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Abstract: The development of a hybrid control scheme for freeway systems is the objective
of the paper. A finite number of models is defined, each relevant to a specific traffic
condition. The system state variables are the differences between the traffic density and
the traffic mean speed in each section and their desired values. A receding–horizon (RH)
regulator is defined for each model being the control variables the traffic volumes at on–
ramps. A hybrid control scheme is proposed, which is composed of two control levels. The
first control level consists of a finite class of models and RH control functions. The second
level acts as a supervisor that chooses the best model and control law to be applied to the
plant according to the present system state and possible external events. The application
of the proposed control scheme makes it possible to guarantee some suitable stability
properties of the origin as an equilibrium point of the system considered at the first control
level.Copyright c© 2005 IFAC
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1. INTRODUCTION

An effective management of freeways and interurban
roadways is definitely a crucial aspect in our daily life.
Such systems are complex large–scale systems origi-
nally conceived so as to provide virtually unlimited
mobility to users. As a matter of fact, the available
infrastructure capacity is not in most cases sufficient
(and it cannot be always increased) leading to the
the occurrence of both recurrent and non–recurrent
congestion phenomena. This has soon highlighted that
what is necessary is an efficient utilization of the avail-
able road capacity by designing suitable modelling,
optimization and control methods.

Freeway systems have such peculiar characteristics
making it necessary to define dedicated models and
control actions. In the literature, many freeway con-
trol methods have been proposed mainly based on the
macroscopic modelling theory. In this context, a wide-
spread control measure adopted for freeway stretches
refers to the so–calledramp meteringcontrol. The
control variable characterizing such a kind of control
action is the traffic volume on the on–ramps which is

in some way modulated regulating the flow of incom-
ing traffic to the freeway stretch.

Ramp metering has been extensively studied start-
ing from very simple local fixed–time ramp metering
strategies (Wattleworth, 1967), to closed–loop local
strategies (Papageorgiouet al., 1991), to multivari-
able regulator approaches (Isaksen and Payne, 1973),
(Papageorgiouet al., 1990b), to arrive to nonlinear
optimal ramp metering strategies (Zhanget al., 1996),
(Kotsialoset al., 2002), (Di Febbraroet al., 2001).

A significant feature of freeway systems that still
deserves major research efforts is that different traffic
control problems should be stated and solved for the
same road stretch, depending on traffic conditions
(from regular traffic to severe congestion phenomena)
and exceptional situations (critical weather conditions,
accidents, etc.). This aspect will be the key aspect
of this work in which the freeway system will be
separately modelled and controlled under different
traffic conditions and considered in a control scheme
as the one developed in (Parisini and Sacone, 1999),
(Parisini and Sacone, 2001). The proposed scheme
is a hybrid control scheme for nonlinear discrete–



time systems composed of two control levels. The
first control level consists of a finite class of models
and receding–horizon nonlinear control functions. The
second level acts as a supervisor that chooses from the
set defined at the first level the best pair model/control
law to be applied to the plant according to the present
system state.

2. THE NONLINEAR MACROSCOPIC MODEL

The adopted macroscopic model was first proposed by
Payne in (Payne, 1971) (see also (Papageorgiouet al.,
1990a)). Payne’s model is based on the discretization
(in both space and time) of the conservation equation,
from which the following equation is derived

ρj(k + 1) = ρj(k)+

+
T

∆j
(qj−1(k)− qj(k) + rj(k)− sj(k)) ,

j = 1, . . . , S; k = 0, 1, . . . , K (1)

where k denotes the control temporal stage andj
denotes one of the sections into which the freeway
stretch has been divided.K temporal stages andS
sections (of length∆j varying approximately from
500 to 1000m ) have been considered.T is the sample
time interval, ρj(k) is the traffic density (number of
vehicles per length unit in sectionj at timekT ), qj(k)
is the traffic volume (number of vehicles per time unit
leaving sectionj during the time interval[kT, (k +
1)T ] ), and rj(k) and sj(k) are the on-ramp and
off-ramp traffic volumes for sectionj, respectively.
Actually, rj(k) and sj(k) are different from zero
only for the sections that contain on/off ramps. The in-
dices of such sections make up the setIr . Quantities
rj(k) play the role of control variables; such variables
will be defined as nonnegative quantities and will be
bounded from above by the traffic demands present at
the corresponding on–ramps.

