
 
 
 

 
ACHIEVING X-SIGMA DELIVERIES IN SUPPLY CHAINS 

Danqing Yu, Peter B. Luh and Shi-Chung Chang 
 

  Department of Electrical and Computer Engineering 
 University of Connecticut, Storrs, Connecticut 06269-2157, USA 

Email: danqing@engr.uconn.edu, Peter.Luh@uconn.edu, scchang@cc.ee.ntu.edu.tw 
   
    
    

Abstract 
Time-based competition and market globalization make it imperative for supply chains to have short and 
reliable order deliveries.  This is difficult to achieve in view that activities of individual manufacturers are 
subject to various uncertainties such as unknown order arrivals and stochastic operations.  Furthermore, 
delays of one manufacturer may propagate to it downstream manufacturers through precedence 
relationships.  To stay competitive, it is critical to control variability and order lead-times across a chain,  
and to achieve delivering final products within specified target time windows with high probability.  This is 
the key idea of achieving x-sigma delivery performance.  In this paper, make-to-order supply chains with 
sequential workflows are considered.  An effective solution methodology is developed to minimize overall 
order tardiness, earliness costs and delivery variability through effective scheduling and coordination.  To 
accommodate new arrivals while fulfilling commitments of existing orders, a rescheduling approach is 
presented to generate high-quality schedules in a timely fashion.  Numerical testing results demonstrate that 
the new approach is effective to schedule manufacturers across a chain to achieve the required three-sigma 
deliveries.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
Time-based competition and market globalization make it 
imperative for supply chains to achieve reliable on-time 
deliveries.  This, however, is difficult in view that 
manufacturing activities are subject to various uncertainties 
such as unknown future order arrivals, stochastic 
operations, or unexpected machine breakdowns.  In 
addition, manufacturers in a supply chain rely on their 
suppliers to provide component parts, and delays of one 
manufacturer may propagate to its downstream 
manufacturers through precedence relationships.  The 
problem is particularly serious for make-to-order supply 
chains, where the flow of work is triggered by random 
arrivals of customer orders with little inventory to buffer 
against uncertainties.  For example, it was reported that 
companies may have to reschedule up to 80% of existing 
orders to accommodate new ones, and this leads to poor 
delivery performance (Brown, 1988).   
 
To stay competitive, there is a critical need to control order 
lead-times and variability of individual manufacturers 
across a chain to achieve delivering final products to 
customers within specified target time windows with high 
probability.  This is the key idea of achieving x-sigma 
delivery, a hallmark for service quality and reliability 
(Hahn and Doganaksoy, 2000; Narahari, et. al., 2000).  X-
sigma delivery can be addressed by various means such as 
improving the reliability of machines through preventive 

measures, increasing inventory or expanding manufacturing 
capacities.  They can also be approached through effective 
manufacturing scheduling and coordinating across a chain 
without major capital or labor investments, however, this 
has not been adequately studied with few corresponding 
methods available.   
In this paper, after a brief review of the literature in Section 
2, a supply chain with sequential workflow is formulated in 
Section 3, where manufacturers are modeled as job shops 
with stochastic operations.  It is assumed that the 
manufacturing processes have been streamlined and 
machines are reliable through preventive measures.  The 
goal of reliable on-time delivery of customer orders is 
translated to a goal of minimizing order tardiness, earliness 
costs, and variance of order lead-time times.  In addition to 
machine capacity constraints and operation precedence 
constraints within and across manufacturers,  order lead-
time variances across the chain are required to be less than 
or equal to a certain x-sigma threshold determined based on 
the customer specified delivery time windows.  In view that 
the problem is separable, it can be decomposed into order-
level subproblems after relaxing all coupling constraints 
within and across manufacturers.  An effective variance 
control technique is developed as an integrated piece of the 
scheduling process by using stochastic dynamic 
programming.  Coordination operations within and across 
individual manufacturers including allocating the total 
variances across the chain is achieved through an iterative 



  

price updating process within a surrogate optimization 
framework.   
The above is a description of the problem and the 
corresponding solution methodology.  After scheduling, 
new orders become existing orders, with contract due dates 
systematically determined based on the estimated means 
and standard deviations of order completion times obtained 
from scheduling.  In addition, a step penalty is added to 
prevent missing the contracted due date.  In this way, the 
method strikes a balance between fulfilling existing 
commitments versus taking on new orders.  To 
accommodate new order arrivals and occurrences of 
random events in a timely fashion, schedules are generated 
upon major order arrivals or periodically. 
   
