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Abstract: This paper presents a method to design a logic controller as an
Event-Condition-Action (ECA) system, where the Modular Finite State Machine
(MFSM) framework has been used to build the model for the controller. The
resulting model, called an ECA MFSM, is in essence a MFSM model with a special
structure that enables the processing of logic to follow the ECA paradigm. The
ECA rule based method has a solid theoretical root and has been the paradigm
followed to design active database systems. Copyright c©2005 IFAC
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1. INTRODUCTION AND MOTIVATION

The Modular Finite State Machine (MFSM) the-
ory (Endsley and Tilbury, 2004a; Endsley and
Tilbury, 2004b) has been developed for the design,
verification and implementation of large scale
logic programs, and to this end it has been suc-
cessful. Control reconfigurability was also a major
objective but has not achieved the same good
results. This paper looks at logic architectures
for MFSMs that enhance their reconfigurability,
by turning the model into an Event-Condition-
Action (ECA) system, which has been the under-
lying mechanism of a remarkably reconfigurable
system, the active database.
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Active database systems are designed to store
large volumes of data and allow users or appli-
cations to manipulate the data in a controlled
manner (Widom and Ceri, 1996). They are cen-
tered around the ECA paradigm that specifies
the desired behavior for the database. In essence,
when an event occurs a condition is evaluated (by
a querying mechanism) and the database takes
corresponding action (Zaniolo et al., 1997). Active
databases fall into the general category of reactive
systems (Harel and Pnueli, 1989) and have an in-
put/output behavior similar to a logic controller.
If a major requirement for the logic control is
reconfigurability, then it would be interesting if
it shared the same underlying ECA mechanism as
the active database. This mechanism is the way
in which the logic controller internally handles
and processes the logic. This paper shows how a
MFSM logic controller can be designed so that its
reactive behavior is specified by ECA rules, where
the resultant model is termed ECA MFSM.



2. BACKGROUND

2.1 Modular Finite State Machines

MFSMs are a type of Discrete Event System
(DES). They react to and generate events, and are
an extension of FSMs, tailored to logic control ap-
plications, with added modularity and strong ver-
ification capabilities. As an example of a MFSM
system, a simple plant consisting of a push button,
a robot and a light is presented in Figure 1. The
behavior of the system is that when the button is
depressed the light will turn on and the robot will
pick and place a part. Releasing the button at any
time or depressing the button while the robot is
busy will not have any effect. The light will turn
off when the robot finishes its job.
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Fig. 1. Example of a MFSM controller

MFSM systems also fit into the broad category of
reactive systems. External events (triggers) pro-
duce transitions in the MFSM model; these transi-
tions can cause state changes in modules and gen-
erate responses back to the environment, as the
effect of the trigger cascades through the MFSM
model. It is assumed that this internal processing
occurs instantaneously (or at least the time taken
is negligible), such that no other external trigger
can occur during this phase. This behavior is
implementable in a scan based environment such
as a Programmable Logic Controller (PLC).

An advantage of the MFSM framework is that it
allows for controllers such as the one in Figure 1
to be modularly verified (Endsley and Tilbury,
2004b). However, previous work has revealed two
weaknesses of the method. The major weakness is
the complexity of the MFSM models, as can be
seen for example in (Almeida and Tilbury, 2004)
where the model for a cell controller developed
for a manufacturing cell with only two machines
and a robot can quickly become extremely large
and difficult to understand. The second observed
weakness is that the MFSM systems built up
to now are bounded in their reconfigurability,
meaning that the models can be easily modified
only in control functions pre-conceived by the

designer. Both of the observed weaknesses raise
serious questions on how effective are the modular
architectures proposed until now.

2.2 Active Databases and ECA Rules

Active database systems monitor events and trig-
ger actions as a result of this detection. This be-
havior is specified in the form of ECA rules. A rule
specifies that on the observation of a certain event,
if a corresponding condition is satisfied, then an
action is taken. An event can be a database op-
eration, an external incoming event or a timed
or untimed temporal event. The condition can
simply be evaluated as true or false, whereas the
action can be an action toward the environment
or internal to the database and can be the trigger
of a new ECA rule, causing a chain of rules to
fire. ECA rules have been used in many domains
ranging from business workflow managers (Bae
et al., 2004), manufacturing control (Chaudhry
et al., 1998) or web applications (Papamarkos et
al., 2003). The advantages of ECA rules lie pri-
marily on the fact that they allow behavior to be
specified and managed on a rule base (rather than
being encoded in diverse applications), improving
modularity, maintainability and thus reconfigura-
bility. They have a generic and high level syntax
easily understood and amenable to analysis, which
makes them a natural candidate to implement
reactive functionality.

