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Abstract: This paper develops an adaptive backstepping flight control law in order to 
bestow good flying qualities in longitudinal axis for all flight conditions. Using the 
backstepping procedure, a new type of controller was synthesized in order to accomplish 
desired responses under a wide range of flight envelope.  Model-reference tuning of the 
backstepping controller is employed to achieve the desired responses for all flight 
conditions. Simulation results demonstrate that the proposed method is capable of giving 
desired closed-loop dynamic performance and robustness against uncertainties within the 
subsonic and supersonic flight conditions.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
One of the most popular control schemes for flight 
control has been based on a conventional 
Proportional-Integral (PI) controller design method 
with desired specifications over entire flight 
envelope.  Aside from PI control, the gain scheduling 
method has also been extensively used for 
controlling the nonlinear aircraft dynamics (Reichert, 
1992; Nelson, 1998). Recently, the Lyapunov-based 
design method has been developed for aircraft flight 
control systems (Harkegard and Glad, 2000; Lee and 
Kim, 2001; Sharma and Ward, 2002). These studies 
utilized the backstepping method to construct stable 
nonlinear controllers in order to improve the 
performance of flight path control systems. 
Harkegard and Glad (2000) developed a 
backstepping controller that is globally stabilizing 
around the stall angle of attack. Sharma and Ward 
(2002) presented a neural adaptive backstepping 
controller that provides good command tracking and 
robustness against aerodynamic uncertainties. 
However, these studies only focused on a single 
flight condition or at low speed flight envelope. In 
addition to gain-scheduling control, few researchers 
have developed full envelope control laws (Reynolds, 
et al., 1994). The flight control system probably 
doesn’t carry out in the presence of an entire flight 
envelope of supersonic aircraft.  
 

The objective of the paper is to use the backstepping 
design procedure to establish a backstepping 
longitudinal flight control law with good 
performance and robustness across a specified flight 
envelope. The model-reference design is used to 
derive the parameters adaptation rules of the 
backstepping controller via Lyapunov theory so that 
the closed-loop system has met specifications within 
the operating conditions. Approximation of the 
parameters of the backstepping controller as a 
function of aerodynamic coefficients and parameters 
restrictions is designed to achieve desired response in 
subsonic and supersonic flight regimes. 
 
This paper extends the previous result in Ju, et al. 
(2004) to propose an integral and adaptive flight 
controller via backstepping. A novel adaptive 
backstepping flight control law is derived using the 
backstepping method with parameter adaptation to 
compensate for the uncertainties. This type of the 
control structure is developed by backstepping design 
methodology, and the control gain matrices are 
scheduled for all flight conditions. The longitudinal 
short-period requirements by the low-order 
equivalent systems were analyzed, and evaluate the 
performance and robustness of the proposed control 
through simulations in order to show the 
effectiveness of the adaptive control method. 
 



 

     

The remaining parts of the paper are outlined as 
follows. Section II briefly recalls the well-established 
linearized aircraft dynamics. A backstepping design 
procedure is used in Section III to design a 
longitudinal control law across a specified flight 
envelope. The model-reference parameters tuning 
method is also adopted to bestow good handling 
qualities for all flight conditions. Section IV 
conducts computer simulation results. Section V 
concludes the paper.  
 
 

2. AIRCRAFT DYNAMICS 
 
A backstepping design for flight control deals with 
the longitudinal motion of the aircraft and the control 
of the rigid body dynamics. A detailed description of 
aircraft’s small perturbation equations of motion can 
be found in Roskam (1979). The assumptions are 
consistent with initial straight and level flight with 
constant thrust. In this study, the basic flight control 
law uses the elevator as a primary control effector, 
and the change of a throttle command to maintain 
airspeed is assumed to be zero 
 
 
2.1 Aircraft Dynamics Model 
 
In this paper, a reference (fighter) aircraft model in 
longitudinal and vertical axes is used. The motion 
equations for a longitudinal aircraft with short period 
mode and phugoid mode are described by 
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where 
u  : longitudinal velocity (ft/s) 
q  : pitch rate (rad/s) 
θ  : pitch angle (rad) 
α  : angle of attack (rad) 
δe : elevator surface deflection (rad) 
nz  : normal acceleration at c.g. (‘g) 
V  : aircraft velocity (ft/s) 
X*、Z*、M* : stability and control derivatives 
 
 
2.2 Flight Envelope of the Aircraft 
 
The boundaries of the flight envelope are indicated 
by the stall limit, load limit, temperature limit, and 
performance limit. In order to design flight control 
laws to cover a wide range of envelope, it is 
necessary to select a number of operation points to 
satisfy design specifications. The motion equations 
for a longitudinal aircraft include the short period 
and phugoid modes. A set of full envelope linear 
aircraft models has been used to represent the 
nonlinear aircraft system that should vary with 
airspeed, altitude, and dynamic pressure. 
 
