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Abstract: A hybrid system approach is adopted to study the dynamic behaviour of a 
controlled reverse flow reactor in which a feedback control law dictates the occurrence of 
flow inversions. Typical behaviour of hybrid systems (Zeno phenomena) are found 
coexisting with other regimes like limit cycles and quasi-periodic regimes. Construction 
of impact maps, continuation of limit cycles and detection of local bifurcations are 
employed to understand the influence of Zeno phenomena on bifurcation scenario and on 
routes to strange attractors. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Most exothermic reactions were traditionally 
conducted in catalytic fixed bed reactors with heat 
exchangers. Different configurations were introduced 
to control the evolution of processes; the most 
commonly used are (1) a simple combination of a 
separate heat exchanger with an adiabatic reactor; or 
(2) the integration of either regenerative or 
recuperative one into catalyst packing of catalytic 
fixed-bed. Moreover, catalytic processes with low 
feed concentration cannot be conducted auto-
thermally but they need additional heat. An example 
of this case is the post-combustion of volatile organic 
compounds (VOC’s). In the last few years a new 
kind of reactors was introduced to sustain exothermic 
reactions with low feed reactant concentrations: 
Reverse flow reactors (RFR’s) are  fixed-bed 
catalytic reactors in which the flow direction is 
periodically inverted. In the RFR’s, the hot reaction 
zone is trapped in the packed bed by a periodically 
reversing of the flow direction (Matros and 
Bunimovich, 1996). Therefore, it is possible to 
conduct autothermally the VOC’s combustion with 
lean feed. The main problems relative to the RFR 

conduction are: overheating of the catalyst and 
extinction of the reaction. Recently, Barresi and 
Vanni (2002) propose a simple feedback control (one 
point controller) which takes into account only the 
temperature measured by the sensor located close to 
the inlet at the end of the bed: the flow is reversed 
when this temperature falls below a fixed value.  
In this paper, adopting the control policy of Barresi 
and Vanni (2002), we analyze the dynamics of closed 
loop reverse flow reactor for VOC’s combustion as 
set-point variable is varied. The closed loop system is 
characterized by discrete events (the inversions of the 
flow direction) and continuous dynamics between 
two successive switches. So this system is modelled 
as a so-called hybrid dynamical system (Mancusi, et 
al., 2004; Schumacher and Van der Schaft, 2000). 
This kind of systems have been shown to exhibit a 
rich dynamical behaviour and several peculiar 
bifurcations that cannot be studied with standard 
bifurcation theory (di Bernardo, et al., 2002). 
In this paper, the analysis is carried out using a 
combination of continuation and numerical 
simulation of both periodic and complex regimes. 



 

     

The maximal Lyapunov exponent and impact maps 
are used to characterize the chaotic nature of  a new 
strange attractor.  
 
 

2. MATHEMATICAL MODEL 
 
A simple scheme of the catalytic RFR is reported in 
Fig 1. Two couples of valves (V and W in Fig. 1) 
allow the reversal of feed flow.  
 

 
 
Fig. 1. Scheme of the reverse flow reactor. 

 
Assuming instantaneous inversions, the 
mathematical model of a one dimensional catalytic 
RFR with an uniform distribution of catalyst can be 
written in terms of mass and energy balances, 
represented by the following dimensionless partial 
differential equations: 
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The mass and heat balances in gas phase (Eqs. (1)-
(2)) take in account the mass and heat transport for 
axial dispersion and convection. The heat balance in 
solid phase (Eq. (3)) take in account the axial 
dispersion and reaction. For the mass balance in solid 
phase (Eq. (4)) a pseudo-steady state is considered.  
Mass and heat exchange between two phases and 
heat exchange between the gas phase and the 
environment is considered. 
Dimensionless parameters and state variables 
reported in nomenclature are the same adopted by 
Řeháček et al. (1998). Danckwerts boundary 
conditions are assumed for concentration and 
temperature in the gas phase: 
 

( )
0

0, 0g g
m g

y
IOPe y t

z
∂

− =
∂

                  (5) 

( )( )
0

0, 0g g
h g feedIOPe t

z
θ

θ θ
∂

− − =
∂

            (6)                 