3. EVENT-CONDITION-ACTION MFSMS

3.1 General Overview

Event-Condition-Action Modular Finite State Ma-
chines (ECA MFSMs) are MFSM systems with a
special architecture of the modules. This partic-
ular arrangement makes the internal processing
of the logic follow the ECA paradigm. The top
part of Figure 2 shows a general representation of
a MFSM system with input and output events.
Below it is the ECA MFSM representation of
the same system; the only change arises in the
internal arrangement and design of the modules.
In this new architecture there is a central module
called Main and a finite number of Peripheral
modules. Each one of these Peripheral Modules
is connected to Main and prohibited from com-
municating with the environment or with other
peripheral modules.

The ECA MFSM model interacts with the envi-
ronment through a set of input events Σin and a
set of output events Σout. Both event sets cor-
respond to events that are exchanged with the
plant, therefore form the set of external events
Σext = Σin ∪ Σout. Given this general setup, the



in
Σ out

Σ

Regular MFSM

MAIN Module

Peripheral 
Module 1

ECA MFSM

in
Σ

out
Σ

Peripheral 
Module 2

Peripheral 
Module n

Fig. 2. A regular MFSM system with input and
output events, and its ECA version

following sections formalize the various details of
ECA MFSMs.

3.2 ECA MFSM Building Blocks

The various building blocks of ECA MFSMs con-
sist of particular events, queries, states and mod-
ules, defined in this section. The event set of an
ECA MFSM model is defined as the union of
two sets: the set of external events Σext (already
defined) and the set of internal events Σint, which
corresponds to events that are exchanged in be-
tween modules only. There are three subsets of
internal events: the set of query events Σq, the
set of query-response events Σr and the set of
updating events Σu.

Definition 1. An event belongs to Σq when it is
a trigger to a Peripheral module and a response
from Main and does not change the state of the
Peripheral module; an event belongs to Σr when
it is a response from a Peripheral module and a
trigger to Main that is generated by a query event;
an event belongs to Σu when it is a trigger to a
Peripheral module and a response from Main that
may change the state of the Peripheral module.

Definition 2. A Modular Query Q is performed
between Main and a Peripheral module, through
which connection the Peripheral module will have
one trigger c ∈ Σq and n responses {d1, . . . , dn}
∈ Σr. It consists of Main sending c and the
Peripheral module responding with one element
from {d1, . . . , dn}, resulting in one element from
the set {cd1, . . . , cdn}

There are two kinds of reachable states possible
in a module, stable and transient states.

Definition 3. A state x is stable when the module
can be at x at the beginning of a scan cycle; if the
module can never be at x then x is transient.

In words, a stable state is a true system state,
whereas a transient state is a temporary state that
the module is in only in between scans, that is
during the processing of the logic.

Definition 4. Main is a module where: 1)The ini-
tial state is the only stable state; 2)There is one
connection to every Peripheral module. Through
these connections, triggers to Main are query-
response events and responses are query and up-
dating events; 3)There can be one or more con-
nections to the environment. Through these con-
nections, triggers to Main are input events and
responses are output events.

Definition 5. Peripheral modules have the follow-
ing restrictions: 1)There is only one connection to
Main per Peripheral module; 2)The triggers to Pe-
ripheral modules are query and updating events;
the responses are query-response events; 3)Each
time a Peripheral module receives: a query event
it will issue one response to Main; an updating
event it will not issue any response.

3.3 ECA MFSMs Behavior

This section explains how the internal events will
come together with the external events to form
control transactions, where these transactions are
a concatenation of ECA rules. These rules are
embedded in Main (as state machines), and are
triggered by events, either from Σin or Σr. This
means that an input event can trigger an ECA
rule, and the query response in this rule can cause
a new ECA rule to be triggered, originating a
series of ECA rules to fire. The following defines
ECA rules within the MFSM context.

