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1. INTRODUCTION

The static state feedback linearization problem
has been widely studied both in continuous and
discrete time (see Brockett [1978], Jakubczyk et
al. [1980], Isidori et al. [1981], Hunt et al. [1983],
Marino [1986], Monaco et al. [1986], Jakubczyk
[1987], Lee et al. [1987], Isidori [1989], Nijmeijer
et al. [1990], Califano et al. [1999]). Dynamic solu-
tions were first considered in Isidori et al. [1986],
Monaco et al. [1987] and Charlet et al. [1989].
In Charlet et al. [1991], sufficient conditions were
given for the solvability of the problem via prolon-
gations and diffeomorphism. A different approach
based on algebraic techniques was proposed in
Fliess et al. [1992], Fliess et al. [1995], where
differentially flat systems were introduced. Nec-
essary and sufficient conditions for the solvability
of the problem were given in Aranda-Bricaire et
al. [1995]. However these conditions are not con-
structive thus not allowing a direct computation
of the dynamic compensator. Finally in Battilotti
et al. [2003] an algorithm for the computation of a
dynamic compensator consisting of prolongations
was proposed for two input continuous affine sys-
tems. The general multi input case was considered
in Battilotti et al. [2004].

In the present paper we extend the results pro-
posed in Battilotti et al. [2003] for two input
systems, by considering regular dynamic compen-

sators. The proposed algorithm leads to necessary
and sufficient conditions.

2. PRELIMINARIES

Consider the continuous time analytic system

ẋ = f(x) + g1(x)u1 + g2(x)u2 (1)

where x ∈ IRn, and f(x), g1(x), g2(x) are smooth
maps defined on a open set of IRn. The following
notation will be used: given two smooth vector
fields f and gi, adfgi := [f, gi] = ∂gi

∂x
f − ∂f

∂x
gi,

and adk
fgi = adf (adk−1

f gi). We will denote by
g = (g1, g2), by Gi := span{g, · · · , adi

fg}, by Ḡi,
the involutive closure of Gi. Let us recall that the
involutivity and constant dimensionality of the
distributions Gi together with the controllability
of the given dynamics are necessary and sufficient
conditions for linear static feedback equivalence.

Assume now that (1) is linearizable over an open
and dense set U0 3 (x0, 0) with a regular dynamic
controller of the form

ζ̇ = η(x, ζ) + δ(x, ζ)v
(2)

u = α(x, ζ) + β(x, ζ)v

We will first show in the present section some
properties of the dynamics (1) and of the regular



dynamic feedback (2), which allow to define an
algorithm for the computation of a solution.

2.1 The dynamic feedback properties

The following result holds true

Lemma 1. If β(x, ζ) is invertible over an open and
dense set U0 3 (x0, 0) then (1) is static feedback
equivalent to a linear system over U0.

Proof Since β(x, ζ) is invertible over an open and
dense set U0 3 (x0, 0) , then we can consider the
static state feedback v = β(x, ζ)−1(w − α(x, ζ)).
The obtained closed–loop dynamics

ẋ = f(x) + g(x)w
(3)

ζ̇ = η̄(x, ζ) + δ̄(x, ζ)w

will be static feedback equivalent to a linear
system. Consequently the distributions Ge

i defined
on the extended system must be involutive and of
constant dimension locally around (x0, 0). Let us
now note that since

F =
(

f(x)
η̄(x, ζ)

)
, Ge

i =
(

gi(x)
δ̄i(x, ζ)

)
, i = 1, 2,

consequently adj
F Gi(.) =

(
adj

fgi(x)
∗

)
, i = 1, 2,

j ≥ 0. Consider now two elements adj1
F Gi1(.),

adj2
F Gi2(.), j1, j2 ≤ j, which belong to the dis-

tribution Ge
j . The Lie bracket

[adj1
F Gi1 , adj2

F Gi2] =
(

[adj1
f gi1 , adj2

f gi2 ](x)
∗

)

∈ span
{(

gi(x)
∗

)
, · · · ,

(
adj

fgi(x)
∗

)
, i = 1, 2

}

which implies that [adj1
f gi1 , adj2

f gi2 ] ∈ Gj, ∀j1, j2 ≤
j, i.e. the involutivity of the Gj’s. Moreover the
constant dimensionality of Ge

j implies the constant
dimensionality of Gj over an open and dense set
U ′

0 ⊂ U0 so that (1) is static feedback linearizable
on U ′

0 which ends the proof. /

The previous result can be used to enlighten some
properties of the class of dynamic feedback which
can be considered in order to achieve linearization.
As we will show hereafter if we consider a dynamic
controller of minimal dimension in appropriate
coordinates it can be written as a combination
of a feedback which depends only on the state
variables of the given system plus an integrator.