The third aggregate variable of interest is the mean
traffic speed,vj(k) , whose dynamics is described by
the equation

vj(k + 1) = vj(k) +
T

τ
[V (ρj(k))− vj(k)]+

+
T

∆j
vj(k) (vj−1(k)− vj(k))+

− µ T (ρj+1(k)− ρj(k))
τ ∆j (ρj(k) + χ)

,

j = 1, . . . , S; k = 0, 1, . . . , K (2)

where τ, µ , and χ are parameters to be determined
experimentally (by a suitable identification proce-
dure). V (ρj(k)) is the steady-state speed-density
characteristic, which, in major classical models, takes
on the form

V (ρj(k)) = Vf

[
1− (ρj(k)/ρmax)

l
]m

(3)

where Vf denotes the “free” speed (a value experi-
mentally determined on the basis of real traffic data
and very low values of traffic density),ρmax is the

so-called “jam density”, andl andm are real-valued
positive parameters. In the model here proposed, the
form of the steady-state speed–density characteristic
is significantly simplified to become a piecewise con-
stant functionṼ (ρj(k)). This approximation, which
can give rise to effective models when applied to real
case studies (Magliolo and Sacone, 2004), is depicted
in Fig. 1 for a generic set of parameters. The three
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Fig. 1. The classical form of functionV (ρj(k)) and its
approximationṼ (ρj(k)) (thick line)

aggregate state variables so far defined are related to
one another by the following weighted sum

qj(k) = α ρj(k) vj(k) + (1− α) ρj+1(k)vj+1(k) ,

j = 1, . . . , S − 1; k = 0, 1, . . . , K (4)

where 0 ≤ α ≤ 1 is an appropriate weighting factor
(which again needs to be identified on the basis of
real traffic data). The off-ramp volumessj(k) are
related to the traffic volumesqj−1(k) through the
relationship (Papageorgiou and Mayr, 1982)sj(k) =
γj qj−1(k), j ∈ Ir, where 0 < γj < 1 . Substituting
this relation and (4) into (1) yields

ρj(k+1) = ρj(k)+
T

∆j
[α (1−γj) ρj−1(k)vj−1(k)+

+ (1− 2α + γjα− γj) ρj(k) vj(k)+
− (1− α)ρj+1(k)vj+1(k) + rj(k)],

j = 1, . . . , S; k = 0, 1, . . . ,K (5)

Equations (2) and (5) should be modified (in a simple
way) for both the first and the last sections of the
freeway.

As already mentioned, the goal of our control scheme
is that of maintaining, under different traffic condi-
tions, the freeway system working under desired val-
ues of the traffic densities and traffic mean speeds.
As already done, for instance in (Chienet al., 1997),
it is possible to define suitable values for the two
state variables in each section. In this work, several
operating conditions for the considered freeway sys-
tem have been identified with reference to the above
introduced piecewise constant approximation of the
steady–state speed–density relationship. Specifically,
it is supposed that, on the basis of real data, an effec-
tive approximation of the steady–state speed–density
characteristic can be found. This allows to identify



the valuesρi, i = 1, . . . , N of the traffic densities
corresponding to theN discontinuities of the defined
approximated function and to find the corresponding
constant valuesV i, i = 1, . . . , N of the same func-
tion. More precisely, the approximation ofV (ρj(k))
can be expressed as

Ṽ (ρj(k)) , V i

ρi ≤ ρj(k) ≤ ρi+1, i = 1, . . . , N (6)

whereV 1 = Vf , V N = 0, ρ1 = 0 andρN+1 = ρmax.