0

0s

z
θ∂

=
∂

                               (7) 

( ) ( )
1

1 1, 0g g
m g

y
IO Pe y t

z
∂

− − =
∂

              (8) 

( ) ( )( )
1

1 1, 0g g
h g feedIO Pe t

z
θ

θ θ
∂

− − − =
∂

       (9) 

1

0s

z
θ∂

=
∂

                              (10) 

 
 
The variable IO is a discrete variable that can  
assume only the value 0 or 1. Changing the sign of 
convective terms inside the equations and inverting 
the boundary conditions, this discrete variable takes 
into account that the flow inversions is slaved by the 
control law. 
The control system reverse the flow direction when 
gas temperature inside the reactor, at a distance equal 
to 5 cm from the inlet, decrease up to a set-point 
temperature ( set-pointθ ):Thus, temperature  
measurements at each edge of the catalytic bed are 
needed. If the set point temperature is chosen high 
enough the  controller is able to sustain the reactor 
auto-thermally. The control law regulates the 
occurrence of discrete events (the inversions of the 
flow direction), while the continuous dynamics 
between two successive inversions is described by 
the equations (1)-(4): the mathematical model is then 
a hybrid spatial extended system. Namely, the model 
is characterized by a discontinuous right-hand side 
and hence can be classified as a Filippov system 
(Filippov, 1988). 
 
 
2.1 The closed loop system as a hybrid automaton. 
 
Because the mathematical model contains both 
continuous and discrete variable, it can be classified 
as a hybrid system and can be treated through a 
formalism called Hybrid automaton which is 
frequently used for describing and analysing the 
behaviours of hybrid systems (Johansson et al., 
1999). Formally a hybrid automaton is a collection:  
   

( ), , , , , , ,H Q X Init f I E G R=                 (11) 
 
 where  
• Q is the finite collection { }0,1  of discrete 

variables;  
• X is the collection  of continuous 

variables ( ) ( ) ( )( ), , , , ,g g sx y z t z t z tϑ ϑ≡ ;  

• Init is the set of initial states;   
• f : Q X X× →  is the vector field for each IO∈Q.  
• I assigns to each element of Q the invariant set of 

all possible values that x can assume; 
• E is the collection of edges ( ) ( ){ }0,1 , 1,0 ; 
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• G (guard) assigns to each edge the guard 
condition ( )0 set-point,g x tθ θ< ; 

• R (reset) assigns to each edge and each x X∈ , 
the value that x assumes after the flow inversion. 

 
A hybrid automaton can be equivalently represented 
by a graph (Fig. 2) that can be easily converted in a 
numerical algorithm.  
The continuous dynamics evolves according to the 
differential equation specified in each node of the 
graph. When guard conditions are fulfilled, a discrete 
transition takes place from one node to another if the 
nodes are connected by an edge. For more details 
about the definition of hybrid automaton see 
Johansson et al. (1999). 
 

 
 
Fig. 2. Hybrid automaton of the controlled reverse 

flow reactor.  
 

3. RESULTS 
 
The influence of the set point temperature on the 
dynamic behaviour of the closed loop system is 
analysed. Varying set-pointθ , the controlled reverse 
flow reactor shows a very complex behaviour: Zeno 
phenomena, multiplicity of symmetric and 
asymmetric regimes, quasi-periodic regimes and 
strange attractors are observed.  
 
3.1 Zeno executions and multiplicity of  regimes. 
 
Hybrid systems allow a particular type of solutions 
called Zeno executions, which cannot be find in 
continuous dynamical systems.  
Formally, an execution of a hybrid automaton H is a 
collection ( ), ,x IOχ τ= , where [ ]{ } 1

, '
N

i i i
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=
=  is a 

finite or infinite sequence of intervals in which 
, 'i iτ τ  are the instants of inversions and 

'
1i i iτ τ τ +≤ = . When ',i it τ τ⎡ ⎡∈ ⎣ ⎣ , IO is constant while 

x evolves according to the continuous dynamical 
system (Eqs. (1)-(4)). When '

it τ= , a discrete 
evolution takes place governed by the reset map R: 
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So the definition of execution involves both the 
evolution of the continuous variables and the 
evolution of discrete variables. 
An execution is called Zeno if τ is an infinite 
sequence but ( )'i ii