Lemma 2. Assume that (1) is dynamic feedback
linearizable with the regular dynamic feedback (2)
of dimension ν. Let ρ = rank β(x, ζ) ≤ 2. Then
there exists a diffeomorphism such that in the new

coordinates, and after a possible reordering of the
inputs, (2) can be written as

χ̇i = η̄i(x, χ) + δ̄i(x, χ)v, i = a, b

ua = ᾱa(x, χ) + β̄a(x, χ)v (4)

ub = χa + M̄ (x, χ)
(
ᾱa(x, χ) + β̄a(x, χ)v

)

with χa of dimension ρ and correspondingly χb of
dimension ν − ρ.

Proof By assumption in (2), ρ = rank β(x, ζ) ≤ 2.
Moreover the controller (2) is regular so that

rank
(

∂α

∂ζ

∣∣∣ β

)
= 2.

Consequently, after a possible reordering of the
inputs, there exists a partition of the input vector
(uT

a , uT
b ) with ua of dimension ρ and ub of dimen-

sion 2 − ρ such that the feedback u = α(x, ζ) +
β(x, ζ)v can be rewritten as

ua = αa(x, ζ) + βa(x, ζ)v

ub = αb(x, ζ) + M (x, ζ)ua

with βa of full row rank ρ and rank ∂αb

∂ζ
=

2 − ρ. Consequently we can consider the coor-
dinates change χa = αb(x, ζ), and χb such that
(xT , χT

a , χT
b )T is an independent coordinate set.

In these coordinates (2) reads (4). /

Proposition 1. If the dynamic controller (4) achieves
linearization then also the dynamic controller

χ̇i = η̄i(x, χ) + δ̄i(x, χ)v i = a, b

ua = ᾱa(x, χ) + β̄a(x, χ)v (5)

ub = χa + M̄(x, 0)
(
ᾱa(x, χ) + β̄a(x, χ)v

)

achieves linearization.

Proof The proof, which is omitted for space
reasons, is based on the consideration of the linear
approximations of the closed loop system obtained
by first considering thye controller (4) and then
the controller (5), and by showing that the same
output functions achieve defined relative degree
(r1, r2) with

∑2
i=1 ri = n + ν. /

The dynamic controller (5) can be rewritten as a
regular static state feedback plus an integrator

ua = wa, ub = M̄ (x, 0)wa + χa
(6)

χ̇a = wb

and a reduced dynamic feedback

χ̇b = η̄b(x, χ) + δ̄b(x, χ)v

wa = ᾱa(x, χ) + β̄a(x, 0)v (7)

wb = η̄a(x, χ) + δ̄a(x, χ)v

Iterating the procedure on the residual dynamics
(7) we can rewrite the dynamic controller (5) as



the composition of a dynamic feedback given by
a chain of regular static state feedback laws and
integrators, which characterize a compensator of
minimal order plus a residual dynamics.

2.2 The original dynamics properties

In order to enlighten the properties of the dy-
namics (1), assume that it isn’t static feedback
linearizable. Then there exists an index k such
that the distributions Gk+i are involutive and of
constant dimension on an open and dense subset
U0, for any i ≥ 0 whereas Gk−1 is not involutive.
Let ρk−1 be the dimension of Gk−1 and ρk−1 + s
the dimension of its involutive closure Ḡk−1, with
s ≤ 2. Then there exist s indipendent vector fields
τi, i = 1, s which belong to Gk such that

Ḡk−1 = Gk−1 + span{τi, i = 1, s} (8)

For simplicity we will assume throughout the
paper that

H1: Ḡk−1 = Gk−1 + span{τ1}

In fact if Ḡk−1 = Gk−1 + span{τ1, τ2}, then rank
Gk = n. This case can be held by adding a
precompensator which ensures that H1 is satisfied
on the extended system.

Denoting by k > 0 the greatest index s.t. Gk+l,
∀l ≥ 0 is involutive, whereas Gk−1 is not involutive
we can then introduce the following definitions.