For the sake of simplicity, a control scheme for a small
area including few freeway sections is considered. In
such a scheme it can be supposed that the freeway
portion is made up of very similar sections (character-
ized by the same parameter set and by the same traffic
fundamental diagram). Then, the supervision system
can identifyN different operating conditions of traffic
in the freeway portion and define the correspondingN
desired values of the traffic density and of the traffic
mean speed in each section. In doing this, it is now
supposed that the desired values of the system aggre-
gate variables are the same for each section.

Let us now introduce, the set{(ρ̃i, ṽi), i = 1, . . . , N} ,
where ρ̃i : ρi ≤ ρ̃i ≤ ρi+1 and ṽi = V i

are the desired values of the traffic density and of
the traffic mean speed in thei–th traffic configura-
tion. It can be noted that the desired state(ρ̃i, ṽi), ∀i
must also be an equilibrium point of the second–order
Payne model here adopted. To this end, the values

r̃i
4
= γρ̃iṽi, i = 1, . . . , N are defined (note that

γj = γ,∀j = 1, . . . , S). The traffic volumes at the
on–ramps in thei–th traffic configuration are now
expressed asrj(k) = r̃i + θj(k), where the control
variables are now quantitiesθj(k) (the determination
of such quantities must still guarantee that the traffic
volumes at the on–ramps are nonnegative and bounded
from above by the traffic demands at the correspond-
ing on–ramps).

By considering the system working under the generic
i–th traffic condition,tracking errors for the traffic
density and traffic mean speed can be defined as

ξj(k) , ρj(k)− ρ̃i (7)

νj(k) , vj(k)− ṽi (8)

whose dynamics, by using (5) can be written as

ξj(k + 1) = ρj(k + 1)− ρ̃i =

ρj(k) +
T

∆j
[α (1− γj) ρj−1(k)vj−1(k)+

+(1− 2α + γjα− γj) ρj(k) vj(k) +

−(1− α)ρj+1(k)vj+1(k) + rj(k)]− ρ̃i =
ξj(k) +

+
T

∆j
[c1

j (ξj−1(k) + ρ̃i)(νj−1(k) + ṽi)+

+c2
j (ξj(k) + ρ̃i) (νj(k) + ṽi) +

−c3
j (ξj+1(k) + ρ̃i)(νj+1(k) + ṽi) + r̃i + θj(k)]

j = 1, . . . , S; k = 0, 1, . . . ,K (9)

wherec1
j = α (1 − γj), c2

j = (1 − 2α + γjα − γj),
c3
j = (1− α). By using (2), it holds

νj(k + 1) = vj(k + 1)− ṽi =

vj(k) +
T

τ

[
Ṽ (ρj(k))− vj(k)

]
+

+
T

∆j
vj(k) (vj−1(k)− vj(k))+

−µT (ρj+1(k)− ρj(k))
τ ∆j (ρj(k) + χ)

=

νj(k) +
T

τ

[
Ṽ (ξj(k) + ρ̃i)− (νj(k) + ṽi)

]
+

+
T

∆j
(νj(k) + ṽi) (νj−1(k)− νj(k))+

− µT (ξj+1(k)− ξj(k))
τ ∆j (ξj(k) + ρ̃i + χ)

j = 1, . . . , S; k = 0, 1, . . . , K (10)

Equations (9) and (10) constitute a model describ-
ing the tracking errors dynamics. In a more compact

form, it is possible to definex(k)
4
= col (ξ(k), ν(k)))

with ξ(k)
4
= col (ξj(k), j = 1, . . . , S) and ν(k)

4
=

col (νj(k), j = 1, . . . , S) . In the same way, we de-

fine the control vector asu(k)
4
= col (θ(k)) , where

θ(k)
4
= col (θj(k), j ∈ Ir) . Then, we can write (9)

and (10) in the form of state equations

x(k + 1) = f i (x(k), u(k))
i = 1, . . . , N ; k = 0, 1, . . . , K − 1 (11)

Note that the origin is an equilibrium point of each
nonlinear discrete–time system represented with (11).

