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Abstract: In this paper, we present an optimal input design method for the
identification of single input single output continuous-time transfer functions. In
the proposed algorithm, we show that this optimal input design problem can be
rewritten as that for discrete-time systems proposed by Antoulas et al.(Antoulas
and Anderson, 1999; Antoulas, 1997; Antoulas and Astolfi, 1998), if the input
is approximated by the finite Fourier series expansion. The derivative signals of
input/output are required to design the optimal input, and filters are used to
obtain the derivative signals. We also numerically consider the effect of the filters
to the optimality. Through numerical examples, its effectiveness is verified.
Copyright c©2005 IFAC
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1. INTRODUCTION

The persistently exciting signals are usually cho-
sen as input signals for system identification
(Katayama, 1994; Suda and Nakamizo, 1988).
However, the persistently exciting condition should
be different if target systems and/or chosen iden-
tification methods are different. For example, con-
sidering the identification of discrete-time sys-
tems, the maximum length sequence is used fre-
quently, whereas we know that if the sequence
is used for the identification of continous-time
systems, the persistently exciting condition might
not be satisfied (Yang, 1998; Iikubo et al., 2002;
Iwase et al., 2002). Even in the discrete-time case,
the maximum period and minimum pulse width of
the maximum length sequence have to be chosen
to adapt it to the target system.

This kind of problems can be formulated as an
optimal input design problem what input iden-
tifies a system with highest accuracy. We can
find one answer in Antoulas’s paper (Antoulas
and Anderson, 1999). They introduced the misfit

function, which can be regarded as the distance
between signal space and noise space, into the
identification problem of discrete-time systems.
Then they gave a criterion using singular values
of an input-output data matrix representing the
system in the kernel form, and proposed a de-
sign method of the optimal input with the cri-
terion. However, continous-time system case has
not been discussed. Continous-time systems are
often preferred rather than discrete-time systems
from the viewpoint of control system design and
analysis, since the relation between pole-zeros and
time responses of system is able to be understood
intuitively (Haverkamp et al., 1996; Haverkamp et
al., 1997).

Therefore, in this paper, we discuss the optimal
input for continous-time transfer function, and
propose a design method given by extending the
Antoulas’s method to the continuous-time case.
First, we consider a representation of the optimal
input. In our method, input and output signals are
differentiated by some filters, and are measured
at each sampling intervals. The sampled data can



be approximated by using the Fourier series ex-
pansion. Using the approximated input, we show
that the identification problem for continuous-
time systems can be reformulated as that for
discrete-time systems proposed by Antoulas et
al. Then the optimization algorithm discussed in
their paper (Antoulas and Anderson, 1999) can
be easily extended to our case. Through numer-
ical simulations, we verify the effectiveness and
robustness of the proposed method, and compare
the method with a traditional case using the max-
imum length sequence.

This paper is organized as follows. In section
2, we describe how to differentiate and measure
the input-output signals with filters. Using the
input-output data, a data matrix representing the
system and a criterion evaluating the optimality
are defined. In section 3, we discuss how to design
the optimal input. Especially, we show that our
problem is equal to the Antoulas’s problem for
discrete-time system by considering the Fourier
series expanded input. In next section, we present
simulation results and verify the robustness and
effectiveness. Finally, some concluding remarks
are given.

2. PRELIMINARIES AND PROBLEMS

2.1 Input-output Data

The proposed algorithm requires the derivatives
of input-output signals. We obtain the derivatives
not by such numerical methods as difference ap-
proximation but by filters siH(s), and assume
that H(s) is strictly proper and its relative degree
is high enough to realize siH(s) in the state space
representation. The filters siH(s) are set as shown
in Fig.1 and let v̂(i)(t), ŷ(i)(t) be the output of the
filters. v̂(t), ŷ(t) are generated from v(t), y(t) as
follows:

v̂(t) =
∫ t

0

h(τ)v(t− τ) dτ (1)

ŷ(t) =
∫ t

0

h(τ)y(t− τ) dτ. (2)

i-th derivatives of (1) and (2) are

v̂(i)(t) =
∫ t

0

h(i)(τ)v(t− τ) dτ, (3)

ŷ(i)(t) =
∫ t

0

h(i)(τ)y(t− τ) dτ. (4)

