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Abstract: Dynamic neural networks are often used for nonlinear system identifica-
tion. This paper presents a novel series-parallel dynamic neural network structure
which is suitable for nonlinear system identification. A theoretical proof is given
showing that this type of dynamic neural network is able to approximate finite
trajectories of nonlinear dynamical systems. Also, this neural network is trained
to identify a practical nonlinear 3D crane system. Copyright c©2005 IFAC.

Keywords: recurrent neural networks, system identification, nonlinear systems

1. INTRODUCTION

The introduction of artificial neural networks
methods for modelling, identification and con-
trol maybe the most innovative technical devel-
opment in the past two decades in the control
field (Narendra and Parthasarathy, 1990; Miller
et al., 1990). A recurrent neural network is a
closed loop system, with feedback paths introduc-
ing dynamics into the model. They can be trained
to learn the system dynamics without assuming
much knowledge about the structure of the system
under consideration.

Dynamic neural networks (DNNs) have important
properties that make them convenient to be used
together with nonlinear control approaches based
on state space models and differential geometry
(Garces et al., 2003). The development of novel
empirical model structures, such as DNNs, is a rel-
evant challenge being addressed in this work. This
paper presents a new dynamic neural network
structure which is suitable for the identification

of highly nonlinear systems. A theoretical proof
showing how this dynamic neural network can ap-
proximate finite trajectories of general nonlinear
dynamic systems is given. To illustrate the capa-
bilities of the new structure, a network is trained
to identify a real nonlinear 3D crane system. As
the proposed dynamic neural network uses both
the plant output and input for its training and
operation, it can be classified as a series-parallel
model (Narendra and Parthasarathy, 1990).

The paper is organized as follows. Section 2 dis-
cusses the universal approximation property of
static multilayer perceptrons. Section 3 introduces
the class of dynamic neural networks of interest in
this paper. Section 4 discusses theoretical results
on the approximation ability of dynamic neural
networks. Section 5 presents an example. Finally,
Section 6 gives concluding remarks.



2. THE UNIVERSAL APPROXIMATION
PROPERTY OF STATIC MULTILAYER

NETWORKS

An important result of approximation theory
states that a three-layer feedforward neural net-
work with sigmoidal activation functions in the
hidden layer and linear activation functions in the
output layer, has the ability to approximate any
continuous mapping f : R

n → R
q to arbitrary

precision, provided that the number of units in
the hidden layer is sufficiently large.

The following theorem is a version of the funda-
mental approximation theorem provided by Funa-
hashi (Funahashi, 1989). Similar results have been
obtained by Cybenko (Cybenko, 1989) and others.

Theorem 1. Let K be a compact set of R
n and

f : K → R
q be a continuous mapping. Then,

for arbitrary ε > 0, there exists an integer Nh,
a q × Nh matrix W2, an Nh × n matrix W1, and
an Nh dimensional vector b such that:

max
x∈K
||f(x)−W2σ(W1x + b)|| ≤ ε, (1)

where σ : R
Nh → R

Nh is a sigmoid mapping whose
elements are defined as follows:

σ(z) =







σ(z1)
...

σ(zNh
),






(2)

where z = [z1, . . . , zNh
]T ∈ R

Nh .

For the proof of the above theorem, see (Funahashi,
1989).

3. DYNAMIC NEURAL NETWORKS

This paper concentrates on the properties of
a class of dynamic neural networks henceforth
known as Type 1 DNN.

Dynamic neural networks are made of intercon-
nected dynamic neurons, also called units. The
class of neuron of interest in this paper is de-
scribed by the following differential equation:

ẋi = −βixi +
N

∑

j=1

ωijσ(yj) +
m

∑

j=1

γijuj , (3)

where βi, ωij and γij are adjustable weights, with
1/βi a positive time constant and xi the activation
state of the ith unit, yj the actual system output
or the hidden state of the jth unit, σ : R → R a
sigmoid function and u1, . . . , um the input signals.

A dynamic neural network is formed by a single
layer of N units. The first n units are taken as
the output of the network, leaving N −n units as

hidden neurons. A type 1 DNN is defined by the
following vectorised expression:

ẋ = −βx + ωσ(y) + γu

yn = Cnx ,
(4)

where x are coordinates on R
N , β ∈ R

N×N

is a diagonal matrix with diagonal elements
{β1, . . . , βN}, ω ∈ R

N×N , γ ∈ R
N×m are weight

matrices, σ(x) = [σ(x1), . . . , σ(xN )]T is a vec-
tor sigmoid function, u ∈ R

m is the input vec-
tor, yn ∈ R

n is the plant output vector, y =
[yn

T , xn+1, ..., xN ]T , Cn = [In×N , 0n×(N−n)].

