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Abstract: It is well-known that Bode’s gain/phase relation imposes limitations
on the performance of a linear system. To circumvent these limitations, two
examples from literature on nonlinear controllers, more precisely, a PID with
nonlinear gain and a SPAN (split-path nonlinear) filter, are implemented on
a motion system in order to improve the step response in comparison with a
conventional linear PID controller. Simulations and experiments are presented
and it is shown that these nonlinear control strategies can outperform a linear

PID controller. Copyright®© 2005 IFAC
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1. INTRODUCTION

There has been considerable interest in litera-
ture on the topic of fundamental limitations in
feedback systems with known plant dynamics.
This has its origin in the seminal work of Bode
(Bode, 1945), more recent work is contained in
(Seron et al., 1997). Most of this work is restricted
to linear feedback loops. Part of the limitations
is inherently linked to the plant and thus hold
irrespective of how the input is generated, be it via
linear, nonlinear or time-varying feedback. Other
limitations are a consequence of the plant acting
in combination with linear time invariant (LTT)
feedback control. This naturally rises the question
if these latter limitations can be ameliorated by
using nonlinear or time-varying in stead of LTI
feedback.

Being aware of the difficulties and bad effects
normally associated with the presence of nonlin-
earities, it may appear a step backwards to inten-
tionally introduce nonlinearities into an otherwise
essentially linear system. A problem that arises is
to be able to predict the systems response for var-

ious inputs. In many cases however, there may be
good reasons to intentionally introduce nonlinear
elements in the feedback loop. Indeed, in litera-
ture several examples have been presented show-
ing that nonlinear control can, in certain circum-
stances, outperform linear time invariant feedback
control for known plants. In (Feuer et al., 1997),
it is shown that a simple PI controller whose inte-
grator is switched on and off depending on the size
of the error, performs better than its linear time
invariant counterpart. Also, based on experience,
several nonlinear ‘tricks’ are used in industry to
obtain better performance of an LTI feedback
system (Heertjes and Steinbuch, 2004). A more
systematic strategy for nonlinear control of an
LTT plant is reset control. Reset control action
resembles a number of popular nonlinear control
strategies such as relay control (Tsypkin, 1984),
sliding mode control (Decarlo, 1988) and switch-
ing control (Branicky, 1988).

The motivation for these and other types of non-
linear control for linear systems is the fact that
linear controllers have the inherent disadvantage
that their gain and phase characteristics are re-



lated (Bode, 1945). Specifically, the need to opti-
mize the open-loop high frequency gain often com-
petes with required high levels of low frequency
loop gains and phase margin bounds. To illustrate
this point, consider a typical fourth order electro-
mechanical motion system modeled as two double
integrators connected by a spring and damper.
The open-loop frequency response is required to
have sufficient bandwidth and large low frequency
gain to obtain a fast response and good settling
behavior or tracking. On the other hand, at high
frequencies, it needs to be small to suppress resid-
ual vibration and sensor noise. This performance
trade off is defined by Bode’s gain/phase relation,
which limits how fast the open-loop gain can cross
unity gain while maintaining closed-loop stabil-
ity, whereas in the ideal case these characteristics
should be designed independently of one another.
This paper reviews two examples of nonlinear con-
trol of linear systems and presents simulation and
experimental results obtained on a dual rotary
4th order motion system. Since a common test of
servo performance is the step response, the goal
of this paper is to show that the introduction of
nonlinear elements in an essential linear motion
system can improve the step response with respect
to the combination of overshoot and settling time
when compared to standard linear feedback. To
the authors knowledge, no experimental results
of this kind obtained on motion systems have
been presented in literature yet. In section 2, a
nonlinear gain and a SPAN (split-path nonlinear)
filter are discussed, and simulation and experi-
mental results are presented. Finally, conclusions
and some ideas for future research are given.

2. NONLINEAR CONTROL EXAMPLES

In this section, simulations of nonlinear con-
trol strategies are presented, i.e. nonlinear gains
(Kalman, 1955), and a SPAN filter (Foster et
al., 1966). The system under consideration is a
dual rotary 4th order motion system, the bode
diagram of which is shown with the dashed line
in Fig. 1. The identified fourth order model of
this system is depicted in the same Fig. with the
solid line. The control setup is depicted in Fig. 2.
In this figure, NL denotes the nonlinear control
element, C denotes the linear controller and P
denotes the linear system dynamics. In order to
guarantee zero settling error, a linear controller
consisting of a proportional part, a lead/lag filter
and an integrator is applied to the system. The
bode diagram of this controller and the resulting
open loop system are depicted in figures 3 and 4.
The bandwidth is not chosen high since we are
only interested in the difference in performance
between the linear and the nonlinear controllers.
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Fig. 1. Bode diagram of the system (dashed) and
of the model (solid).

r(t) e(t) y(t)
—()—+ NL |- C |~ P

Fig. 2. Control scheme.
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Fig. 4. Open loop of the controlled system.