The filters need to be discretized in order to be im-
plemented practically. However, in this paper, the
discretized filters can be considered as continuous-
time systems because the filters are implemented
on fast hardware devices such as DSP. On the
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other hand, sampling interval in measurement of
v̂(i)(t), ŷ(i)(t) can be longer than filters’ sampling.
If a lowpass filter is choosed as H(s), it can be
expected to suppress high-frequency noises con-
taminating input-output signals. How to design
the filters is an important topic for this kind of
research. But, due to lack of space, we’d like to
focus on only the optimal input design here. On
the filtered derivatives, please see the literature
(Gawthrop, 1987; Gawthrop, 1990) for example.

2.2 Problem

Let us consider a single input single output linear
continuous-time transfer function:

G(s) =
p(s)
q(s)

=
p0 + p1s + · · ·+ pmsm

q0 + q1s + · · ·+ qnsn
(5)

where n is the degree of the denominator, and m is
that of the numerator, where n ≥ m. The noise-
free input and output signals of the system (5)
are defined as u(t) and x(t), respectively. Using
the polynomials p and q, (5) can be rewritten as
follows:

[
p(s) −q(s)

] [
u(t)
x(t)

]
= 0 (6)

The parameters vector θ of G(s) is defined as



θ =
[
p0 · · · pm −q0 · · · qn

]T

and an input-output data matrix is also defined
as

M=
1√

N + 1

(M1

M2

)
(7)

M1 =




û0 û1 · · · ûN

˙̂u0
˙̂u1 · · · ˙̂uN

...
...

. . .
...

û
(m)
0 û

(m)
1 · · · û

(m)
N


 (8)

M2 =




x̂0 x̂1 · · · x̂N

˙̂x0
˙̂x1 · · · ˙̂xN

...
...

. . .
...

x̂
(n)
0 x̂

(n)
1 · · · x̂

(n)
N


 (9)

using the differentiated signals û(i) and x̂(i). Then
(6) is equal to

θTM= 0 (10)

which is called the kernel form of the system.
With noise perturbing the measurements v̂(i), ŷ(i)

following Fig.2, the data matrix can be written as

M̂=M+ M̄ (11)

where M̄ is the noise data matrix consisting of
v̂(i) and ŷ(i), which has the same structure of M.
We assume that ‖M̄‖2 ≤ ε with an enough small
real number ε.

Let us consider the system representation of kernel
form in frequency domain. The input signal u(t)
is approximated with the finite Fourier series
expansion:

u(t) =
N/2∑

k=−N/2

ckµk(t) (12)

where ck (k = −N/2, · · · , N/2) are the expansion
coefficients, and N is expansion length. If we
could set amplitude of input arbitrarily, we could
improve the signal-noise ratio arbitrarily using
the enough large input. But this assumption is
nonsense. Therefore, for normalization purposes,
we will assume that u(t) has unit power, i.e.

∑

k

|ck|2 = 1

µk(t) are the bases functions of the expansion:

µk(t) = ejkωt (13)

where j =
√−1 and ω = 2π/(N + 1). The output

y(t) corresponding to the input (12) is

y(t) =
N/2∑

k=−N/2

ψkckµk(t) (14)

where ψk = G(jωk) are the frequency transfer
function of G(s). To represent the data matrix
(7) briefly in the frequency domain, some matrices
are introduced. A Vandermonde matrix Vi ∈
C(i+1)×(N+1) consisting of µk is given by

Vi =




1 1 · · · 1
µ−N/2(1) µ−N/2+1(1) · · · µN/2(1)

...
...

. . .
...

µ−N/2(i) µ−N/2+1(i) · · · µN/2(i)




, and Wi is also given by

Wi =




1 1 · · · 1

j(−N

2
)ω j(−N

2
+ 1)ω j(

N

2
)ω

.

..
.
..

. . .
.
..