Numerical testing presented in Section 5 examines cases 
with different levels of uncertainties and new arrivals.  The 
results demonstrate that the method is effective to reduce 
the variances of lead-times to achieve three sigma delivery 
performances, and for balancing the fulfillment of existing 
commitments versus taking in new arrivals.   
 

2. LITERATURE REVIEW 
Pioneered by Motorola, six sigma quality has become a 
hallmark of excellence for product or process quality  
(Hahn and Doganaksoy, 2000).  Products with six sigma 
quality imply that there are no more than 3.4 defects per 
million parts in the presence of typical source of variation.  
This concept has been extended to delivery performance of 
manufacturing processes, where six sigma qualities imply 
that there are no more than 3 to 4 orders outside their target 
delivery time windows per million deliveries.   This is 
difficult to achieve in view that manufacturing systems are 
usually subject to various sources of variability such as 
unknown order arrivals, stochastic operations or fluctuation 
in the manufacturing condition.  Reducing variability is 
critical to improve delivery performances, and has been 
investigated by several papers, including Viswanadham 
(1999) and Tayur, et. al (1999).  Research to buffer 
variability has been focused on the inventory management, 
smoothing production or expanding capacity at the strategic 
level, with limited exploration on inherent operation 
complexity and uncertainty.  Additionally, achieving six-
sigma deliveries also present challenges for supply chains, 
where variability of one manufacturer may propagate to 
another through precedence relationship.   How to pool 
variability across a chain to reduce the propagation effects 
is therefore a major concern for supply chain management 
(Naraharim et. al., 2000; Garg et. al., 2002).  A variance 
pool allocation technique has been developed to find 
optimal allocation of variability among component 
processes in a chain to achieve a required “delivery 
sharpness,” a new metric defined to describe how 
concentrated that orders are delivered within specified time 
windows (Garg, et.  al., 2002).  The issues such as how to 
schedule and coordinate operations of individual 
manufacturers to achieve the overall six-sigma delivery 
performances, however, have not been adequately studied, 
and will be addressed in this paper. 

 
3. PROBLEM FORMULATION 

3.1 Problem Description and Modeling Convention 

In this paper, a make-to-order model with sequential 
workflows is considered with schematic presented in Figure 
1.  There are F manufacturers in the chain.  Orders  have to 
go through operations in a series of manufacturers f-1, f, 
f+1 before completion.  Orders arrival times are assumed to 
be deterministic, and operation-processing times are 
stochastic.  A particular manufacturer f requires material or 
component parts from its upstream manufacturer f-1, and 
provides parts for its downstream manufacturer f+1.  There 
are two types of orders within individual manufacturers: 
existing orders associated with fixed due dates in contract 
with downstream organizations; and new orders with 
requested delivery dates specified by downstream 
organizations.  Final products (i.e., orders within the last 
manufacturer) are required to achieve x-sigma deliveries to 
customers within specified target time windows. 

f f+1 … f-1 … Customer

Delivery 
New orders

Existing 

 Figure 1.  Schematic of a make-to-order supply chain model 
From the above description, it can be seen that operations 
are subject to coupling constraints within and across 
individual manufacturers.  And effective scheduling and 
coordinating across the chain are needed to achieve a 
shared goal of x-sigma delivery.  In the following, 
constraints within individual manufacturers, cross-
organization relationships and finally, the objective 
function will be presented.  
3.2 Constraints within Individual Organizations 
For simplicity, a particular manufacturer f is modeled as a 
job shop based on the model of Wang, et. al.(1997), and 
contains multiple machine types with the capacity of type h 
machine at time k given and denoted as .Mf

kh  The ith (i = 1, 
2, …, I) order in manufacturer f is denoted as (f, i) and is 
associated with an upstream order (f-1, i) and a downstream 
order (f+1, i).  Order (f, i) goes through a series of Jfi 
operations, with the jth operation denoted as (f, i, j).  Among 
the set of orders Of, the subset of new orders is denoted as 

