, d^2]],d)

+- -+

| d, - d + 1 |

| |

| 2 2 |

| 5 d , d |

+- -+

>> B:=polmat([[0, 1-s],[1+s, 1-s^2]],s)

+- -+

| 0, - s + 1 |

| |

| 2 |

| s + 1, - s + 1 |

+- -+

2.2 Inquiring about the properties of a polynomial
matrix

We perform a test of a matrix row reduction.

>> polmat::isreduced(A, d, "row")

TRUE

We compute the leading degree, the leading coef-
ficient and the coefficient of the term s0.

>> polmat::ldeg(B, s)

2

>> polmat::lcoeff(B, s)

+- -+

| 0, 0 |

| |

| 0, -1 |

+- -+

>> polmat::coeff(B, s, 0)

+- -+

| 0, 1 |

| |

| 1, 1 |

+- -+

2.3 Basic arithmetic operations

We can use the standard arithmetical procedures
of MuPAD for the matrix product, sum etc. Pol-
mat comes with, for instance, the procedure for
computing polynomial matrix greatest common
divisor (GCD) which solves a system of equations

P A + Q B = D

R A + S B = 0

where D is a right GCD and A, B are given
polynomial matrices.

>> A:=polmat([[d-d^2, 2*d-d^2]], d):

>> B:=polmat([[d-1, d-1],[d-1, d-2]],d):

>> polmat::gcd(A, B, d)

+- -+

| d - 1, d - 1 |

| |

| 0, -1 |

+- -+

2.4 Linear equations

A standard theoretical and computational tool in
linear control theory is linear Diophantine equa-
tion with polynomial matrices. Solving such the
equation A X + B Y = C, where

A =
(

d2 + 1
)

, B =
(

d, −d2
)

, C =
(

d
)

for X and Y can be found in MuPAD as

>> [X, Y]:=polmat::axbyc(A, B, C, d)

--

|

| +- -+

| | d - d t[1, 1] |,

| +- -+

--

+- -+ --

| 2 2 | |

|- d + d t[2, 1] + t[1, 1] (d + 1)| |

| | |

| t[2, 1] | |

+- -+ --

where t denotes an arbitrary polynomial matrix
of size 2 × 1 that parametrises the solution set.

2.5 Spectral factorisation

A crucial computational step in various optimal
control techniques is spectral factorisation of a
polynomial matrix. It amounts to solving the fol-
lowing special quadratic equation with polynomial
matrices

Z(s) = P T (−s)JP (s) (1)

where the constant matrix J consists of 1s and
−1s on the diagonal.

Consider the following polynomial matrix and
compute its J-spectral factorisation

Z(s) =

(

0 1 − s

1 + s 1 − s2

)

.

>> Z:=polmat([[0, 1-s],[1+s, 1-s^2]],s):

>> [P, J]:=polmat::spf(Z, s)

--+- -+

| | 2 |

| |1/2 s + 1/2, - 1/4 s - 1/2 s + 5/4|

| | |,

| | 2 |

| |1/2 s + 1/2, - 1/4 s - 1/2 s - 3/4|

--+- -+

--

+- -+ |

| 1, 0 | |

| | |

| 0, -1 | |

+- -+ |

--

Note that this procedure does not necessarily re-
turn an exact solution. The algorithm is iterative
and is stopped when adequate accuracy is reached.

However, every iteration is absolutely precise be-
cause it is computed by integer or rational arith-
metic.

3. CONTROL DESIGN EXAMPLES

By means of a few examples we demonstrate the
use of Polmat for solving the controller design by
manipulations with polynomials and polynomial
matrices.

Consider an inverted pendulum of Fig. 1. Suppose

Fig. 1. Simple inverted pendulum

that friction in joint is negligible and all mass is
concentrated in the ball. Then describe it by

m l2
d2 ϕ(t)

d t2
− m g l sin ϕ(t) = −M(t), (2)

where m is mass of the rod, l length of the rod, ϕ

is angle and M is a torque.