A type 1 DNN differs from the dynamic neural
network described in Chapter 4 of the book
(Garces et al., 2003), which in this paper is known
as type 2 DNN, in the argument of the vector
sigmoid function σ(·). A type 2 DNN is described
by the following vectorised expression:

ẋ = −βx + ωσ(x) + γu

yn = Cnx ,
(5)

Define the output state vector xp = [xp
1, ..., x

p
n]T =

yn as the internal state of the n output units. De-
fine the hidden state vector xh = [xh

1 , ..., xh
N−n]T

as the internal state of the N − n hidden units.
A type 1 DNN uses plant output and the hidden
state in the argument of the vector sigmoid func-
tion σ(·), while a type 2 DNN uses the whole state
vector of the network, which consists of the output
states and the hidden states, in the argument
of the vector sigmoid function. The difference is
illustrated in Figure 1 and in Figure 2.
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Fig. 1. Block diagram of type 1 DNN

4. APPROXIMATION ABILITY OF TYPE 1
DYNAMIC NEURAL NETWORKS

This section describes how any finite time trajec-
tory of a given finite-dimensional non–autonomous
dynamic system ẋ(t) = f(x(t), u(t)) can be ap-
proximated by a type 1 DNN. The theory uses
the fundamental approximation theorem of neural
networks and shows that, under certain condi-
tions, there exists a dynamic neural network with
a sufficient number of hidden units such that
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Fig. 2. Block diagram of type 2 DNN

the approximation error is bounded to a de-
sired level. This theory is inspired by previous
work on the approximation of finite trajectories
of autonomous nonlinear systems (Funahashi and
Nakamura, 1993; Kimura and Nakano, 1998). The
book (Garces et al., 2003) presents a theorem that
shows that a type 2 DNN can approximate general
nonlinear systems.

Corollary 1. (Garces et al., 2003). Let K and U
be compact subsets of R

n and R
m, respectively,

and f : K × U → R
n be a continuous mapping.

Then, for arbitrary ε > 0, there exists an integer
Nh, an n×Nh matrix W2, an Nh×n matrix W1, an
Nh ×m matrix γ1, and an Nh dimensional vector
b such that:

max
x∈K,u∈U

||f(x, u)−W2σ(W1x+γ1u+b)|| ≤ ε, (6)

where σ : R
Nh → R

Nh is a sigmoid mapping whose
elements are defined as follows:

σ(z) =







σ(z1)
...

σ(zNh
),






(7)

where z = [z1, . . . , zNh
]T ∈ R

Nh .

Proof. The proof follows directly from Theorem 1,
by making the following substitutions: K ← K ×
U , q ← (n + m), x← [xT uT ]T , W1 ← [W1 γ1].

Theorem 2. Let D be an open subset of R
n, and

U and open subset of R
m. Let f : D×U → R

n be
a C1-mapping, u : [0, T ] → U be a C1 function,
K̃ be a compact subset of D. Suppose that there
exists a set K ⊂ K̃ so that any solution x(t)
with initial value x(0) ∈ K of the non-autonomous
system

ẋ(t) = f(x(t), u(t)) (8)

is defined on I = [0, T ] (0 < T <∞) for u(t) ∈ U
with t ∈ I, and is included in K̃ for any t ∈ I.
Then, for an arbitrary ε > 0 , there exists a
non-autonomous dynamic neural network with n
output units with states xo ∈ R

n and Nh hidden
units with states xh ∈ R

Nh , of the form:

ż = −βz + ωσ(z) + γū, (9)

where z = [xoT xhT
]T ∈ R

n+Nh , ū = [uT u̇T ]T ∈
R

2m, β ∈ R
n+Nh×n+Nh is a diagonal matrix,

ω ∈ R
n+Nh×n+Nh and γ ∈ R

n+Nh×2m are weight
matrices, such that for a solution x(t) satisfying
Equation (8), and an appropriate initial state, the
states of the output units of the network, xo(t),
approximate the solution of the non-autonomous
system:

max
t∈I
||x(t)− xo(t)|| < ε; I = [0, T ] (0 < T <∞).

(10)

Proof. See the book (Garces et al., 2003).