,OT
f and the subset of existing orders is denoted as .OC

f  An 
existing order (f, i) has a due date dfi in contract with the 
downstream manufacturer f+1 or the customer, and a 
promised delivery date p

i ,1fd −  offered by its upstream 

manufacturer f-1.  Similarly, a new order (f, i) is associated 
with a requested delivery date r

fid specified by f+1, and a 

tentative delivery date t
i ,1fd − offer by f-1.  In addition, 

manufacturer f determines the requested delivery date 
r

i,1fd −  for order (f, i).  The constraints within individual 
manufacturers are briefly presented below. 
Operation Processing Time Constraints.  Each operation 
needs to be scheduled on a machine of the required type for 
a random amount of time.  
         cfij = bfij + pfij – 1, ∀ (f, i, j),  (1) 
where bfij is the beginning time of (f, i, j), and cfij the 
completion time; processing time pfij is a nonnegative 
random variable with a given distribution.  It is assumed 
that the processing times for different operations are 
independent.   



  

Operation Precedence Constraints.  Operation (f, i, j+1) 
cannot be started until its preceding operation (f, i, j) has 
been completed plus possibly a nonnegative slack time sfij.   
  cfij + sfij + 1 ≤ bfi(j+1), ∀ (f, i, j ≠ Jfi).  (2)  
There are other two sets of precedence constraints.  First, 
delivery of (f, i) (as characterized by the tentative or 
promised delivery date) should after its  completion time 
plus a required slack time (representing, e.g. transportation 
time).  Second, orders can only be started after the material 
or component part arrival time (as characterized by the 
requested delivery date )d r

i ,1f − plus a required slack time. 

Expected Machine Capacity Constraints.  The number of 
active operations scheduled on a particular machine type h 
should be less than or equal to the capacity of that machine 
type at any time.  In view of the complexity of stochastic 
scheduling as caused by the multitude of random event 
realizations, machine capacity constraints are approximated 
by the following expected versions (Luh, Chen, and 
Thakur, 1999): 
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where δfijkh is an operation indicator and defined to be one if 
the operation (f, i, j) is active at time k on machine type h 
and δfijkh ≡ 0 otherwise.  The above constraints couple 
decision variables belonging to different orders together, 
and are coupling constraints within individual 
manufacturers.  They are to be satisfied in the expected 
sense in the core of the optimization algorithm, and to be 
strictly satisfied in the schedule implementation phase.   
3.3 Cross-organization Relationship.   
Cross-organization precedence constraints.  Inter-
organizational precedence relationship imposes constraints 
across manufacturers.  For an existing order, the contracted 
due date may not be met during scheduling in view of 
disruptions caused by uncertainties such as unknown future 
order arrivals.  For coordination purposes, a new promised 
delivery date p

fid is established and required to be less than 
or equal a new requested delivery date specified by f+1: 

  ,dd r
fi

p
fi ≤ ∀(f, i)∈ .OC

f    (4) 

Similarly, for new orders, the tentative delivery date t
fid is 

required to be less than or equal to the requested delivery 
date specified by f+1.   
These two constraints couple decision variables of adjacent 
organizations together, and are coupling cross-organization 
constraints.  
X-sigma variance constraints.  Assume that the means of 
order delivery times (as characterized by order completion 
times at the end of the chain) are centered at the middle of 
the corresponding customer-specified time windows 
without shift, x-sigma delivery requires that the standard 
deviation of completion times should be less than or equal 
to the lengths of target time windows divided by 2x.  In 
view that order arrival times are deterministic, the 
completion variance is equivalent to the variance of order 
lead-time across the chain, and x-sigma variance constraints 
can be formulated as following: 
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where Ui and Li are the given upper and lower limits of 
delivery time window specified by the customer, with (Ui 
+Li)/2 equivalent to order contracted due dates at the end of 
the chain; 2

ci
σ is the completion variance for the ith order, 

and 2
ac ii −σ  is the corresponding lead-time variance.   