τ τ− < ∞∑ , in that case 

( )'i ii
τ τ τ∞ = −∑ is called Zeno time. Roughly 

speaking, there is a Zeno execution when a infinite 
number of discrete transitions (i.e. inversions) occurs 
in a finite time.  
The controlled reverse flow reactor is a hybrid 
system  which admits Zeno executions. A numerical 
simulation of this phenomenon is reported in Fig. 3.  
Physically Zeno state corresponds to a non-ignited 
regime: To segregate the necessary heat to sustain 
autothermally the process, control system would 
switch with infinite frequency.  
In all the parameter ranges of interests, the system 
admits a non-ignited regime. But for set-point 7.9θ ≥ −  
the extinction of the reaction is reached through a 
Zeno execution, while for set-point 7.9θ < −  the control 
does not activate and the reactor admits a non-ignited 
stationary state, typical of an unforced fixed bed 
reactor. 
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Fig. 3. Temporal series of a Zeno execution of the 

controlled reverse flow reactor ( set-point 7.9θ = − ). 

outθ  is the gas dimensionless temperature at z=1. 
In this case Zeno time is ( ) 331Xτ∞ ≈ . 

 
Moreover, in the parameter range ( )8.10; 7− − , these 
non-ignited regimes coexist with one or more ignited 
regimes. 
Ignited stable periodic symmetric regimes are found 
in the range ( )8.10; 8.07− − . The symmetry of these 
periodic regime is a spatio-temporal one (Russo, et 
al., 2002) and then it can be expressed by the 
following  relation: 
 

( )( , ) 1 , 2x z t x z t T= − +                     (12) 
 
where T  is the solution period, 2T  is the time 
between two successive switches. Spatial profiles of 
a symmetric periodic regime are reported in Fig. 4, 
where it is evident that the profile at instant t+ T/2 is 
a mirror reflection of the profile at instant t, as 
dictated by Eq. (12) 
In symmetric regimes, two symmetrically placed 
reactor points (z and 1-z) experience the same time 
series but with a time shift equal to 2T  (Russo, et 
al., 2002). 
Moreover, for higher parameter values, asymmetric 
ignited periodic regimes are observed. An example of 
spatial profiles for asymmetric periodic regime are 
reported in Fig.5  
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Fig. 4. Spatial solid temperature profiles at time t and 
t+ T/2 of a symmetric periodic regime. 
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Fig. 5. Spatial solid temperature profiles at time t and 

t+ T/2 of an asymmetric periodic regime. 
 
It can be observed that asymmetric periodic regimes 
are characterized by a higher maximum temperature 
than symmetric regimes. Furthermore, time series at 
two symmetrically placed reactor points (z and 1-z), 
are completely different. So the symmetry-breaking 
transitions correspond, in some points of the reactor, 
to sudden increase of temperature and then must to 
be avoided. 
 As set-pointθ is further increased, more complex 
regimes, like quasi-periodic and even chaotic 
regimes, occur. To better understand this complex 
dynamics and to detect the parameter range 
corresponding to safety operations, a systematic 
study of limit cycles bifurcations is needed. 
  
 
3.2 Continuation of periodic regimes. 
 
Due to the discontinuity of the vector field, the 
closed loop system dynamics cannot be studied with 
standard tools for bifurcation analysis. To overcome 
this problem the analysis is carried out through the 
construction of the limit cycles Poincaré map.  
Controlled reverse flow reactors can be classified as 
autonomous systems i.e. neither vector field nor  
control law depend explicitly on time. Therefore, not 
only Poincarè maps have a local meaning, but their 
construction is not trivial because of the difficulties 
in the identification of Poincarè sections. However, 
for the analysis of hybrid systems, suitable maps can 
be defined which are useful to understand the 
underlying system dynamics (di Bernardo and Vasca, 
2000). In our case, the so called impact map can be 
constructed  sampling the state of the system at every 
switch. Generally, an impact map is not a Poincarè 