 

3. BACKSTEPPING CONTROL DESIGN 
 
This section is devoted to deriving control laws for 
longitudinal aircraft using backstepping (Sharma and 
Calise, 2002; Dahlgren, 2002). This proposed control 
laws will provide the supersonic aircraft with 
significant desired responses. The proposed adaptive 
backstepping control algorithm consists of two parts: 
the integral backstepping control to eliminate the 
command tracking errors, and the parameter 
adaptation rules for parametric uncertainties. Finally, 
the model-reference approach is used to find 
appropriate parameters of the controllers in the 
presence of a wide range of flight envelope.  
 
 
3.1 Integrator Backstepping 
 
In this section, the backstepping design is used to 
derive control laws for the longitudinal motion of 
aircraft in the presence of a wide range of flight 
envelope. The motion equations for a longitudinal 
aircraft are described in (1). In this state-space model, 
the control input (δe) is a function of all the state 
variables (u, α, q, θ). However, equation (1) is not 
suited for designing flight control laws via 
backstepping. Hence, if the surface deflection (δe) on 
the lift (α) is neglected, the state-space model is on 
the correct form for backstepping design (Lee and 
Kim, 2001; Sharma and Ward, 2002). The lift force 
on the surface deflection is intentionally neglected 
for deriving the longitudinal flight control laws. Thus 
the dynamics of aircraft equations without airspeed 
control given by (1) can be rewritten as 
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The integral action to cope with steady errors as in 
the previous work will be used  (Ju, et al., 2004). The 
control objective is to track the angle of attack 
command without steady errors for longitudinal axis. 
In what follows shows how to design the flight 
control laws by backstepping.  
 
Step 1: For the α-tracking objective, two new state 
variables can be defined as 1 2,ref desz z q qα α= − = − . 
The time derivative of z1 is 
 
 1   1  ref q ref refz Z z Z Z q Zα θ αα α θ α α= − = + + + −  (3) 

 
Considering q as a control input for z1-dynamics, one 
regards the desired value of q as the virtual control 
law of (3). In order for stabilization in (3), q can be 
chosen as  
 

1
1 1 10

( ( ) )
t

des q ref refq Z Z Z K z z t dtα θα α θ λ−= − + − − − ∫  (4) 
 
where λ is a constant value. In (4), the integral of the 
tracking error is introduced to the desired value of q. 
By adding the integral action into the stabilizing 



 

     

function, the tracking error will converge to zero. 
Substituting (4) into (3) yields 
  
 1 1 1 1 ( )z K Z zα λχ= − − −  (5) 
 
where  
 

 1 10
( )

t
z t dtχ = ∫  (6) 

 
Under the condition αZK >1 , the z1-dynamics 
becomes asymptotically stable. Substituting (4) into 
z2-dynamics yields 
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 (7) 

 
Then 1z  can be rewritten as 
 
 1 1 1 2 1( ) qz K Z z Z zα λχ= − − + −  (8) 
 
and differentiating (7) give 
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then (8) and (9) can be written as 
(assuming 0ref refα α= = ) 
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where 
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 1 2 1

1q q q qM Z Z Z Z Kθµ − − −= + +     (14) 
 
Step 2: Define a Lyapunov function candidate as 
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V z z z zλχ= + +  (15) 

 
Using (14), the time derivative of V can be 
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In view of (16), the first term is negative definite as 
long as αZK >1 . In order to eliminate z1z2 cross-
term, the condition qZξ = −  is chosen. To make the 
third term become negative definite, the control 
surface deflection can be selected as 
 
 1

2 2 1( )ee M K zδδ φ λµχ−= − − +  (17) 
 
The control derivative of eMδ remains non-zero for 
most aircraft control applications. Substituting (17) 
into (16) yields 
 

 2 2
1 1 2 2 1 2( ) ( ) ( )qV K Z z z K Z z zα η ξ= − − + − + +     (18) 

 