2.1 Nonlinear gain element

A nonlinear gain element is an element where
a multiplication composes the nonlinearity. The
gain element may be presented anywhere in the
loop and can be a function of any loop variable,
which in this case is the error. The proportional
gain, Ky, = 0.9, is substituted by a nonlinear non-



smooth gain element. The objective of this non-
linear gain is to diminish the overshoot without
increasing the settling-time (here defined as the
smallest time for which the response comes and
stays in a band of 95% of its final value) of the
transient response to a step input. A gain element
consisting of three parts is depicted in Fig. 5. Since
a nonlinear gain is a single-valued nonlinearity,
its describing function is only a function of the
amplitude of its input, and not of the frequency.
The describing function of this nonlinear gain is
shown in Fig. 6. The three parts of this gain are
denoted by A, B, and C in these figures. Since
our purpose is to obtain an overshoot as small
as possible, combined with a small settling time,
the following choice has been made for the gains
in part A, B, and C. The gain corresponding
with part A determines the initial response on
a changing setpoint, it is used when the error is
relatively large. In order to obtain a small rise
time, this gain should be chosen relatively large to
have a similar initial response as the linear system,
K4 = Kjn. To obtain a small overshoot, a rela-
tively small gain should be used when the systems
response is approaching the setpoint, therefore
Kp = ﬁK]in7 and finally, a small settling-time
can be obtained by choosing a relatively large
value for the small error gain, Ko = 2.5K),.
The values of the error at which switching occurs,
also influences the final response. In this case, we
would like to have a fast response, so a relatively
high bandwidth, within a settling band of 10% of
the step value of 5 radians. Therefore, part C has
its boundaries at e = —0.5 rad. and e = 0.5 rad.
To diminish the overshoot, a large band has been
chosen in which the second stage gain is active, so
B is in the range £[0.5, 4].
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Fig. 5. Nonlinear gain element consisting of three
parts.

Stability / limit cycling. Since non-smooth non-
linear gain elements are used, care has to be
taken that the system remains stable and that no
unwanted phenomena like limit cycling occur. A
nonlinear element can cause this behavior as is
shown by the following. The closed loop transfer
function of the control system is given by
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Fig. 6. Describing function of the nonlinear gain
element.
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where Ng(e) is the describing function of the
nonlinear gain. The characteristic equation

1+ Ny(e)C(iw)G(iw) = 0 (2)

indicates stability. Therefore, the condition which
governs the existence of a limit cycle is given by

1
N;(e)

(3)
The part of the curve —1/N;(e) encompassed by
the C(iw)G(iw) Nyquist curve indicates the am-
plitudes of e for which the system is unstable and
vice versa. The intersection of both curves defines
the possible oscillation on which the system be-
havior will stay. In Fig. 7, the Nyquist curve of
C(iw)P(iw) together with —1/N(e) is depicted
for the proposed nonlinear gain. Since —1/Ng(e) is
always outside the Nyquist curve of C'(iw)P (iw),
the closed-loop system is stable.
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Fig. 7. Nyquist diagram of the open-loop (dashed)
and —1/Ns(e) (solid).

Stmulation and experimental results. The simu-
lated step response of the linear system with con-
stant gain, and the system incorporating the gain
consisting of three parts is depicted in Fig. 8.
The results are as expected, the initial response
is fast, then the response slows down resulting
in a much smaller overshoot than was the case



with the linear controller, and when the response
is close to the setpoint, the high gain, K¢, enforces
fast settling behavior. In Fig. 9, the measured
step response is depicted. As can be seen, the
qualitative behavior is the same, however, due
to friction and other un-modeled dynamics, the
quantitative behavior differs from the simulation.
The main difference is the smaller overshoot when
the linear controller is applied due to the friction
that is present in the setup.
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Fig. 8. Simulated stepresponse of the linear system
(dashed) and with the nonlinear gain (solid).
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Fig. 9. Measured stepresponse of the linear system
(dashed) and with the nonlinear gain (solid).

If the gain for small-amplitude errors is enlarged
to K¢ = 12.5Kj;,, limit cycling occurs. In Fig. 10,
again the Nyquist curve of C'(iw)G(iw) together
with —1/Ng(e), with Ng(e) the new describing
function, is depicted. It is obvious that there is
a crossing, hence a limit cycle will exist. Since
the gain is a single-valued nonlinearity, the cross-
ing takes place on the real axis, and therefore
it is straightforward to estimate the frequency
and amplitude of the oscillation. The value of
the describing function at the crossing point is
equal to the gain margin of the open loop system,
which is in this case 5.82. The frequency at this
point is 44.8 Hz. An estimate can be made of the
amplitude form the describing function, namely
the value of the amplitude for which the describing
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Fig. 10. Nyquist diagram of the open-loop
(dashed) and of the describing function
(solid).

function has value N;(e) = 5.82, is approximately
e = 1.16. The simulated step response of the
linear system with constant gain and of the sys-
tem incorporating the nonlinear gain are depicted
in Fig. 11. Indeed, limit cycling occurs, and the
estimated values of the amplitude and frequency
of the oscillation correspond very well. In Fig. 12,
the measured step response of the linear system
with constant gain, and the system incorporating
the nonlinear gain are depicted. Again the quali-
tative behavior is the same, the differences up to
0.4 seconds can be explained by friction, and the
additional frequency which is visible in the limit
cycle is caused by un-modeled dynamics such as
cogging.
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Fig. 11. Simulated stepresponse of the system with
increased K¢ (solid).