map, but it can be easily show that in this case its 
second iterate it is. 
The stability and bifurcation analysis of limit cycles 
can been conducted through the study of the fixed 
points of their Poincarè map. The computation of 
Floquet multipliers and the bifurcations detection are 
done coupling the continuation software AUTO 
(Doedel, et al., 1997) with an external subroutine 
which computes numerically the Poincarè map as the 
second iterate of the impact map. 
With this numerical technique it was obtained the 
solutions diagram reported in Fig. 6 where the 
bifurcation parameter is the set-point temperature. 
Stable periodic regimes are shown as solid lines, 
unstable regimes are shown as dashed lines. Only 
ignited solutions are reported. 
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Fig. 6. Solutions diagram of periodic regimes with 

the set point temperature as the bifurcation 
parametr. outθ is the gas temperature at z=1.  

 
For low values of the set point temperature, the 
closed loop reactor exhibits periodic symmetric 
regimes. As the set point temperature is increased 
until -8.07, the system exhibits a supercritical 
pitchfork bifurcation (PF in Fig. 6).  As a 
consequence, the symmetric periodic regime 
becomes unstable and two stable asymmetric 
periodic regimes appear. Further increase of 
bifurcation parameter leads to the appearance, at 

set-point 7.32θ = − , of a couple of Neimark-Sacker 
bifurcations (NS) on the two asymmetric periodic 
branches. In correspondence of these bifurcations, 
two complex conjugate Floquet multipliers go 
outside the unit circle: each asymmetric periodic 
regime becomes unstable leading to an asymmetric 
quasi-periodic regime. The Poincaré section of a 
quasi-periodic regime is represented in Fig. 7. 
Obviously, because of the symmetry of the system, 
two conjugate quasi-periodic regime coexist. 
Asymmetric periodic and quasi-periodic regimes 
coexist with Zeno executions. This is the first time 
that this coexistence is observed in a hybrid system. 
The region of coexistence is reported in Fig. 6. 
Moreover, as the bifurcation parameter is further 
increased these quasi-periodic regimes evolves into a 
couple of strange attractors. When these attractors 
disappear only Zeno executions are observed by 
numerical simulations. So, beyond a determined 
value of set-point temperature ( set-point 6.9θ −� ), the 
control system is not able to sustain ignited regimes. 

 
3.3 From quasi-periodic regime to  chaos 

No Zeno 
Executions 

Zeno Executions 



 

     

 
In this section the transition is discussed from 
asymmetric quasi-periodic regimes to strange 
attractors. 
As the set-point temperature is increased, new pieces 
of invariant sets appear on the Poincarè section, as it 
is shown in Fig. 8. At the same time, the curve 
corresponding to the Poincarè section of the 
quasiperiodic regime, becomes more and more 
wrinkled (zoom in Fig. 8).  
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Fig. 7. The Poincarè section of a quasi periodic 

regime. 
 
These phenomena can be explained as the result of 
the fractalization of the torus surface where the 
quasi-periodic solution evolves. Moreover the 
corresponding maximal Lyapunov exponent is 
positive (the computations are conducted on the map 
with the software TISEAN (Hegger, et al., 1999)), 
and thus these regimes can be classified as chaotic 
attractors.  
 

θin

-4.8 -4.6 -3.0 -2.7 -2.4

θout

-2

-1

0

1

2

3

4

-4.62 -4.61 -4.60 -4.59 -4.58

-1.05

-0.95

-0.85

-0.75

 
Fig. 8. The Poincarè section of the new chaotic 

regime. 
 
However, this chaotic regime is not the kind that can 
be encountered in continuous dynamical systems. 
Indeed, in this case, we conjecture that the 
fractalization is due to the interaction of the quasi 
periodic regime with the Zeno state. This interaction 
can be easily recognized looking at the time series 
reported in Fig. 9. The temporal evolution of the 
state is characterized by quasi-periodic oscillations 
(upper figure in Fig. 9) interrupted by high 
frequencies oscillations like those of a Zeno 
execution. A zoom of these Zeno-like oscillations is 
reported in the lower figure in Fig. 9.  
Numerical simulations have shown that, as the 
bifurcation parameter is increased, the frequency of 
these Zeno-like oscillations grows. 
 