For V  to be negative definite, the following 
constraints must obey 
 
 1 2, , 0qK Z K Zα η ξ> > + =   (19) 
 
Inserting 0qZ ξ+ =  into (11), λ can be expressed as  
 

2 1 2
1 1( ) ( )q q q qK M Z Z Z K M Z Zθ α αλ −= + + − − +    (20) 

 
Step 3: This step aims to determine the control law. 
Using (7) and (13), the control law is of the form 
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where  
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The resulting controller is parameterized by the five 
parameters Kf, Kα, Kq, Kθ and Kι. A trial-and-error 
method can be a way to find parameters in agreement 
with the constraints (19). It is time-consuming for 
full envelope control design. However, the automatic 
tuning of the parameters by model-reference 
approach is described in detail in the late subsections. 
 
 
3.2 Adaptive Control Design 
 

The previous design was based on the 
backstepping algorithm with integral action to 



 

     

improve steady-state control accuracy.  In this 
subsection, the adaptive parameters of flight control 
law are designed to compensate for parametric 
uncertainties. In doing so, one rewrites (21) with 
adjustable parameters kf, kα, kq, kθ and ki as  
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, , ,f qk k k kα θ and ik , respectively. To drive the 

parameter adaptation rules, a Lyapunov function 
candidate will be chosen by 
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where the parameter estimation errors are defined as  
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and their time derivatives are given by 
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Using (19) and (26), the time derivative of V1 can be 
computed as 
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Substituting (22) into (13) yields  
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In (10), 2z can be written as  
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The term 2 2 1( )eK z M uδφ λµχ+ − + in (29) can be 
calculated as 
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then 2z can be rewritten as  
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Substituting (10) and (31) into (27) yields 
  

2 2
1 1 1 2 2

2

2 2

2 2 1

( ) ( )
1 ˆ( )

1 1ˆ ˆ( ) ( )

1 1ˆ ˆ( ) ( )

f e ref f
f

e q e q
q

e i e i
i

V K Z z K z

k z M k
r

k z M k k z M q k
r r

k z M k k z M k
r r

α

δ

α δ α δ
α

θ δ θ δ
θ

η

α

α

θ χ

= − − − −

+ − −

+ − + −

+ − + − −

 (32) 

 
If the parameter adaptation rules are designed as 
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then time derivative of V1 can be written as  
 
 2 2

1 1 1 2 2( ) ( )V K Z z K zα η= − − − −   (34) 
 
When conditions (19) are satisfied, 1 0V ≤ is achieved. 
By using Barbalat’s lemma (Krstic, et al., 1995), it 
can be shown that 1 20,   0z z→ → as t → ∞ . 
 
 
3.3. Model Reference Approach 
 
In this subsection, the model-reference approach is 
used to find the parameters K1 and K2 of the 
backstepping controller so that conditions (19) are 
satisfied.  
 
Based on the guidelines in flying qualities 
requirements of MIL-F-8785C, the ideal model for 
short period mode of longitudinal aircraft can be 
expressed as 
 

 11 12 1

21 22 2

m m m m
em

m m m m m

a a b
q a a q b
α α

δ
       

= +       
       

   (35) 

 
In the ideal model, the zero of the aircraft transfer 
function is decided by Zα . It is assumed that the state 
feedback does not change the zero of the transfer 
function, and 11ma Zα= was chosen. The characteristic 
equation of the ideal model can be expressed as 
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Based on the damping ratio ( mξ ) and the natural 
frequency ( dmω ) of the ideal model, 21ma and 22ma can 
be expressed by 
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Since the surface deflection of elevator on the lift is 
ignored, 1 0mb =  will be chosen. The dynamic 
equations can be written as 
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Using (38), 2mb is of the form  
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b2m=ωdm

2 will be chosen. The ideal model for the 
short period mode can be rewritten as 
 

2

2

1
( 2 ) 2

0

m m

m m dm dm m dm m

em
dm

Z
q Z Z Z q

α

α α α

α α
ξ ω ω ξ ω

δ
ω

     
=     − − − − −     
 

+  
 

    

(40)  
To match the response of the ideal short period mode, 
the control law given by (21) can be written as 
(assuming 1 0z →  as t → ∞  and ignoring θ  term)  
 

 
[ ] [ ]

lcf lcf c

q f ref

u A x B u

k k k
qα

α
α

= +

 
= − − + 

 