3. THE SWITCHING CONTROL SCHEME

The proposed switching control scheme is here briefly
outlined; the reader is addressed to (Parisini and
Sacone, 2001), (Francoet al., 2004b) for further de-
tails. Consider a nonlinear discrete-time dynamic sys-
tem described by:

x(k + 1) = f(x(k), u(k)) , t = 0, 1, . . . (12)

where x(k) ∈ Rn and u(k) ∈ Rm are the state
and control vectors respectively. At any time instant
k, f(x(k), u(k)) = f i(x(k), u(k)) , where f i is a
dynamic sub-model andx(k) ∈ X i , with X i ⊂
Rn denoting the state–space sub-domain wheref i is
considered as a valid model for the system. We assume
that the setsX i belong to classZ =

⋃∞
j=1 Zj ,Zj ⊂

Rq, whereZj is a compact set containing the origin
as an internal point. We also assume thatf i belongs
to a given class of sub-models, that is,f i ∈ F ,
{f1, . . . , fN} , with f i ∈ C1[Rn × Rm, Rn], and
f i(0, 0) = 0.

Moreover, u(k) = γir(x(k)) , where γir belongs to
a finite class of control functions associated with sub–
model f i , that is, γir ∈ Γi , {γi1, . . . , γiMi} . For
the sake of notational convenience, let us introduce the
setsI , {1, . . . , N} , J i , {1, . . . , Mi} , i ∈ I,



characterizing the indexes associated with the class
F of dynamic sub–modelsf i and the classesΓi of
control functionsγir associated with modelf i, re-
spectively. Then, the class of control functions can be
written asΓi =

{
γir : X i 7→ Rm, r ∈ Ji

}
.

In the considered switched system, both the active
model and the applied control function can be changed
in specific time instants, denoted asswitching instants.
More specifically, we assume that switching is con-
trolled by a supervision system, which means that in
the hybrid control scheme there is noautonomous
jump from a pair(f i, γir) to another one. In the
considered case study, this means that the supervi-
sor on the basis of the traffic conditions in the over-
all freeway portion, decides the kind of model and
control action to be adopted. The structure and dy-
namic behavior of the supervisor are not matter of the
present paper (more details can be found in (Parisini
and Sacone, 1999),(Parisini and Sacone, 2001) and the
references cited therein, where the supervision system
is modelled by discrete–event methodologies).

Some important definitions still need to be introduced
since they will be used later on in the application of
the hybrid control scheme to freeway systems.

Definition 3.1. A switching law S associated with
system (12) is a decision law that, at a generic time–
instantτ ∈ Z, identifies a subset of admissible pairs
(f i, γir) that it is possible to activate in order to satisfy
a given property.

Accordingly, it is possible to define aswitching se-
quenceas a set collecting switching instants; formally,
a switching sequence is denoted as

Ξ , {τ0, τ1, ..., τn, ...} , τn ∈ Z+, n ∈ N
Moreover, in the considered control scheme, the con-
trol functions γir are RH nonlinear control laws. A
detailed statement of the RH control problem referred
to system (12), for each pair(f i, γir), can be found
in (Parisini and Sacone, 2001), and here it will only be
briefly recalled for the sake of completeness.

Problem 1.For anyi ∈ I and for anyr ∈ Ji, find the
RH optimal control law

uRHir
o (k) = γRHir

o (x(k)) ∈ Rm

whereuRHir
o (k) is the first vector of the control se-

quenceuFHir
o (k), . . . , uFHir

o (k + N ir − 1) that min-
imizes the finite horizon (FH) cost function:

J ir
FH(x(k), u(k), . . . , u(k+N ir−1), N ir, air, P ir) =

k+Nir−1∑

n=k

hir(x(n), u(n)) + air‖x(k + N ir)‖P ir

(13)

for the statex(k) ∈ X i. N ir is a positive integer
denoting the length of the control horizon,air ∈ R
is a positive scalar andP ir is a positive-definite
symmetric matrix.