(j(−N

2
)ω)i (j(−N

2
+ 1)ω)i · · · (j(

N

2
)ω)i




Then (8) and (9) can be rewritten as

M1 = WmCV̄ ∗
N , M2 = WnΨCV̄ ∗

N

where C = diag({ck}k=−N/2,··· ,N/2) and Ψ =
diag({ψk}k=−N/2,··· ,N/2), and (7) can be

M=
1√

N + 1

[
Wm

WnΨ

]
CV̄ ∗

N (15)

We consider the modified data matrix R:

R=
1√

N + 1
VC, V =

[
Wm

Wnψ

]
. (16)

Obviously, R satisfies

M=RV̄ ∗
N (17)

and the sigular values of M and R are same
because VN is unitary. In addition,R has the same
left kernel of M, θ:

θTR= θTVC = 0 (18)

Therefore, we will use R instead of M in the
following discussion.

Now we will describe the main problem how to
design an optimal input for identification of G(s).
If input-output signals are not contaminated with
noise, θTR = 0 is satisfied, and the smallest
singular value of R is equal to 0. Otherwise,
θTR 6= 0 and the smallest singular value is not
0 because the noise data matrix M̄ 6= 0 and

ε ≥ ‖M̄‖2 > 0 (19)

Since the noise cannot be removed perfectly in
general, inputs less correlative to the noise are



desirable. When the second smallest singular value
is bigger enough than the smallest singular value,
we can consider that the noise-effect is relatively
decreased. Then, we formulate the optimal input
design problem as maximizing the second smallest
singular value.

Problem:
Given a single input single output linear continuous-
time transfer function G(s). The problem is to
design an optimal input u∗(t), defined for t ≥ 0,
which will maximize the second smallest singular
value σ∗ of the data matrix R defined by (16).

In the next section, we will discuss the answer to
this problem.

3. MAIN RESULT

To solve the problem mentioned in the previous
section, we introduce the data covariance matrix
D:

D=RR∗ =
1

N + 1
VBV∗ (20)

B= CC∗ = diag(β0, · · · , βk) (21)

where βk = ckc∗k = |ck|2. From the structure
of (21), D is a square matrix with real entries.
Furthermore the kernel of D is the same as that
of R, i.e. θTD = 0.

Because βk = |ck|2, to maximize the second-
smallest singular value σ∗ of R is equal to max-
imize the second-smallest eigenvalue λ∗ of D.
Then, the problem can be converted into an
eigenvalue maximizing problem by considering the
second-smallest eigenvalue λ∗of D:

max
B

λ∗(D) where B = diag(βi) ≥ 0,TraceB = 1(22)

At this point, we obtain the same formulation
as the Antoulas’ formulation of the optimal in-
put design for discrete-time systems. Therefore,
we also obtain the optimization method of the
above eigenvalue maximizing problem from their
paper. The Antoulas’ optimization method can be
applied to our problem easily. Here, we describe
the method briefly.

Optimization Algorithm (Antoulas and An-
derson, 1999):

(1) Preliminaries: pick a system.
(2) Give an initial choice of βi, i = 1, · · · , N .
(3) Compute eigenvalue value decomposition of

D. Let the eigenvalue decomposition of the
corresponding data covariance matrix D(βi)
to the given {βi} be given by

D(βi) =W(βi)Λ(βi)W∗(βi) (23)

W(βi) =
[
w1 w2 · · ·

]
(24)

Λ(βi) = diag(λ1, λ2, · · · ) (25)

(4) Compute ∂λ2/∂βi according to

∂λj

∂βi
=

∣∣w∗jVei+1

∣∣2 − ∣∣w∗jVeN+1

∣∣2 (26)

where ei denotes the i-th unit vector in
RN+1.

(5) Determine I, K according to

I := max
i

{
|w∗2Vei|2 : βi < 1

}
(27)

K := min
i

{
|w∗2Vei|2 : βi > 0

}
(28)

(6) Update βi according to the following rule
with small ε > 0 in order to maximize λ2.





βI → βI + ε
βK → βK − ε
βi → βi, i 6= I, K

(29)

(7) Compute change and percentage change of
λ2 using

δλ2 = ε ·
(
|w∗2VeI |2 − |w∗2VeK |2

)
(30)

(8) To repeat procedure with new values βi, back
to 3.

(9) Stop when βi do not change significantly.

Please see the detail in the paper (Antoulas and
Anderson, 1999). Note that the above algorithm
may converge to a local extremum of λ2 depending
on the initial condition βi.