Linearise the equation (2) about the point ϕ(t) =
0 rad and describe an inverted pendulum by
transfer function

P (s) =
1

m g l − m l2 s2

where input is the torque M and output is the
angle ϕ. Choose m = 0.5 kg and l = 1 m and
enter this system into MuPAD

>> P:=1/(m*l*g-m*l^2*s^2):

>> m:=1/2: l:=1: g:=981/100:

>> b:=polmat(numer(P), s):

>> a:=polmat(denom(P), s):

With these particular parameters the transfer
function of the plant is

P (s) =
b(s)

a(s)
=

200

981− 100 s2
. (3)

Evidently, the pendulum up is unstable position
and the system (3) is not stable.

3.1 Feedback controller design via pole-placement

Design a controller via pole placement for our
system (3). Consider the scheme of Fig. 2 and a

Fig. 2. Feedback control scheme

controller having a form

C(s) =
y(s)

x(s)
.

Then the characteristic polynomial of a closed-
loop system is

c(s) = a(s) x(s) + b(s) y(s). (4)

To physically realise a controller, c(s) must satisfy

deg c(s) ≥ 2 dega(s) − 1,

hence, the characteristic polynomial for the sys-
tem (3) has the form

c(s) = (s2 + 2 ζ ωn s + ω2

n
) (s + c1).

Choose

ωn = 20
√

2, ζ =

√
2

2
, c1 = 100,

corresponding characteristic polynomial is

c(s) = (s2 + 40 s + 800) (s + 100),

and solve (4) for x(s) and y(s).

>> c:=polmat((s^2+40*s+800)*(s+100), s):

>> [x, y]:=polmat::axbyc(a, b, c, s,

"y-minimal"):

>> C:=polmat::tf(y, x):

- 480981 s - 8137340

200 s + 28000

The resulting controller is

C(s) =
−480981 s− 8137340

200 s + 28000
.

Zero and pole map and step response of closed-
loop system is in Fig. 3.

0-25-50-75-100-125

20

10

0

-10

-20

Re

Im

Re

Im
0,50,3750,250,1250

0

-0,0005

-0,001

-0,0015

-0,002

-0,0025

-0,003

-0,0035

Time (sec)

Phi (rad)

Time (sec)

Phi (rad)
(a) (b)

Fig. 3. Zero and pole map (a) and step response (b) of closed-loop system

Time (sec)

φ
(r

ad
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−7

−6

−5

−4

−3

−2

−1

0

1

q
2
=1

q
2
=100

q
2
=10000

Time (sec)

 u
 (

N
m

s−
1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−400

−200

0

200

400

600

800

1000
q

2
=1

q
2
=100

q
2
=10000

(a) (b)

Fig. 4. Impulse response of closed-loop system, output (a), manipulated variable (b) for various weights
q2 (impulse is applied to input w)

3.2 Feedback controller design via LQG

Our objective is to design a controller

C(s) =
y(s)

x(s)

for the system (3) which minimises the standard
quadratic optimisation criterion

lim
t→∞

t
∫

0

{

uT(t) r2 u(t) + yT(t) q2 y(t)
}

d t

where u(t) is the control input and y(t) is the mea-
sured output. Let v(t) be the disturbing torque
acting on the pendulum with covariance r1 and
w(t) is a noise that adds to measured angular po-
sition with covariance q1, see Fig. 2. We consider
the covariances of the input noise and output noise

q1 = 5 · 10−6, r1 = 5 · 10−6

and weights on the output (controlled) signals and
the input (control) signal

q2 = 1, r2 = 1.

>> q1:=r1:=polmat(5/1000000, s):

>> q2:=r2:=polmat(1, s):

A controller design consists of three steps: solving
two spectral factorisations and one linear (Dio-
phantine) equation:

a(s) r1 a∗(s) + b(s) q1 b∗(s) = f(s) f∗(s)

a(s) r2 a∗(s) + b∗(s) q2 b(s) = g(s) g∗(s)

a(s) x(s) + b(s) y(s) = f(s) g(s),

where X∗(s) = XT(−s) and taking the solution
with deg y(s) < deg a(s).