Definition 6. An ECA rule is composed of an
event t ∈ (Σin ∨ Σr) that triggers the ECA rule,
a modular query Q resulting in one element from
{cd1, . . . , cdn} and a set of actions a ∈ (Σu∨Σout∨
Σq), such that the ECA rule = tc{d1, . . . , dn}a ≡
tc{(da)1, (da)2, . . . }.

Definition 6 shows that an ECA rule is triggered
by an input event or by a query response. Follow-
ing the trigger t a modular query will be executed
generating event c and di, which will in turn
correspond to a set of actions a. The response
and action parts will be associated as different
responses from the same modular query will cause
different actions, as depicted in Figure 3a. When
the response di is a trigger for a new ECA rule
the action a will initiate a modular query. To
represent this concatenation of rules, we will need
to create a graph as shown in Figure 3b, which
shall be referred to as a transaction graph.



Definition 7. A transaction graph has one stable
state (IDLE) and multiple transient states, form-
ing a tree-like structure as shown in Figure 3b.
From any state there can be a transition to IDLE,
thus originating cyclic behavior.

Definition 8. A control transaction T is a con-
catenation of ECA rules. It is composed of an
event that triggers the control transaction e ∈
Σin, of condition evaluation response / query
pairs (dc)i, ∀i = 1, . . . n − 1, of the updating
actions to be taken fi ∈ Σu, ∀i = 1, . . .m and
of the output actions to be taken gi ∈ Σout,
∀i = 1, . . . p, where (n,m, p) ∈ N, such that
T = {ec(dc)1(dc)2 . . . (dc)n−1df1f2 . . .
. . . fmg1g2 . . . gp}
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Fig. 3. a) Branching representation of a rule; b)
For every e ∈ Σin there is a transaction graph
representation with this general structure

There will be a transaction graph for every e ∈
Σin; for convenience a rectangle is used to describe
the IDLE state, and two instances of IDLE are
shown, the first to show where control transac-
tions start from and the second to show when
a transaction terminates (finishes). The set of
transactions of a system will be all possible paths
for every e ∈ Σin that start from IDLE and end in
the termination instance of IDLE. There exists one
transient state in the transaction graph for every
modular query that needs to be executed.

Definition 8 shows a concatenation of ECA
rules until there is a response di that only
causes updating and output events. As a whole
T can be decomposed into a trigger compo-
nent event e, a condition evaluation component
c(dc)1(dc)2 . . . (dc)n−1d and an action component
f1f2 . . . fmg1g2 . . . gp.

Figure 4 shows an example of a transaction graph.
The triggering event e starts a query that can
result in {c1d1, c1d2}; c1d1 will generate f1 and
transaction termination; c1d2 will start a new
query that can result in {c2d3, c2d4}. In this case
c2d3 will generate f2 and c2d4 will generate f3
and g1 - in either case the transactions terminate.
The same analysis is done in Figure 4 by explicitly
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Fig. 4. An example of a transaction graph with the
ECA rules explicitly written in a table and
the 3 possible control transactions (or paths)
outlined

writing the ECA rules for this transaction graph
as a table (note that rule 2 is concatenated to one
of the outcomes of rule 1, which means that rule 2
can only be triggered following rule 1, and that an
event t′ not represented in the transaction graph
is used as a link between the action of rule 1 and
the trigger of rule 2).

3.4 ECA MFSM System

Definition 9. An ECA MFSM system is com-
posed of one Main module with exactly one ECA
rule for every event e ∈ Σin and at least one ECA
rule for every event d ∈ Σr, and n Peripheral
modules where n ∈ N.
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Fig. 5. The ECA MFSM version of the controller
of Figure 1

Consider again the example of Section 2.1. A
regular MFSM controller for this system is shown
in Figure 1, and an ECA MFSM controller for the
same system is shown in Figure 5, where Main has
4 control transactions.