Definition 1. The Non-Characteristic set NCk−1
τ1

,
associated with τ1 is given by

NCk−1
τ1

={(adl
fgsj , adr

fgst), sj , st∈ [1, 2], l, r ≤ k−1 :

[adl
fgsj , adr

fgst] 6∈ Gk−1}

The j–th channel is eligible if there exists at least
one pair (adl

fgj, adr
fgst) ∈ NCk−1

τ1
.

Definition 2. The j–th channel is said to be un-
locked if it is eligible and either adk

fgj ∈ Gk−1 +
span{adk

fgi, i 6= j} or adk
fgj 6∈ Ḡk−1. The j–th

channel is potentially locked if it is not unlocked
and eligible. It is locked, if it is not unlocked and
not eligible.

Definition 3. Two indices i1 and i2 are τ1–
redundant at step k if there exists [r, s] with
1 ≤ r ≤ 2, 0 ≤ s ≤ k and an index l, such that
both [adl

fgi1 , ads
fgr ] ∈ Ḡk, [adl

fgi2 , ads
fgr ] ∈ Ḡk,

and [adl
fgi1 , ads

fgr] 6∈ Gk, [adl
fgi2 , ads

fgr ] 6∈ Gk. We
define the Redundant set Rl

τ1
:= {i1, i2}.

The following result was proven in Battilotti et al.
[2004].

Proposition 2. Let k > 0 be the greatest index
such that Gk+i is involutive for any i ≥ 0 whereas
Gk−1 is not involutive. Assume that its involutive
closure Ḡk−1 is given by Ḡk−1 = Gk−1+span{τ1} =
Gk−1 + span{adk

fg1}. Then for any i ≥ 0 the
distribution Gk−1+i + span{adk+i

f g1} is involutive
and of constant dimension.

2.3 The static state feedback action

In the present section we will enlighten the role
played by the static state feedback. We can rec-
ognize two relevant kind of feedback laws: the
direction feedback and the reduction feedback.

As far as the direction feedback is concerned,
let us consider the greatest index k such that
the distribution Gk+i is involutive for any i ≥
0 whereas Gk−1 is not involutive. Let γi1 , γi2

be appropriate coefficients, where without any
loss of generality γi1 6= 0, and i1 6= i2, such
that setting τ1 =

(
γi1adk

fgi1 + γi2adk
fgi2

)
and

τ2 =
(
γi1adk

f gi1 − γi2adk
fgi2

)
the involutive clo-

sure Ḡk−1 satisfies Ḡk−1 := Gk−1 + span{τ1}, and
Ḡk−1 6= Gk−1 + span{τ2}. This feedback is used
in order to modify the given dynamics so that
Ḡk−1 := Gk−1 + span{adk

f g̃i1}, whereas Ḡk−1 6=
Gk−1 + span{adk

f g̃i2}. We can then consider the

Direction feedback:

uj1 = vj1 , uj2 = vj2 +
γ

γi1

vj1 (9)

where

• If adk
fgi2 6∈ span{adk

fgi1} + Gk−1, j1 = i1,
j2 = i2 and γ = γi2 , which corresponds to set
on the closed loop system ẋ = f + g̃i1vi1 +
g̃i2vi2 ,

g̃i1 = gi1 +
γi2

γi1

gi2 , g̃i2 = gi2

so that adk
f g̃i1 =

(
adk

fgi1 + γi2
γi1

adk
fgi2

)
|mod Gk−1 ,

adk
f g̃i2 = adk

fgi2 and Ḡk−1 := Gk−1 +
span{adk

f g̃i1}
• If adk

fgi2 ∈ span{adk
fgi1} + Gk−1, j1 = i2,

j2 = i1 and γ = −γi2 which corresponds to
set on the closed loop system ẋ = f +g̃i1vi1 +
g̃i2vi2 ,

g̃i1 = gi1 , g̃i2 = gi2 −
γi2

γi1

gi1

so that adk
f g̃i1 = adk

fgi1 , adk
f g̃i2 ∈ Gk−1 and

Ḡk−1 := Gk−1 + span{adk
f g̃i1}

As for the reduction feedback, let us assume
that at step k there exist an index l and an
element ads

fgi ∈ Gk such that the redundant set
Rl

τ1
= {i1, i2}, i1 6= i2, i.e. [adl

fgi1 , ads
fgi] = τ1,



[adl
fgi2, ads

fgi] = ατ1|mod Gk−1 , α 6= 0. We can
consider the

Reduction feedback:

ui1 = vi1 − αvi2 , ui2 = vi2 (10)

which corresponds to set on the closed loop system
ẋ = f + g̃i1vi1 + g̃i2vi2 ,

g̃i1 = gi1 , g̃i2 = gi2 − αgi1

so that [adl
fgi2, ads

fgi] ∈ Gk−1.

