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Abstract: A systematic evaluation procedure for the choice of sampling rate and anti-alias
filter in sampled-data control is presented. It is based on a multi criteria H∞ optimization
procedure, where sampled-data measures are introduced to capture the intersample behav-
ior. The optimization scheme is based on linear matrix inequalities (LMIs) formulated in
the delta operator, and the result is a low order controller of PID type. Both low frequency
performance, mid frequency stability margins and high frequency control activity are
taken into account. The evaluation procedure suggests to use higher sampling rates than
typical text books recommend.
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1. INTRODUCTION

Since the introduction of sampled-data control the
question of a proper sampling rate has been discussed.
Very few systematic approaches have been introduced.
Typical rules of thumb are related to the desired closed
loop bandwidth, see e.g. (Franklin et al., 1998). Re-
cently an evaluation procedure based on multi-criteria
H∞ controller design has been used for synthesis and
evaluation of PI and PID controllers, see (Kristiansson
and Lennartson, 2000). This approach includes mini-
mization of load performance with constraints on con-
trol activity, stability margins and sensitivity to high
frequency (HF) sensor noise.

1 A six month sabbatical at the Centre for Complex Dynamic Sys-
tems & Control in Newcastle, Australia is very much appreciated

This general and systematic evaluation procedure is
now generalized to sampled-data systems and applied
to the choice of sampling rate and anti-alias filter.
A new lifted sampled-data model is introduced to
properly model a continuous-time integral load dis-
turbance. This sampled-data model captures the inter-
sample behavior, where the alias phenomenon shows
up especially at high frequencies.

The multi criteria constrained H∞ optimization prob-
lem is formulated as an iteration between two sets of
LMIs. Generally the optimization is a bilinear ma-
trix inequality problem. For other related works see
e.g. (Grigoriadis and Skelton, 1996; Wortelboer et
al., 1999). In this paper a special routine for the choice
of an initial controller is a crucial step in the minimiza-
tion strategy.



The delta operator is also introduced to get a proper
convergence for short sampling periods. Observe that
the more well known shift operator exhibits bad
numerical behavior for short sampling periods, see
(Middleton and Goodwin, 1990). The results in this
paper is a continuation of the results in (Xiao-Long et
al., 2002), but here with a focus on algorithmic and
numerical aspects. Related results on H∞ control us-
ing the delta operator can be found in e.g. (Middleton
and Goodwin, 1990; Shor and Perkins, 1991; Collins
and Song, 1999; Erwin and Bernstein, 2002).

2. DIFFERENT MODELS IN THE DELTA
OPERATOR FORM

Consider the following state space model in the delta
operator form, see (Lennartson et al., 2004b):
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This model includes both the input disturbance w,
the control signal u, the performance signal z as well
as the measured output signal y. The corresponding
dimensions of these signals are nw, nu, nz , and ny

respectively. The discrete-time updates occur at times
tk, k = 0, 1, 2, . . .. The time interval between two
updates is the sampling period h = tk+1 − tk. A
subscript δ is included in the matrices and signals
when it is needed to distinguish from other models,
cf. Table 1.

2.1 Generalized delta operator models

By making use of the generalized delta operator

δx(t1, t0) =
x(t1) − x(t0)

h
, t1 > t0 (2)

related models can also be formulated in the delta
operator form. In sampled-data control a continuous-
time plant is controlled by a discrete-time controller.
This is a special case of a mixed continuous/discrete-
time system where state jumps occur at the discrete-
time instants. Then the update of the state vector at
times tk is expressed in the generalized delta op-
erator form as δx(t+k , t−k ). By adding the notation
δx(t) = ẋ(t) in the continuous model when t �= tk,
a compact description of mixed continuous/discrete-
time systems is obtained, see Table 1, and further de-
tails in (Lennartson et al., 2004b). This implies that (1)
also can be interpreted as a mixed continuous/discrete-
time system.

The mixed signal z is then a continuous-time signal
zc(t) except at the discrete-time instants t = tk where
it takes the values of the corresponding discrete-time
signal, i.e. z(tk) = zδ(tk). Note that the dimensions of
these signals nzc

and nzδ
normally are not the same. A

pure continuous-time signal means e.g. that nzδ
= 0.

Table 1. Different notations related to the delta
operator model (1). The generalized delta operator

δx(t1, t0) is defined in (2).