 Assume that activities of individual manufacturers are 
independent and the transportation times between adjacent 
manufacturers are deterministic, the variance of lead-times 
across the chain can be abstracted as a sum of variances of 
order lead-times with individual manufacturers.  Equation 
(5) therefore can be transformed into follows: 
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where the term 2
ac fifi −σ represents variance for lead-times 

of order (f, i).  The above constraints are additive, and this 
facilitate allocating and reducing variances through 
scheduling and coordinating individual manufacturers.  
3.4 Overall Objective Function  
As mentioned in Section 1, manufacturers have a shared 
goal of achieving on-time deliveries.  This translates to 
minimize a weighted sum of penalties for expected order 
tardiness and earliness penalties.  To achieve x-sigma 
delivery of finished orders to customers, it is critical to 
reduce variability for individual manufacturers  across the 
chain.  An additional term for penalizing lead-time variance 
is therefore introduced to the cost function of existing 
orders as follows:  

[ ]   ,Oi) (f, ,w)T(StepETwEJ C
f

2
acfififififi

2
fififi fifi

∈∀σ+γ+β+≡ −
σ

       (7) 

where parameters wfi, βfi  and σ
fiw are nonnegative penalty 

coefficients.  The tardiness is defined as Tfi = max {0, cfi –

fid } and earliness Efi = max {0, fib – bfi}, where fib  is the 
“desired beginning time.”  The term γfiStep(Tfi) represents  
a step penalty for missing the contracted due date as shown 
in Figure 2, with Step(Tfi) equals one if Tfi > 0 and 0 
otherwise, and γfi  the corresponding weight.   

 

Extra Step 
Penalty 

Earliness 
Penalty 

 TimeDesired  
Beginning Time

Tardiness 
Penalty 

Contracted Due Date 
 

Figure 2.  Penalty function for an existing order 
In view that order arrival times are assumed to be 
deterministic, the lead-time variance 2

ac fifi −σ is equivalent 
to order completion variance: 

 2
c

2
ac fififi

σ=σ −     (8) 

This relationship will be used in derivations of Section 4. 



  

The cost function for new orders are similarly defined, 
except that tardiness is calculated based on the requested 
delivery date as Tfi = max {0, cfi – r

fid }, and there is not 
extra step penalty term.  
The overall problem is to minimize the sum of order cost 
functions: 
  ,JJ,Jmin

fi
fi∑≡     (9) 

subject to constraints within the organizations including (1) 
-(3); and cross-organization constraints including (4) and 
(6).  The decision variables are operation beginning times 
within all manufacturers, and the promised, tentative 
delivery dates as well as requested delivery dates for all the 
orders.  The problem formulation is order-wise additive, 
and this motivates a Lagrangian relaxation based 
decomposition approach. 
 