Theorem 3. Let D be an open subset of R
n, and

U and open subset of R
m. Let f : D×U → R

n be
a C1-mapping, u : [0, T ] → U be a C1 function,
K̃ be a compact subset of D. Suppose that there
exists a set K ⊂ K̃ so that any solution x(t)
with initial value x(0) ∈ K of the non-autonomous
system

ẋ(t) = f(x(t), u(t)), (11)

is defined on I = [0, T ] (0 < T <∞) for u(t) ∈ U
with t ∈ I, and is included in K̃ for any t ∈ I.
Then, for an arbitrary ε1 > 0 , there exists a
non-autonomous dynamic neural network with n
output units with states xp ∈ R

n and Nh hidden
units with states xh ∈ R

Nh , of the form:

ż = −βz + ωσ(z1) + γū, (12)

where z = [xpT xhT
]T ∈ R

n+Nh , z1 =

[xT xhT
]T ∈ R

n+Nh , ū = [uT u̇T ]T ∈ R
2m,

β ∈ R
n+Nh×n+Nh is a diagonal matrix, ω ∈

R
n+Nh×n+Nh and γ ∈ R

n+Nh×2m are weight
matrices, such that for a solution x(t) satisfy-
ing Equation (11), and an appropriate initial
state, the states of the output units of the net-
work, xp(t), approximate the solution of the non-
autonomous system:

max
t∈I
||x(t)− xp(t)|| < ε1; I = [0, T ] (0 < T <∞).

(13)

Proof. This proof uses Lemmas 1, 2 and 3, which
are given in the appendix. For given ε1 > 0 ,
choose ε > 0, ε2 > 0 and such that ε + ε2 ≤ ε1,
ε2 ≤

η1lG
exp(lGT−1) . Define now the mapping F :

R
n+Nh × R

2m → R
n+Nh as follows:

F (z, ¯̄u) = −βz + ωσ(z) + γ̄ ¯̄u. (14)

Then the dynamic system defined by F is:

ż = −βz + ωσ(z) + γ̄ ¯̄u, (15)

where ¯̄u = [ū δz]T , δz = [δx 0Nh×Nh
]T , δx = [x−

xp], ¯̄γ = [γ̄ 0(n+Nh)×(n+Nh)]. Equation (15) is
equivalent to Equation (9).

Define a new mapping F̃ : R
n+Nh×R

2m → R
n+Nh

as follows:



F̃ (z̃, ¯̄u) = −βz̃+ωσ(z̃+[0n×n I(n+Nh)×(n+Nh)]¯̄u)+γ̄ ¯̄u.
(16)

Then the dynamic system defined by F̃ is:

˙̃z = −βz̃ + ωσ(z̃ + [0n×n I(n+Nh)×(n+Nh)]¯̄u) + γ̄ ¯̄u.
(17)

Equation (17) is equivalent to Equation (12). Let
lG is the Lipschitz constant of F in z. It is not
difficult to infer that F̃ is also Lipschitz, so that
Lemma 2 is applicable to F and F̃ .

Note that

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| = ||ω|| · ||σ(z)− σ(z + δz)||
(18)

Suppose that xi is an element of z and that
δxi is an element of δz. Sigmoid function is a
continuous and differentiable function. By using
Taylor expansion to this sigmoid function:

||σ(xo
i)− σ(xo

i + δxi)|| =

|| − σ′(xo
i)δxi −

1

2
σ′′(xo

i)δxi
2 − · · · −O(δxi

n)||,(19)

where

O(δxi
n) =

∫ z+δz

z

f (n+1)(t)
(z − t)n

n!
dt, (20)

by using Lemma 3

O(δxi
n) = σ(n+1)(ζ)

(z − ζ)n

n!
δz, (21)

for ζ ∈ [z, z + δz], therefore,

O(δxi
n) ≤ σ(n+1)(ζ)

δzn+1

n!
, (22)

According to Equation (22), Equation (19) be-
comes

||σ(xo
i)− σ(xo

i + δxi)|| ≤ δxid ≤ εd, (23)

where d = || − σ′(xo
i) −

1
2σ′′(xo

i)δxi − · · · −

σ(n+1)(ζ) δzn

n! || is bounded. In conclusion, Equa-
tion (23) can be written as:

||σ(xo
i)− σ(xo

i + δxi)|| ≤ εd, (24)

According to Equation (24), Equation (18) can be
written as:

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| ≤ ||ω||dε, (25)

Equation (25) can be written as:

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| ≤ η1, (26)

by using Lemma 2

||xo(t)− xp(t)|| ≤
η1

lG
(exp(lGt)− 1), (27)

max
t∈I
||xo(t)− xp(t)|| < ε2, (28)

max
t∈I
||x(t)− xp(t)|| ≤

max
t∈I

(||x(t)− xo(t)||+ ||xo(t)− xp(t)||)≤

max
t∈I
||x(t)− xo(t)||+ max

t∈I
||xo(t)− xp(t)|| ≤

(ε2 + ε) ≤ ε1. (29)