4. SIMULATIONS

Let us present some numerical examples in order
to verify the effectiveness. The system configu-
ration in Fig.2 was used in the simulation. As
systems to be identified, a transfer function

G(s) =
1

s2 + 2s + 3
(31)

was considered. In the simulation, we also inves-
tigated the effect of choice of the filter H(s) for
obtaining the derivatives of input-output signals.
Then we considered the following filter with two
parameters α and n:

Hα,n(s) =
αn

(s + α)n
. (32)

The candidates of the pole parameter α are from
0.1 to 9.0, and the one of the order parameter n
are from 2 to 7. The simulation conditions were
set as follows.
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• Sampling intervals: 10.0 [msec]
• Total time of measurement: 80.0 [sec]
• Number of samples: 16000 [sample]

The measurement noise was assumed to zero-
mean white, and the noise-to-signal ratio was set
as follows:

‖noise‖2
‖signal‖2 = 10% (33)

To verify the effectiveness, the proposed method
was compared with the case where the maximum
length sequence was used as input. The amplitude
and the maximum period of the used maximum
length sequence were set as

• Amplitude: ±1.0
• Maximum period 29 − 1

The designed optimal input for G(s) under some
pairs of the parameters (α, n) are shown in are
shown in Figs.5–7. Fig.3 shows the ratio of the

Table 1. Analysis results (Noise free
casea)

Input M-seq Opt. Input Opt. Input Opt. Input
(α, n) (3, 5) (3, 5) (3, 2) (1, 2)

σn−1/σn - 8.14× 103 3.56× 107 5.36× 1011

num 0.9875 0.9892 1.0200 1.0000
1.0000 1.0000 1.0000 1.0000

den 1.9753 1.9832 2.0009 2.0100
2.9637 2.9678 3.0060 3.0000

Err 5.40× 10−4 3.58× 10−4 7.23× 10−5 1.00× 10−5

Table 2. Analysis results (Noisy case)

Input M-seq Opt. Input Opt. Input Opt. Input
(α, n) (3, 5) (3, 5) (3, 2) (1, 2)

σn−1/σn - 8.14× 103 4.41× 107 1.80times1013

num 1.0013 0.9881 1.0340 1.0000
1.0000 1.0000 1.0000 1.0000

den 2.0011 1.9810 2.0010 2.0099
2.9431 2.9646 3.0062 2.9999

Err 3.52× 10−4 4.40× 10−4 7.24× 10−5 1.00× 10−5

minimum singular value and the second minimum
singular value under each pair of the parameters
in the noise-free case. This ratio is the measure of
the optimality of the input for our identification
method. Fig.4 is also the graph of the ratio in the
noisy case.

From the figures, we can find that the ratio of
the singular values in the proposed case becomes
bigger than that of the maximum length sequence
case, and moveover that the ratio clearly depends
on the choice of the filter’s parameters (α, n).
To compare the results, some quantities are listed
into the tables 1 and 2. In the tables, to compare
the accuracy of identification, the relative square
error is defined as

Err =

√√√√∑

i

(
θ̂i − θi

θi

)2

(34)

where θ̂i are the identified parameters and θi

are the ideal parameters. From the result, we
can see the identification accuracy is improved in
our method. Especially, in the noise-contaminated
case, we failed in identification by using the maxi-
mum length sequence, whereas succeeded by using
the optimal input. Note that the optimality of
the input clearly depends on the choice of the
filters, and that if one chose better parameters,
the accuracy also could be improved. The optimal
input can be considered robust against the noise.
Thus, it is shown that the proposed method is
effective for the input signal design for continuous-
time systems.

5. CONCLUSION

In this paper, we presented a design method of
the optimal input for the identification of single
input single output continuous-time transfer func-
tions. As a criterion of optimality, we used the
singular value of the input-output data matrix
representing the system in the kernel form. Our
method is to design the input signal in order to
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maximize the second smallest singular value. Con-
sidering the finite Fourier series expanded input
signal, our problem could be reformulated as the
problem proposed by Antoulas et al. for discrete-
time system. Through the numerical simulations,
the effectiveness of the proposed method was ver-

ified. Especially, the optimal input generated by
our method was robust to the noise, and made
identification be success even though failed if the
maximum length input was used.
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