4. SOLUTION METHODOLOGY 
To be consistent with the organizational structure, ideally a 
two-step relaxation is carried out, where coupling cross-
organization constraints (4) and (6) are relaxed first by 
Lagrangian multipliers, and then machine capacity 
constraints (3) within individual manufacturers are relaxed.  
For simplicity of derivation, coupling constraints within 
and across organizations are relaxed at the same time and 
the overall problem (9) is decomposed into a set of order-
level subproblems.  Based on prices and the information 
received from upstream or downstream manufacturers (i.e.,  
promised or tentative delivery dates and the requested 
delivery dates), each subproblem is solved by using 
stochastic dynamic programming (SDP, Wang, et. al., 
1997).  By intuitively decomposing lead-time variance into 
variability associated with individual operations, lead-time 
variances are calculated and reduced in a stage-wise fashion 
as an integrated piece of the SDP process.  After the 
subproblems are solved, prices are updated to coordinate 
activities within and across the chain including allocating 
variances among individual manufacturers.  This completes 
one iteration.  The iteration repeats until algorithm 
converges.  
After scheduling, a new order becomes an existing order, 
with contracted due date determined by expected 
completion time and the corresponding variance obtained 
from scheduling.  To balance between fulfilling existing 
commitments versus maintaining agility to take on new 
orders, step penalties for avoiding missing the contracted 
due dates are imposed on existing orders.  Rescheduling is 
triggered periodically or upon the arrivals of new orders.  
The details of this dynamic process are presented next. 
4.1 Problem Decomposition 
After relaxing cross-organization constraints (4) and (6) and 
machine capacity constraints (3) by using sets of multipliers 
{η}, {λ} and {π}, a relaxed problem is obtained as: 
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subject to constraints within manufacturers (e.g.,  (1)-(2)).   
4.2 Scheduling Individual Orders 
The relaxed problem can be decomposed into a set of order-
level subproblems within individual manufacturers.  For 
simplicity of illustration, only formulation and solution of 
existing order subproblems will be elaborated in this paper.  
Similar ideas can easily apply to subproblems of new orders 
and are omitted.  The subproblem for an existing order (f, i) 
is formulated as follows: 
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subject to (1)-(2).  The decision variables are operation 
beginning times, the promised delivery date p

fid to be 
offered to the downstream manufacturer f+1, and the 
requested delivery date r

i,1fd − to be imposed upon the 
upstream manufacturer f-1.  It should be noted that the lead-
time variance has been replaced by the completion variance 
based on (8). 
To solve the subproblem by using SDP (Wang, et. al., 
1997), the challenge is to effectively compute and reduce 
order completion variances.  To address this, a novel 
variance control technique is developed as an integrated 
piece of order scheduling.  As the first step, for a given 
beginning time bfi = bfi1, the completion time for order (f, i) 
can be formulated as a sum of operation processing times 
and wait times as follows:   

).sp(bc J
1j fijfij1fifi ∑ = ++=    (12) 

where the term pfij + sfij is equivalent to the time interval 
between  beginning times of operation j and its subsequent 
operation j+1.  In view that these time intervals are 
independent for different operations; the completion 
variance can be calculated as follows: 

∑ = +σ=σ J
1j

2
sp

2
c .

fijfijfi
    (13) 

This facilitates computing and reducing the completion 
variance in an operation-wise fashion during the SDP 
process as illustrated below.  
In SDP, a stage corresponds to an operation, and a state 
corresponds to a possible beginning time.  The algorithm 
starts from the last stage J: given a particular beginning 
time fiJb , for each possible processing time pfiJ, there is a 
corresponding completion time cfiJ, and the completion 
variance is equivalent to variance of processing times based 
on (13).  The terminal cost is therefore calculated as: 
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Now move backward to stage J-1 from stage J.  Given state 
bfi, J-1, for each possible processing time of stage J-1, there 
is a corresponding decision of beginning time for stage J.  



  

Based on (13), the completion variance for given bfi,J-1 is 
calculated as: 

.2
p

2
sp

2
c fiJ1J,fi1J,fifiJ

σ+σ=σ
−− +    (15) 

The expected cumulative cost as the algorithm moving 
backward is then obtained recursively as: 
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where fij∆  is an integer variable equal to one if j equals 

one and zero otherwise.  The optimal *
fiL is obtained as the 

minimal expected cumulative cost at the first stage subject 
to arrival time constraints: 

[ ]. )b(VEminL 1fi1fi
}b{

*
fi

1fi

=     (17) 

The solution from SDP is a policy describing what to do 
under which circumstances and therefore can be applied 
based on the occurrence of random events.  Following the 
policy, optimal operation beginning times, as well as 
estimates of the means and variances of order completion 
times can be obtained by tracing the stage forward.  
Subproblems for new orders can be formulated and solved 
in the same way as presented above, except that order 
promised delivery dates are replaced by tentative delivery 
dates t

fid  and contracted due dates are replaced by requested 

delivery dates r
fid . 