which completes the proof. �

5. EXAMPLE

The 3D crane consists of a payload hanging on a
pendulum-like lift-line wound by a motor mounted
on a cart (Figure 3). The 3D crane system is mul-
tivariable, it exhibits highly nonlinear dymamics,
and has oscillatory behaviour with different time
scales, which makes it a challenging benchmark
for nonlinear identification, particularly with re-
current model structures. The payload is lifted
and lowered in the z direction. Both the rail and
the cart are capable of horizontal motion in the x
direction. The cart is capable of horizontal motion
along the rail in the y direction. Therefore the pay-
load attached to the end of the lift-line can move
freely in 3 dimensions. The 3D crane is driven
by the three DC motors and is fully interfaced to
MATLAB and SIMULINK. The crane has three
manipulated inputs, which are the references to
PWM circuits that drive three DC motors, and
five measurements obtained via optical encoders.

The schematic diagram of the 3D crane is given
in Figure 4.

Fig. 3. The 3D crane system setup.

There are five measured quantities:

• xw (not shown in Figure 4) denotes the
distance of the rail with the cart from the
centre of the construction frame;

• yw (not shown in Figure 4) denotes the
distance of the cart from the centre of the
rail;

• R denotes the length of the lift-line;
• α denotes the angle between the y axis and

the lift-line;
• β denotes the angle between the negative

direction on the z axis and the projection of
the lift-line onto the xz plane.
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Fig. 4. 3D crane system: coordinates and forces.

The position in cartesian co-ordinates of the pay-
load is denoted by xc, yc, zc and can be found from
the five measurements using kinematic equations.

Two neural networks of type 1 and 2 were used to
identify three-input three-output models, which
had as inputs the three reference voltages to
the PWM circuits and as outputs the three co-
ordinates of the payload position. Training was
performed using a genetic algorithm with real
enconding (Deng and Becerra, 2003). In both
cases, a 6-state dynamic neural network structure
was chosen. Figure 5 shows the training output
and the model output using the type 1 neural
network. Figure 6 shows the validation output and
model output for the same case. Figure 7 shows
the training output and the model output for type
2 dynamic neural network. Figure 8 shows the
validation data and model output for the same
case.

It is not difficult to see that a type 2 DNN had
problems to approximate the dynamic behaviour
of the system, whereas the type 1 DNN, which was
easier to train, was able to approximate the sys-
tem more accurately. The better approximation
capability exhibited by the type 1 DNN can be
attributed to the fact that this structure uses both
output and input information, as it is a series-
parallel model.

6. CONCLUSIONS

This paper presented a novel dynamic neural net-
work structure and it has been proved that the
network has the ability to approximate finite tra-
jectories of non-autonomous nonlinear dynamic
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Fig. 5. Training trajectories and model outputs
using the type 1 DNN
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Fig. 6. Validation trajectories and model outputs
using the type 1 DNN
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Fig. 7. Training trajectories and model outputs
using the type 2 DNN

systems. An example has been given to demon-
strate the effectivity of the proposed structure in
approximating complex nonlinear dynamics, and
its performance has been favourably compared,
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Fig. 8. Validation trajectories and model outputs
using the type 2 DNN

in terms of training difficulty and approxima-
tion ability, with a previously proposed dynamic
neural network structure.
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APPENDIX

The following Lemmas are useful for the proof of
Theorem 3.

Lemma 1. (Gronwall’s inequality). Let v : [t0, tf ]→
R be continuous and nonnegative. Suppose that
C ≥ 0 and L ≥ 0 are real numbers such that

v(t) ≤ C +

∫ t

t0

Lv(τ)dτ (.1)

for all t ∈ [t0, tf ]. Then

v(t) ≤ C exp(L|t− t0|) (.2)

for all t ∈ [t0, tf ]

Proof. See Chapter 8 of (Hirsch and Smale, 1974).

Lemma 2. Let F , F̃ : S × U → R
n be Lipschitz

continuous mappings and L be a Lipschitz con-
stant of F (x, u) in x on S × U . Suppose that for
all x ∈ S and u ∈ U :

||F (x, u)− F̃ (x, u)|| < ε (.3)

If x(t) and x̃(t), are solutions to

ẋ = F (x, u)

˙̃x = F̃ (x̃, u)
(.4)

respectively, on some interval I = {t ∈ R|t0 ≤ t ≤ tf},
and x(t0) = x̃(t0), then

||x(t)− x̃(t)|| ≤
ε

L
(exp(L|t− t0|)− 1) (.5)

holds for all t ∈ I.

Proof. Please see Chapter 15 of (Hirsch and Smale,
1974).

Lemma 3. Let f(x) be an integrable function in
the interval (a, b). A point c can be found between
a and b such that

∫ b

a

f(x)dx = f(c)(a− b) (.6)

Proof. See Chapter XIII of (Khinchin, 1960).
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