When the optimal sequence is found, the optimal
solution is

JFHir
o (x(k), N ir, air, P ir) =

k+Nir−1∑

n=k

hir(xFHir
o (n), uFHir

o (n))+

+ air‖xFHir
o (k + N ir)‖P ir ,

where xFHir
o (n + 1) = f i(xFHir

o (n), uFHir
o (n)),

andn = k, ..., k + N ir − 1, xFHir
o (k) = x(k). For

simplicity, from now on we letγir , γRHir
o . It is

also worth noting that Problem 1 can be solved (in
approximate way)on-line or off-line, depending on
the specific context: this topic is discussed in previous
works such as (Parisini and Sacone, 2001), (Parisini
and Zoppoli, 1995).

If the parametersN ir, P ir, air in the FH cost func-
tions (13) are suitably chosen, the control laws to
be applied to the active sub–modelf i have some
very important stabilizing properties (see, for instance,
(Keerthi and Gilbert, 1988), (Parisini and Zoppoli,
1995), (Parisiniet al., 1998)). In particular, under suit-
able assumptions and modifications of the proofs, the
RH control laws are characterized by the following
properties:

1) The origin is a globally asymptotically stable
equilibrium point of the closed–loop control sys-
tem under the action of the RH optimal control
law.

2) Consider the largest positive scalarθ̄ir ∈ R+

such thatX ir(N ir, air, P ir, θ̄ir) ⊂ X i, where
the setX ir(N ir, air, P ir, θir) is defined as

X ir(N ir, air, P ir, θir) ,{
x ∈ X i : JFHir

o (x,N ir, air, P ir) ≤ θir
}

The resulting setX ir(N ir, air, P ir, θ̄ir) is an
invariant set and a domain of attraction for the
origin and the optimal cost function is a Lya-
punov function for the pair(f i, γir).

In the stability analysis of the overall control scheme,
the Lyapunov functionsJFHir

o (x,N ir, air, P ir) and
the invariant setsX ir(N ir, air, P ir, θ̄ir) are ex-
ploited frequently. In this respect, we let

Vir(x(k)) , JFHir
o (x(k), N ir, air, P ir)

4. APPLICATION OF THE HYBRID CONTROL
SCHEME TO FREEWAY SYSTEMS

The possibility of choosing among a finite set of mod-
els and regulators the best to be applied to each free-
way section under the present traffic conditions is the
main advantage of the proposed approach. Actually, it
is easy to verify that the models described in Section
2 by equations (9) and (10) satisfy the assumption
made in Section 3 for the definition of the hybrid
control scheme. It is still necessary to define the class
of regulators adopted for the case under concern.



As a matter of fact, the behavior of traffic in a freeway
section needs to be regulated in different ways depen-
dent on the current traffic conditions. More specifi-
cally, N different traffic conditions have been identi-
fied for the freeway system based on a suitable approx-
imation of the steady–state speed–density relationship
(as described in Section 2).

One RH regulator is associated with each traffic condi-
tion. More specifically, the considered transition cost
function is:

hi(k) =
S∑

j=1

(ξj(k))2 + (νj(k))2,

k = 0, 1, . . . , Ki − 1 (14)

whereξj andνj have the same meaning as in Section
2 andKi is a suitably chosen time horizon. It is to
be noted thatKi increases wheni becomes larger
(Ki < Ki+1, i = 1, . . . , N − 1) since it is important
to have a larger time horizon when the traffic density
increases and possibly brings the system to congestion
situations. Moreover, the final cost to be included in
the finite horizon cost function relevant to the consid-
ered RH regulators is always characterized byair = 1
andP ir equal to the identity matrix.

So, N different pairs model/regulator are assigned
to the considered freeway portion and, in the over-
all control scheme, the supervisor, depending on the
present system state and traffic conditions chooses the
one to be applied to the freeway sections. The stabi-
lizing properties of the adopted regulators have been
stated in Section 3. It is still important to analyze the
stabilizing properties of the overall control scheme.
To this end, previous works have assessed that, by
suitably defining switching rules to be adopted at any
switching instant, some suitable stability properties
can be ensured. Apart from classical Lyapunov stabil-
ity which can be ensured by adopting very restrictive
switching rules, the concept ofε–practical stability has
been defined in (Francoet al., 2004a), which turns out
to be particularly suitable for the considered kind of
systems.