4.3 Coordination Procedure to Convergence and 
Rescheduling 
Given the optimal solutions of order subproblems, the high 
level dual problem is to select an optimal set of multipliers 
to maximize the dual function, i.e., 

 ( ) *
,,

L~, ,q~ with ),,,(q~max ≡πληπλη
ληπ

     (18) 

subject to non-negativity of all multipliers.  To solve (18), 
the “Surrogate Subgradient Method” (SSGM, Zhao, et. al., 
1999) was used to update the multipliers and allows 
efficient resolution of large problems.  After the multipliers 
are updated to coordinate activities of manufacturers 
including allocate variances across the chain, the 
subproblems are resolved and the process continues until 
the prices are close to convergence.  A new order then 
becomes an existing order after scheduling, with its 
tentative delivery date becomes the promised delivery date.  
To be consistent with x-sigma delivery, the contacted due 
dates for existing orders are determined in consultation with 
customers based on the estimated mean and standard 
deviation of order completion times obtained from 
scheduling, i.e., 

.x]c[Ed
ficfifi σ+=     (19) 

Rescheduling is triggered upon the arrivals of new orders or 
periodically.  Most decision variables are re-optimized 
except the contracted due dates of existing orders.  To 
balance between fulfilling existing commitments versus 
maintaining agility to take on new orders, step penalties are 
imposed on existing orders to avoid missing their due dates 
during rescheduling.   
4.4 Schedule Implementation and Evaluation 

The solutions of individual subproblems, when put 
together, are generally not feasible in view that the coupling 
constraints (e.g., (3)) are approximated by expected 
versions and relaxed by Lagrangian multipliers.  A greedy 
heuristics (Wang, et. al., 1997) is used at the on-line 
implementation phase to eliminate possible constraint 
violations.  To evaluate algorithm performance, schedules 
are evaluated by using a simulation model embedded with 
the above-mentioned heuristics.  
 

5. NUMERICAL RESULTS 
The method presented above has been implemented in 
Matlab and tested on a PC with a Pentium IV 2.0 GHz 
processor and 512M SDRAM.  Numerical testing has been 
performed on a simplified two-factory model with orders 
requiring a series of operations to process.  Each factory 
contains three machine types, and each type for a specific 
operation.  The operation processing times are uncertain 
and described by sets of symmetric three-value distributions 
with specified means and variances.   
 
Two examples are tested.  The first example presents cases 
with varying settings of operation uncertainty levels to 
demonstrate the value of the new approach to improve 
delivery performance by reducing variances of order lead-
times.  The performance of the new method is compared 
with that of the traditional SLR methods without x-sigma 
variance control technique (i.e., equivalent to σ

fiw = 0 and 
without adding cross organization variance constraints), and 
the “weighted shortest processing time and critical ratio” 
(WSPT/CR) rule.  The WSPT/CR rule gives priorities to 
operations with high tardiness weight and low processing 
times to reduce work-in-process inventory, while 
emphasizing the criticality to meet the due dates.  It has 
been proved to be effective against many performance 
measures (Shafaei and Brunn, 1999).  The second example 
presents cases containing different percentage of new 
arrivals to examine the effectiveness of step penalties to 
fulfill order delivery commitments.  
 
For all the cases, the penalty weights for tardiness, earliness 
are set to be 1 and 0.1, respectively.  For the new method, 
the penalty weights for lead-time variances are set to be 1.  
The orders are required to achieve approximately 3-sigma 
delivery performances (> 90% of orders delivered within 
target time windows).  Algorithms are terminated after a 
fixed amount of computational time.  Based on the 
scheduling policy obtained, 100 simulation runs are 
conducted for each case with random variable realized 
based on their distributions.  To compare the performances 
of different algorithms, the same number of simulation runs 
is performed using the same set of random seeds. 
Example 1.  In this example, forty orders with 240 
operations are to be scheduled on 6 machine types of two 
factories over a time horizon of 88 days.  The number of 
machines per type is set to be 8 for both factories.  Among 
the orders, there are 75% existing orders and 25% new 
orders.  The step penalties for contract orders are set to 10.  
Two cases are tested.  The variances of processing times are 
set to be 0.8 for Case 1, and 1.6 for Case 2 to represent low 
and high uncertainty levels, respectively.  The results are 
summarized in Table 1 and Table 2.  In the tables, the terms 