3.5 Separation of state from logic rules

Consider the two MFSM controllers shown in
Figure 1 and Figure 5, which are controllers for
the same system that will produce the same
input/output behavior (the parallel composition



of both systems is shown in Figure 6), but which
have a clearly different architecture.
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The MFSM in Figure 1 has 2 modules that are
not designed independently; their logical behav-
ior is based upon the protocol of events they
will exchange. Therefore, User has to ‘know’ the
Controller logic (and vice-versa).

The MFSM in Figure 5 has 2 Peripheral modules
that perform the same state tracking as the mod-
ules in Figure 1 but are completely independent of
each other, meaning they have no knowledge at all
what the other module does (or even if it exists).
Their joint behavior is tied by the control trans-
actions in Main. The Peripheral modules perform
the function of tracking state values whereas Main
contains the ECA rules that query these modules
in order to make logical decisions. There is a
separation of functionality as the Peripheral mod-
ules become state keepers and Main becomes the
decision making module.

4. COMPARISON OF DESIGN METHODS

We again turn to the example of Section 2.1, and
add a Pause Button to it (the rise and fall events
from this button are abstracted as the events
pause and continue; it is assumed these events
will occur alternately like the rise and fall events
of a button). The occurrence of a single pause
event would cause the light to remain on after the
robot finishes its job after which further requests
are ignored. The light in this case indicates that
the robot is effectively still busy since it is in a
paused state. Continue will bring the system back
to normal mode.

In order to alter the controller in Figure 1 to
handle the new functionality, the most direct
way would be to alter the logic in User and
Controller as shown in Figure 7a (grey states are
new states added to the controller; italicized tran-
sitions are new transitions added). This involves
changing pre-existing logic in the modules. More-
over it is necessary to understand how the logic
of User affects the logic of Controller in order
to make the changes, which implies understanding
the system’s global behavior.

Adding the pausing functionality to the ECA
MFSM shown in Figure 5 can be achieved by
adding a new Peripheral module Pause and al-
tering existing control transactions and creating

new ones (to handle the new events pause and
continue), as shown in Figure 7b.

This is done by adding ECA rules without altering
pre-existing rules (other than changing the trig-
gering event of some rules), and without altering
the logic in the pre-existing modules. Transactions
are simply elongated by more queries, which are
the reason for the new transient states 2 through
5, which reflect the length of the rule and not new
stable states.

5. IMPLEMENTATION EXAMPLE

The Reconfigurable Factory Test Bed (RFT)
(Moyne et al., 2004) is a test bed at the Uni-
versity of Michigan used for research in networks
and controls. There is a central controller called
the System Level Controller (SLC), built as an
ECA MFSM, that must manage hardware com-
ponents for manufacturing operations, and soft-
ware components for virtual factory control and
diagnostics. Figure 8 shows the general layout
of this controller as well as its connections with
hardware and software components. The boxed
region of Figure 8 contains the actual modules of
the SLC, that consist of Main and 19 Peripheral
modules, where Main contains approximately 80
transactions.
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Fig. 8. ECA MFSM RFT Controller

This SLC was verified by placing protocols in the
communication between the SLC and the various
controllers it communicates with, and the state
space found was of over 250,000 states. The recon-
figurability of the SLC was tested when a faulting
functionality was introduced into the controls;
the SLC should shut down a manufacturing cell
whenever the current read from a milling machine
exited a certain diagnostic threshold, and parts
should then be routed to a virtual manufacturing
cell. The creation of a Fault module with only 2
states and the introduction of 4 new ECA rules
(in a similar way as in Section 4) handled a po-
tentially complex problem, and the SLC was then
verified again for correctness.
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Fig. 7. a) Pausing functionality introduced by composing it into the modules; b) Controller of Figure 5

modified to have a pausing functionality

6. CONCLUSIONS

This paper has presented an approach to design
MFSM controllers as ECA systems. ECA rules
have been widely used in such domains as active
databases, business workflow managers and web
applications. They provide an excellent way to
design and implement reactive systems, such as
logic controllers. Reconfigurability has been one
of the main drivers of this approach as modularity
and maintainability are greatly enhanced when
the logic functionality is managed within a single
rule base rather than being encoded in diverse
applications. This approach has also presented a
clear modular architecture that can be used to
design reconfigurable MFSM controllers. Building
on the verification capabilities of MFSMs it is
hoped that strong results can be obtained about
the verification of certain classes of ECA systems.
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