Let us briefly recall the definition ofε–practical stabil-
ity.

Definition 4.1. ε-Practical stability: Givenε > 0 and
system (12) subject to a switching sequenceΞ and a
switching lawS(ε), the origin as an equilibrium point
of system (12) is said to beε-practically stableunder
the action of the switching lawS(ε) if there exists
δ = δ(ε) > 0 such that‖xt‖ < ε, t0 < t whenever
‖xt0‖ < δ.

The meaning of the above definition is quite clear,
what is required is that the norm of the state vector is
always bounded by the pre–defined valueε. Note that,
in the present case, the system state is composed of the
tracking errors between the freeway traffic density and
traffic mean speed and the corresponding desired val-
ues. This means that guaranteeingε–practical stability

ensures that the tracking errors are always bounded,
which turns out to be a very significant property.

In (Franco et al., 2004a), several stability proper-
ties and, among them,ε–practical stability, are care-
fully analyzed with reference to the proposed control
scheme. In particular, the different stability proper-
ties are shown to be ensured under the application of
suitable constraints to be fulfilled at each switching
instant. Such constraints make use of the Lyapunov
functionsVir defined above and are not reported here
for the sake of brevity. What is important to note
here is that a switching law is defined in (Francoet
al., 2004a) guaranteeing that the origin as an equi-
librium point of the considered system under the ap-
plication of the proposed hybrid control scheme isε–
practically stable. By applying such a switching law,
it is then possible to maintain bounded the defined
tracking errors.

5. SIMULATION RESULTS

A real case study has been faced by the proposed con-
trol approach to test its effectiveness. The considered
freeway portion consists of four two–lane sections,
each of 1–km length, situated in the north–west part of
the Italian freeway network. On-ramps and off-ramps
are present in all the sections.

The analysis of real data led to the definition of
N = 5 different models and regulators for the
considered freeway system. Each model is com-
posed of equations (9) and (10). The approximated
function Ṽ (ρj(k)) has been calibrated on the ba-
sis of real data, finding the following desired val-
ues of traffic density ρ̃1 = 100 [veh/km], j =
1, . . . , S , ρ̃2 = 150 [veh/km], j = 1, . . . , S , ρ̃3 =
200 [veh/km], j = 1, . . . , S , ρ̃4 = 250 [veh/km], j =
1, . . . , S , ρ̃5 = 300 [veh/km], j = 1, . . . , S . As
regards the desired values of traffic mean speed:ṽ1 =
120 [km/h], j = 1, . . . , S , ṽ2 = 100 [km/h], j =
1, . . . , S ṽ3 = 80 [km/h], j = 1, . . . , S , ṽ4 =
60 [km/h], j = 1, . . . , S ṽ5 = 40 [km/h], j =
1, . . . , S .The parameters of the freeway control objec-
tives associated with the five regulators are:K1 = 5 ,
K2 = 8 , K3 = K4 = K5 = 10 .

The effectiveness of the proposed control scheme has
been verified by means of an extensive simulation
analysis. A case regarding the application of the hy-
brid controller in a case in which an accident af-
fected the first section of the freeway portion is here
reported (the section affected by the accident is the
most downstream section of the considered freeway
portion). Only few figures are shown for the sake of
brevity. Specifically, some simulations are shown in
Figs. 2 and 3 and compared with the recordedactual
system behavioron the real freeway stretch.

6. CONCLUSIONS

A hybrid control scheme has been adopted for ramp
metering of freeway systems. The proposed control
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Fig. 2. Evolutions of the traffic mean speed in section 1
with (dotted line) and without (solid line) control.
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Fig. 3. Evolutions of the traffic mean speed in section 4
with (dotted line) and without (solid line) control.

scheme can guarantee several stability properties of
the origin as an equilibrium point of the dynamic
system representing the dynamics of tracking errors
relevant to the traffic density and the traffic mean
speed. Further research can regard the case in which
the system state can be non fully measurable and the
definition of a decentralized control scheme for wide
freeway networks.
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