  

“Mean Order Completion-time” “Standard deviation  of 
Completion Times” and “Average Tardiness Cost” are 
average results based on 100 simulation runs.  To reflect the 
performance of delivering finished orders to customers, the 
“Average Tardiness Cost” and the “Percentage of Late 
Delivery” are all computed based on the contracted due 
dates for finished orders at the end of the supply chain.  The 
“CPU time” is the computation time for running the LR 
based algorithms for each case.  

Table 1.  Performance comparisons when uncertainty level is low 
Case 1 

(Low Uncertainty Level) 
New 

LR/SSG 
Traditional 

LR/SSG 
WSPT 

/CR 

Mean Order Completion (Day) 49.47 49.92 49.57 

Deviation of Completion (Day) 1.71 2.82 3.47 

Average Tardiness Cost 4.23 119.94 175.2 

Percentage of Delay (%) 1.58 13.5 15.30 

CPU time (Sec.) 200 200 / 

 
Table 2.  Performance comparisons when uncertainty level is high 

Case 2 
(High Uncertainty Level) 

New 
LR/SSG 

Traditional 
LR/SSG 

WSPT 
/CR 

Mean Order Completion (Day) 49.06 49.95 49.53 

Deviation of Completion (Day) 3.23 4.02 4.76 

Average Tardiness Cost 52.03 137.14 226.88 

Percentage of Delay (%) 4.5 10.70 19.42 

CPU time (Sec.) 200 200 / 

From the tables, it can be seen that for both cases, the new 
approach outperforms the traditional SLR method and 
WSPT/CR rule by effectively reducing order completion 
variances and achieving lower delay rates as well as 
tardiness costs.  For both cases, the delay rates are below 
5% by using the new method; this implies that the new 
approach can generate high-quality schedules to achieve 
approximate 3-sigma order deliveries. 
 Example 2.  In this example, 600 operation associated 
with 100 orders are to be processed on 150 machines of 6 
types in two factories in a sequential manner.  The 
variances of processing times are set to be 0.8.  Two cases 
are tested, with Cases 3 and 4 containing 15% and 35% 
new orders, respectively.  Each case is scheduled by using 
the new method with or without step penalties imposed on 
contracted due dates of existing orders (i.e., step penalties 
are set to be 10 and 0, respectively).  The results of 100 
simulation runs are presented in Table 3.  

Table 3.  Performance of the new method when scheduling  
orders with varying percentages of new arrivals 

From the table, it can be seen that as the percentage of new 
order arrivals increases, the average tardiness cost and order 

delay rate increase in view that new arrivals may cause 
original commitment to be compromised.  By setting an 
appropriate step penalty, the new method strikes a balance 
between fulfilling the existing commitments versus taking 
in new orders by generating high-quality schedules with 
reduced tardiness costs. 

6. CONLUSIONS 
In this paper, a novel variance control technique is 
developed to achieve x-sigma supply chain delivery 
performance by accurately estimating and effectively 
reducing variances of lead-times through scheduling 
individual manufacturers and coordinating across a chain.  
Testing results supported by simulation demonstrates that 
3-sigma delivery could be achieved without drastic 
increasing of the total cost.  The effectiveness of the new 
approach to accommodate new orders while fulfilling 
commitments to existing orders is demonstrated, and this is 
of significance for practical applications.   
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New 
orders 

Compared items Step  
Penalty = 10 

Step  
Penalty = 0 

Mean Completion (Day) 48.52 48.33 

Deviation of Completion (Day) 1.83 1.79 

Average Tardiness Cost 4.33 7.96 

 
  15% 
Case 3 

Percentage of Delay (%) 1.30 2.42 

Mean Completion (Day) 48.94 48.55 

Deviation of Completion (Day) 2.00 2.35 

Average Tardiness Cost 75.60 128.14 

 
35% 

Case 4 

Percentage of Delay (%) 4.55 8.83 