2.2 SPAN filter

The SPAN (split-path nonlinear) filter is an at-
tempt to obtain a filter which has independent
gain and phase characteristics. In Fig. 13, a block
scheme of a SPAN filter is depicted. This filter
processes the input in two paths and multiplies
the output of the two branches. The path con-
taining the sign element controls the sign of the
signal and destroys all magnitude information,
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Fig. 12. Measured stepresponse of the system with
the increased nonlinear gain (solid).
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Fig. 13. Block diagram of a SPAN filter.
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while the absolute value element destroys all sign
information, and therefore controls the magnitude
information. The phase shift of the absolute value
path is reflected in the output. With this filter,
the sign and the magnitude can be independently
chosen.

The SPAN filter can be used as a phase lead
filter that does not cause magnitude amplification.
In the control scheme in Fig. 2, the SPAN filter
takes the place of the nonlinear element and the
integrator and the lead filter are still used. It is
now possible to increase the cut-off frequency of
the integrator while keeping the closed loop stable
by applying a lead filter in the sign path of the
SPAN filter. In the absolute value path, a low-
pass filter is used to attenuate higher frequen-
cies. In Fig. 14, the describing function of the
SPAN filter is depicted. This describing function
is independent of the amplitude of the input but
depends only on the frequency. As can be seen,
within the describing function theory, this filter
is able to obtain phase lead while attenuating the
magnitude, something which is not possible with
any linear filter.

Stability. With the SPAN filter in the loop, the
cut-off frequency of the integrator can be in-
creased without destabilizing the closed-loop sys-
tem. To see this, in Fig. 15 the Bode diagram
of the open-loop with increased cut-off frequency
of the integrator but without the SPAN filter is
depicted by the dashed line. It is obvious that
to stabilize the closed loop, extra phase needs to
be created around the bandwidth. With a linear
compensator, it is not possible to accomplish this

o

initude [dB]
&

Magi
—
ot

00 10! 102

0° 10 10?
Frequency [Hz|

Fig. 14. Frequency dependent describing function
of the SPAN filter.

without magnitude amplification, while the SPAN
filter is, as can be seen in the same figure where
the solid line depicts the open-loop including the
SPAN filter. The Nyquist plot of the open-loop
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Fig. 15. Bode diagram of the open-loop without
(dashed) and with (solid) the SPAN filter.

with and without the SPAN filter is depicted in
Fig. 16, and as can be seen, the SPAN filter sta-
bilizes the closed-loop. In the design of the filter,
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Fig. 16. Nyquist plot of the open-loop with (solid)
and without (dashed) the SPAN filter.

the cut-off frequency of the integrator is increased
to 18.5 Hz, the cut-off frequency of the low-pass
filter is set to 11.14 Hz, the zero of the lead filter



is placed at 2.12 Hz, and the pole is located at
38.19 Hz. The gain of the SPAN filter was tuned
to obtain a step response without overshoot and
a reasonable settling time and is set to 0.15.

Simulation and experimental results. In figures
17 and 18, the simulated and measured step re-
sponses of the linear controlled system and of the
system with the SPAN filter are shown. This filter
is able to obtain approximately the same settling
time, while avoiding overshoot completely. This
is a response that cannot be obtained using a
linear controller. A drawback of the SPAN filter
is the tedious tuning. Since it is a nonlinear filter,
superposition does not hold and, therefore, the
tuning procedure for every parameter is based on
trial-and-error. A big advantage of the SPAN filter
is the fact that its performance is independent of
the amplitude of the input.
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Fig. 17. Simulated stepresponse of the linear
system (dashed) and with the SPAN filter
(solid).
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Fig. 18. Measured stepresponse of the linear
system (dashed) and with the SPAN filter
(solid).

3. CONCLUSION AND FUTURE RESEARCH

In this paper, two nonlinear control strategies are
discussed for a linear time-invariant plant, i.e. a

nonlinear gain and a SPAN filter. Simulations and
experiments performed on a fourth order motion
system show that a controller with nonlinear ele-
ments can improve performance with respect to
overshoot and settling time of a step response
when compared to an LTI controller. The SPAN
filter is even able to settle in approximately the
same time as a linear controller, but without any
overshoot. It would be useful to know if such
nonlinear strategies are also able to increase per-
formance when other reference signals are used or
when disturbances are present on the system.
Future research aims to give an answer to these
and other issues regarding nonlinear control of lin-
ear systems, and to develop a systematic approach
to nonlinear controller synthesis for linear plants
in order to outperform LTI controllers. A promis-
ing link with respect to the synthesis of nonlinear
controllers for linear systems is the control theory
of gain scheduled and linear parameter-varying
(LPV) plants (Rugh and Shamma, 1999).
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