3.4 Temporal regularization  
 
Zeno executions are unfeasible in real systems. 
Typically they are due to modelling abstractions or 
are related to the control policy (Johansson, et al., 
1999). However, they are associated to high 
frequency switching or chattering, which is 
undesirable from a practical view point.  
In the case of the controlled RFR Zeno phenomena 
are due to the assumption that the flow inversion is 
instantaneous. So a way to resolve the Zeno 
phenomena is to consider a temporal regularization 
(Johansson, et al., 1999). In many cases, this 
regularization can be obtained modelling the 
switching action with a more realistic time delay ε 
between the time at which the set point valued is 
reached and the time at which the flow is 
commanded to switch. A temporal regularization of 
the closed loop reactor is shown in Fig. 10. 
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Fig. 9.Time series the new chaotic behaviour (upper 

figure) and a zoom of the high frequency Zeno 
like oscillations (lower figure). 

 
As it is apparent in Fig. 10 after a short transient that 
shows many high frequency switches, the inlet 
temperature decreases until the extinction of the 
reaction. The longer the time delay chosen is, the 
shorter the transient. It is important to stress that, 
though the Zenoness is removed, a wide time range 
exists where the closed loop system exhibits many 
fast switches. Moreover, the dynamics of the 
controlled reactor is still much complex. Indeed, it is 
found that temporal regularization doesn’t modify the 
bifurcation diagram reported in Fig.3. Periodic 
symmetric and asymmetric periodic regimes as well 
quasi-periodic and chaotic attractors are still p resent. 
Furthermore, the temporal regularization does not 
remove behaviours with Zeno-like oscillations like 
those reported in Fig. 9.   

 
4. CONCLUSIONS 

 
The nonlinear dynamics of a controlled reverse flow 
reactor is studied by using a hybrid model of the 



 

     

system and choosing the set-point temperature as a 
bifurcation parameter. It is known that hybrid 
systems can exhibit so-called Zeno states. In the case 
under study, the Zeno state corresponds to a non-
ignited regime and its detection has practical 
relevance. Indeed,  the Zeno execution corresponds 
to operating conditions in which the control law is 
malfunctioning and unable to achieve the desired 
control objective. In this paper we show that, in the 
system of interest, 
Zeno phenomena are coexisting with other regimes 
like limit cycles and quasi-periodic regimes in a wide 
parameter range. We characterize these limit cycles 
and their bifurcations with the application of 
continuation techniques to the impact map of the 
system.  
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Fig. 10. Temporal series of a quasi-Zeno execution 

of the regularized hybrid automaton of the 
controlled reverse flow reactor.  

 
The numerics shown that  chaotic behaviour seems to 
arise as a consequence of  the interaction of a quasi-
periodic attractor with a coexisting Zeno state. A 
temporal regularization is adopted to remove the 
Zeno state, but it is shown not to have an influence 
on the  bifurcation diagram and the nature of the 
route to chaos observed in the system. Therefore, in 
order for the control system to induce adequate 
ignited regimes for the examined process, a suitable 
start-up policy must be adopted to avoid extinction of 
reactions or control system breaks. Ongoing work is 
aimed at a further characterisation of the novel 
transition reported here involving the coexistence of 
Zeno points with other stable attractors. 
 
NOMENCLATURE 
 
B adiabatic temperature increase 

( ),A in g pg inHC c Tγ ρ∆  

Da Damköler number ( )in sLr vε  

θ dimensionless temperature ( )in inT T Tγ −%  

wθ  dimensionless wall temperature ( )0 0wT T Tγ−  
φ heat transfer coefficient at the wall 

( )g4 fw pg rh L c d vρ ε  

η Effectiveness factor of the catalyst 
γ%  Nondimensional activation energy ( )inE RT  

m
gJ  mass transfer coefficient ( )mk aL vε  
h
gJ  heat  transfer coefficient ( )fc g pgh aL c vρ ε  

m
gPe  Péclet number for mass in gas phase Lv D  
h
gPe Péclet number for energy in gas phase 

g pg gc Lv kρ  
h
gPe Péclet number for energy in solid phase 

s ps sc Lv kρ  
y conversion (Cin-C)/Cin 
z dimensionless axial coordinate (z*/L) 
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