   (41) 

 
where uc is a command signal. The closed-loop flight 
control becomes 
 
    ( ) ( )lcf lcf cx A BA x BB u= + +   (42) 
 
The matrices A and B are states coefficients of the 
bare airplane. The (K1, K2) gains in (21) may be 
chosen by (19) and a prior knowledge of aero-
coefficients. The convenient way to choose the 
values of the gains is based on the model-reference 
approach. The desired response model given by (35) 
can be rewritten as 
 
 cmmmm uBxAx +=   (43) 
 
Define the error mxxe −= , the time derivative of e is 
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For perfect model following, it implies that 

lcf mA BA A+ = and lcf mBB B= . This yields 
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Substituting (22) into (45) yields 
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Based on the damping ratio and aero-coefficients 
have been assigned for all flight conditions, the K1 
and K2 will be found by (19). The design parameters 
K1 and K2 are chosen by constrains, which represent 
the freedom available to the designer to satisfy the 
Lyapunov stability theory. However, the design of 
the parameters K1 and K2 are tightened and bounded 
by flying qualities specifications.  

4. ANALYSIS OF RESULTS 
 
This section presents the results and analysis of the 
results from adaptive backstepping control laws 
described in the previous section. Flying qualities 
analyses based on MIL-F-8785C’s short period 
approximation will be first presented. Then, the 
aircraft dynamic performance will be analyzed in the 
different flight conditions. Finally, the robustness to 
the off-normal value of the aerodynamic derivatives 
will be analyzed. 
 
 
4.1 Flying Qualities Analysis  
 
Several flying qualities measures are used to analyze 
the handling of manual flight control. MIL-F-8785C 
requires that the natural frequencies of the short 
period modes fall within the Level 1 bound. Fig. 1 
depicts the region for short period’s natural 
frequencies and Control Anticipation Parameter 
(CAP). It shown the short-period responses for tested 
flight conditions were within the level 1 boundary.  
 
 
4.2 Dynamic Performance Analysis 
 
In the simulations, the aerodynamic coefficients are 
assumed to be known exactly. Fig. 2 only depicts the 
simulated results of the controller with parameter 
adaptation rules at five different flight conditions. 
The backstepping controller is designed to provide a 
faster response without overshot of normal 
acceleration within the subsonic and supersonic flight 
conditions. The steady-state errors are improved 
using the controller with integral action in subsonic 
flight conditions except supersonic conditions. 
 
 
4.3 Robustness Analysis 
 
For robustness analysis, the tracking responses with 
±50% parameter variations of stability and control 
matrices are shown in Fig. 3. The trajectory 
command is one-degree α doublet with a period of 
50 seconds. The flight condition for robustness 
analysis is at Mach 0.8 and 0 feet altitude 
with ( , , , , )j j f q iα θγ = 0.05= . Although tracking 
performance is degraded at the first square command, 
the controller with adaptation rules could quickly 
follow command signals at the second square wave.  
 

 
Fig. 1. MIL-F-8785C short period requirements 
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Fig. 2. Step responses of backstepping controller. (a) 
Angle-of-attack, (b) pitch rate, (c) normal 
acceleration and (d) surface deflection. 
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Fig. 3. The command tracking performance of the 
backstepping controller for the aerodynamic 
uncertainties. (a) A+∆A, (b) A-∆A, (c) B+∆B 
and (d) B-∆B (solid: adaptation rule, dash: non-
adaptation rule) 

 
 

5. CONCLUSIONS 
 
In this paper, full envelope flight control laws for a 
supersonic aircraft have been established using an 
adaptive backstepping control with integral action. 
The longitudinal Lyapunov-based flight controller is 
designed by combining the backstepping and 
adaptive control. The control loop gains found by the 
model-reference approach are scheduled for all flight 
conditions. The desired responses of longitudinal 
axis have been achieved in a wide range of flight 
envelope. Both desired performance and robustness 
of the closed-loop aircraft have been proven via 

computer simulations. With adaptive backstepping 
designs with robustness against unmodeled dynamics, 
the designers are not intended to have a prior 
knowledge of the aerodynamic coefficients. The 
proposed adaptive control law is much simpler, and 
is easier to construct and realize. In the current work, 
only the longitudinal axis is considered; this 
backstepping control law can be easily extended to 
the lateral/directional axis. An important topic for 
future study might be to implement the proposed 
control laws in nonlinear simulations. 
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