>> f:=polmat::spf(

a*r1*polmat::conjugatetranspose(a,s)+

b*q1*polmat::conjugatetranspose(b,s),

s)[1]:

>> g:=polmat::spf(

a*r2*polmat::conjugatetranspose(a,s)+

polmat::conjugatetranspose(b,s)*q2*b,

s)[1]:

>> c:=polmat(f*g, s):

>> [x, y]:=polmat::axbyc(a, b, c, s,

"degy<dega"):

>> subs([x, y], t=0):

>> C:=simplify(factor(

1/polmat::tf(op(%)))):

>> float(C)

0.5 (5581418.223 s + 17481743.91)

2

-281579.8149s-22360.67977s -1553557.246

The controller is

C(s) =
2790709.112 s + 8740871.957

−22360.68 s2 − 281579.81 s− 1553557.22

Fig. 4 shows impulse responses for various q2.

4. CONCLUSIONS

This paper presented a new package for comput-
ing with polynomial matrices. The pages takes ad-
vantage of symbolic computation performance of
MuPAD and thus provides a useful alternative to
the few existing numerical libraries for polynomial
matrices. The Polmat library is available for free
download as well as the MuPAD system, which
makes the computation with polynomial matrices
accessible to everyone. The development of the
Polmat package is going on in near future.

ACKNOWLEDGEMENTS

The authors would like to thank to developers
of MuPAD for making it accessible to individual
students and researchers.

REFERENCES

Augusta, P. (2005). Polmat: MuPAD library for
symbolic computation with polynomial ma-
trices. Master’s thesis. Department of Control
Engineering, Faculty of Electrical Engineer-
ing, Czech Technical University. Prague.

Augusta, P. and Zdeněk Hurák (2005). Pol-
mat: MuPAD library for symbolic computa-
tion with polynomial matrices. Department
of Control Engineering, Faculty of Electri-
cal Engineering, Czech Technical University.
Prague, Czech Republic. http://polmat.

wz.cz.
Benner, P., V. Mehrmann, V. Sima, S. Van Huffel

and A. Varga (1997). SLICOT - A Subrou-
tine Library in Systems and Control Theory.
NICONET Network. http://www.win.tue.
nl/wgs/slicot.html.

Grimble, M.J. and Kučera, V., Eds.) (1996). Poly-
nomial methods for control system design.
Springer-Verlag London.

Halmo, L. (2004). PolPack++: C++ library for
computing with polynomial matrices. Depart-
ment of Control Engineering, Faculty of
Electrical Engineering, Czech Technical Uni-
versity. Prague, Czech Republic. http://

polpackplusplus.sourceforge.net.
Hunt, K.J., Ed.) (1993). Polynomial methods in

optimal control and filtering. Peter Peregri-
nus.

INRIA and ENPC (2000). Scilab. Scilab Consor-
tium. http://scilabsoft.inria.fr/.

Kailath, T. (1980). Linear Systems. Prentice Hall.
Kučera, V. (1979). Discrete Linear Control. John

Wiley and Sons.
Kwakernaak, H. and M. Šebek (1998). Polyno-

mial toolbox for Matlab. PolyX, Ltd.. Prague,
Czech Republic. http://www.polyx.com.

Paděra, M. (2004). Java package for comput-
ing with polynomial matrices. Department
of Control Engineering, Faculty of Electri-
cal Engineering, Czech Technical University.
Prague, Czech Republic. http://klokan.

sh.cvut.cz/~padera/polynomial.
SciFace (2000). MuPAD. SciFace. http://www.

mupad.com/.
Štefko, P. (2004). C library for computing with

polynomial matrices for the TI-89/92 pro-
grammable calculators. Department of Con-
trol Engineering, Faculty of Electrical Engi-
neering, Czech Technical University. Prague,
Czech Republic. http://ptoolti89.wz.cz.