2.4 The dynamic extension action

The dynamic extension may be used in two differ-
ent situations, which correspond respectively to
the case in which one channel is unlocked and to
the case in which there are no unlocked channels.
These situations are discussed hereafter.

Let us consider the greatest index k such that
the distribution Gk+i is involutive for any i ≥ 0
whereas Gk−1 is not involutive.

One unlocked channel

Assume that the direction feedback (9) has been
used so that, without any loss of generality we
have that Ḡk−1 := Gk−1 + span{adk

f g̃i1}, and
Ḡk−1 6≡ Gk−1 + span{adk

f g̃i2}. Set

ui2 = χ1, χ̇1 = v̄i2 (11)

The extended system

ẋ = f(x) + g̃i2χ1 + g̃i1vi1

χ̇1 = v̄i2

is characterized by the set of distributions

Ge
j = span{ ∂

∂χ1
, g̃

∂

∂x
, · · · , adj−1

f g̃
∂

∂x
, adj

f g̃i1

∂

∂x
}

As a consequence due to Proposition 2, we have
that Ge

k+j is involutive for any j ≥ 0.

No unlocked channels

Assume that H1 holds true but there are no
unlocked channels. We can then seek (if there
exist) for the smallest index j ≤ n such that
Gk−1 + span{adk

fgi1 , · · · , adk+j
f gi1} ≡ Gk+j, and

the i2 channel is potentially locked. Set

ui2 = χ1,





χ̇1 = χ2
...

χ̇j = v̄i2

(12)

which after the direction feedback is used, leads
to the one unlocked channel situation.

3. MAIN RESULT

We will now propose an algorithm for the compu-
tation of a dynamic feedback which renders the
extended system equivalent to a linear system.
We will then show that the convergency of the
algorithm is a necessary and sufficient condition
for the solvability of the problem.

The dynamic feedback linearization algorithm

Step 0 Let k be the first index such that Gk+i

is involutive for any i ≥ 0 and Gk−1 is
not involutive, compute its involutive closure
Ḡk−1 and assume H1 satisfied. If there are no
unlocked channels, then apply the dynamic
extension (12), and go back to Step 0, else
go to next step.

Step 1 Compute the Noncharacteristic set NCk−1
τ1

.
Consider the set of unlocked channels

I = {i ∈ [1, 2] : the i-th channel is unlocked}
and define recursively
Ak−1

τ1
:= {(adk−1

f
gi, adr

f gst) :

[adk−1
f gi, adr

f gst ] 6∈ Gk−1, i ∈ I}

.

.

.

Al
τ1

:= Al+1
τ1

∪ {(adl
fgi, adr

f gst) :

[adl
f gi, adr

f gst ] 6∈ Gk−1}, i ∈ I}, l < k − 1

Let l̂ be the first index such that Al̂+1
τ1

6≡ A0
τ1

,
while Al̂

τ1
≡ A0

τ1
and consider the following

associated sets:
· the index set
I l̂

τ1
:= {i ∈ I : (adl̂

fgi, adr
fgst) ∈ Al̂

τ1
}

· the redundant set Rl̂
τ1

.
Choose i2 ∈ I l̂

τ1
and apply the reduction

feedback (10) and the direction feedback (9).
Set

ui2 = ζi1, ζ̇i1 = vi2 .

Go back to Step 0

We will now state our main result.

Theorem 1. Assume that H1 is satisfied. The dy-
namics (1) is dynamic feedback equivalent to a lin-
ear system on an open and dense set U0 3 (x0, 0),
if and only if the dynamic feedback linearization
algorithm converges.

Proof Sufficiency. If the algorithm converges,
then the distributions Gk−1, 0 ≤ k ≤ ne − 1,
defined on the extended system of dimension ne

are involutive and of constant dimension with dim
Gne−1 = ne. Thus the extended system is static
feedback equivalent to a linear system.

Necessity. For space reasons we will only give
the general lines of the proof. Assume that there



exists a dynamic compensator of the form (5)
which solves the problem. Let the extended static
feedback equivalent system be

ẋ0 = f̃0(x0) + g̃0
1(x

0)ũ0
1 + g̃0

2(x
0)ũ0

2 (13)

According to (6-7) denoting by x0 = ((x1)T , χ1)T ,
the closed loop system can then be rewritten as
the combination of an integrator plus a regular
static state feedback, i.e. (13) is given by

ẋ0 = f0(x0) + g0
1(x

0)u0
1 + g0

2(x
0)u0

2 (14)

u0 = α0(x0) + β0(x0)ũ0 (15)

where β0(x0) in (15) is locally invertible, and (14)
is given by

ẋ1 = f1(x1) + g1
1(x

1)u1
1 + g1

2(x
1)u1

2 (16)

χ̇1
1 = u0

2 (17)

u1
1 = u0

1, u1
2 = χ1

1 (18)

Consequently f0(x0) =
(
f1(x1) + g1

2(x
1)χ1

1

) ∂
∂x1 ,

g0
1(x0) = g1

1(x1) ∂
∂x1 , g0

2(x0) = ∂
∂χ1

1

.

By assumption the G̃0
k’s computed on the ex-

tended system (13) are involutive and of constant
dimension for any k ≥ 0. Consequently also the
G0

k’s computed on the extended system (14) are
involutive and of constant dimension for any k ≥ 0
since the two systems differ from a regular static
state feedback. This implies on the reduced system
(16) that the distribution

G1
k−1 + span{adk

f1g1
1} (19)

is involutive and of constant dimension. Moreover
since the dynamics (16) is not static feedback
linearizable, then there must exists an index k1,
such that the distribution G1

k1−1 is not involutive,
whereas G1

k1+i is involutive for any i ≥ 0.

Finally since the problem is solvable in one step,
i.e. adding an integrator on the second input, then
necessarily we have that for some s2 ∈ [0, k1 − 1]
and j2 ∈ [1, 2]

[adk1−1

f1 g1
2 , ads2

f1g1
j2

] = α1adk1
f1g1

1 |mod G1
k1−1

6∈ G1
k1−1 (20)

whereas for any s1 < k1 − 1, j2 ∈ [1, 2], with
(s2, j2) 6= (k1 − 1, 2), [ads1

f1g
1
2, ads2

f1g
1
j2

] ∈ G1
k1−1. /

Accordingly we will show that any choice operated
by the algorithm, solves the problem in one step.
By assumption at step k1 − 1, Ak1−1

τ1
≡ NCk−1

τ1

and the second input is unlocked.

If in (20) s2 < k1−1, then the algorithm chooses to
extend the second input channel, thus obtaining
the same dynamic compensator considered in (17-
18). The only ambiguous case occurs when both
channels are unlocked and there is only one ele-
ment which causes the loss of involutivity given
by [adk1−1

f1 g1
2, adk1−1

f1 g1
1].

We will show that after the application of the
direction feedback (9), the algorithm may choose
to extend the first input channel, and this will
solve the problem as well.

In fact, assume that this is not the case, then by
setting an integrator on the first input channel,
we would have that for some index k̄1 < k1, the
distribution G̃1

k̄1−1
+ span{adk1

f1 g̃1
2} is not involu-

tive whereas G̃1
k̄1+i

+ span{adk̄1+i
f1 g̃1

2} is involutive
for any i ≥ 0.

Thus there would exists an element

[ads1
f1 g̃

1
j1, ads2

f1 g̃
1
j2 ] 6∈ G̃1

k̄1−1 + span{adk̄1
f1 g̃

1
2}

where without any loss of generality we can as-
sume s1 ≥ s2 ≥ 0 and s1 ∈ [0, k̄1 − 1], or
s1 > s2 ≥ 0 and (s1, j1) = (k̄1, 2).

For s1 ∈ [0, k̄1 − 1], by assumption

[ads1
f1 g̃

1
j1

, ads2
f1 g̃

1
j2

] = γ1adk̄1
f1 g̃

1
1|mod G̃1

k̄1−1

we would then have that

adk1−k̄1
f1 [ads1

f1g̃
1
j1 , ads2

f1 g̃
1
j2 ] = γ1adk1

f1 g̃
1
1|mod G̃1

k1−1
=

k1−k̄1∑

i=0

(
k1 − k̄1

i

)
[ads1+k1−k̄1−i

f1 g̃1
j1 , ads2+i

f1 g̃1
j2 ]

which is contrast with the assumption that
[adk1−1

f1 g̃1
2, adk1−1

f1 g̃1
1] is the only element which

does not belong to G̃1
k1−1. Assume now that

[adk̄1
f1 g̃

1
2, ads2

f1 g̃
1
j2

] = γ1adk̄1+1
f1 g̃1

1|mod G̃1
k̄1

The distribution G̃1
k̄1

cannot be involutive, oth-
erwise by construction also the distribution G̃1

k1

would be involutive, according to Proposition 2.
It follows that γ1 6= 0.

Consequently we would have that the involu-
tive closure of G1

k1−1 + span{adk̄1
f1g

1
2} is given by

G1
k1−1 + span{adk̄1

f1g1
2} + span{adk̄1

f1g1
1, adk̄1+1

f1 g1
1}

which would be in contrast with the assump-
tion that [adk1−1

f1 g1
2, adk1−1

f1 g1
1] is the only element

which does not belong to G1
k1−1 thus proving the

result.

The result can be proven iteratively by consider-
ing that the dynamics (16) is given by a reduced
dynamics plus a feedback and an integrator. We
can then rewrite it as

ẋ1 = f̃1(x1) + g̃1
1(x

1)v1
1 + g̃1

2(x
1)v1

2 (21)

v1 = α1(x1) + β1(x1)u1 (22)

where (21) is given by

ẋ2 = f2(x2) + g2
i1(x

2)u2
i1 + g2

i2(x
2)u2

i2 (23)

χ̇2
1 = v1

2 (24)

u2
i1 = v1

1 , u2
i2 = χ2

1 (25)



As a consequence we can define a link between the
distributions G2

i and G1
i and the indices k1 and k2

which characterize the loss of involutivity of such
distributions. This link can be deduced by noting
that

f̃1 =
(
f2 + g2

i2χ
2
1

) ∂

∂x2
, g̃1

1 = g2
i1

∂

∂x2
, g̃1

2 =
∂

∂χ2
1

and by computing the distributions G1
i in terms of

the ads
f2gi’s. It can be finally deduced that if the

given dynamics is dynamic feedback linearizable,
then necessarily the algorithm converges.

Example. Consider the system

ẋ1 = x2 + x3x5, ẋ2 = x3 + x1x5, ẋ3 = u1 + x2x5

ẋ4 = x5, ẋ5 = x6, ẋ6 = u1 + u2.

Step 0. The distributions Gi, are given by

G0 = span

{
∂

∂x3
+

∂

∂x6
,

∂

∂x6

}
,

G1 = G0+span

{
−x5

∂

∂x1
−

∂

∂x2
+x1

∂

∂x3
−

∂

∂x5
,

∂

∂x5

}
,

and G2 ≡ IR6 with

ad2
fg1 = (1 + x3 − x1x5 − x6)

∂

∂x1
+ x2

5

∂

∂x2

+ (2x2 + x3x5 + x5 − x5x6)
∂

∂x3
+

∂

∂x4

and adfg2 = (x3 − x1x5) ∂
∂x1

+ x3x5
∂

∂x3
+ ∂

∂x4
.

The distribution G1 is not involutive, since

[adfg1, adfg2] =
∂

∂x1
= γ(ad2

f g1 − ad2
fg2)|mod G1 .

Its involutive closure Ḡ1 = G1 + span{ ∂
∂x1

}.

Step 1. We have NC1
τ1

= (adfg1, adfg2). More-
over both channels are unlocked and A1

τ1
≡ NC1

τ1
.

We choose i2 = 2. Since τ1 = γ(ad2
f g1 − ad2

fg2),
we apply the direction feedback

u1 = v1, u2 = v2 − v1

which corresponds to set g̃1 = g1−g2 and g̃2 = g2,
and correspondingly we set v1 = w1, v2 = ζ1,
ζ̇1 = w2.

The extended dynamics is static feedback equiva-
lent to a linear system as it can be easily verified.
/
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