Model Signal,
matrix

State update

continuous zc, Ac ẋ(t)

discrete shift zq , Aq x(tk+1)

discrete delta zδ, Aδ δx(tk) = δx(t−
k+1

, t−
k

)

lifted delta z̆, Ă δx(t−
k+1

, t+
k

)

mixed cont/disc z, A = δx(t) ={
zc, Ac t �= tk

zδ, Aδ t= tk

{
ẋ(t) t �= tk

δx(t+, t−) t= tk

Another example where the generalized delta operator
is useful is a lifted discrete-time model, representing
the continuous-time behavior between two sampling
instants (from time t+k just after the discrete time
update to time t−k+1 just before next update). The
state update is then expressed as δx(t−k+1, t

+
k ), and

the matrices and signals in this lifted model are distin-
guished according to Table 1 by a˘ above correspond-
ing variable names. These models will be applied in
the next section where a new sampled-data model is
introduced.

2.2 Transformation from q to δ

The input signals in the delta model are related to the
inputs in the shift operator model as wδ = wq/

√
h

and uδ = uq, and the corresponding output signals are
defined as zδ = zq/

√
h and yδ = yq. A consequence

of the normalization of the performance signal zδ with
respect to the sampling period is that the size of this
signal can be expressed by the norm

‖z‖2 =
∞∑

k=0

z′q(tk)zq(tk) =
∞∑

k=0

z′δ(tk)zδ(tk)h

The second sum converges to a corresponding (Rie-
mann) integral when h → 0, which motivates the
normalization factor 1/

√
h. Similar arguments hold

for the input signal wδ , see (Middleton and Good-
win, 1990).

The delta operator δx(tk) = δx(t−k+1, t
−
k ) and the

normalized signals zδ and wδ together define the trans-
formation from a shift operator to a delta operator
model. A compact formulation of this transformation
was recently introduced in (Lennartson et al., 2004b).

2.3 Induced norms of mixed systems

The norm of a mixed signal is defined as

‖z‖2 =
∫ ∞

0

z′c(t)zc(t) dt +
∞∑

k=0

z′δ(tk)zδ(tk)h

When a mixed system (1) is controlled by a discrete-
time controller
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the resulting closed loop system is denoted Gzw. It
means that the induced norm of this mixed continuous/
discrete-time closed loop system with input signal w
and corresponding output signal z can be expressed as

‖Gzw‖ = sup
‖w‖�=0

‖z‖
‖w‖ (4)

3. SAMPLED-DATA CONTROL WITH
INTEGRAL ACTION

A non-standard sampled-data model is introduced in
this section to properly handle continuous-time load
disturbances. Sampled-data control generally means
that a mixed continuous/discrete-time system (typi-
cally a continuous-time plant including discrete-time
sensor noise) is controlled by a discrete-time con-
troller. The restriction compared to a general mixed
system is that no continuous-time feedback is in-
cluded, i.e. the dimensions of yc and uc are zero
(nyc

=nuc
=0).

3.1 Lifting the continuous-time model

Without any continuous-time feedback control, the
continuous-time part of a mixed system, modelling the
behavior between the sampling instants, reduces to[

ẋ(t)
zc(t)

]
=

[
Ac Bc

Cc Dc

] [
x(t)
wc(t)

]
(5)

This model can be replaced by a lifted norm preserv-
ing discrete-time model in the delta operator form. As
in the shift operator case, the lifted model is easily
obtained by integrating the Hamiltonian matrix for the
continuous-time system.

The Hamiltonian matrix and its (backward) transition
matrix Π(t, t−k+1) from t−k+1 to t, t ∈ (tk, tk+1)
associated with the continuous-time model (5) are
defined as follows, where Qc = γ2I − D′

cDc, see
e.g. (Green and Limebeer, 1995)

HS =

[
Ac + BcQ−1

c D′
cCc BcQ−1

c B′
c

−C′
c(I + DcQ−1

c D′
c)Cc −(Ac + BcQ−1

c D′
cCc)

′

]

and Π̇(t, t−k+1) = HS(t)Π(t, t−k+1), Π(t−k+1, t
−
k+1) = I .

To obtain a delta formulation we introduce

exp
[ −hHS −hHS

0 0

]
�

[
Π(h) hΓ(h)

0 I

]

where Π(h) = I2n + hΓ(h). The minus sign before
HS is due to the backward transition. With Γ(h) par-
titioned into sub-matrices of size n × n according to
Γ=

[
Γ11 Γ12; Γ21 Γ22

]
, the following lemma gener-

ates a corresponding lifted norm preserving discrete-
time model in the delta operator, see (Lennartson et
al., 2004b).

Lemma 1. The induced norm of the continuous-time
system (5) is bounded as sup‖wc‖�=0 ‖zc‖/‖wc‖ < γ
if and only if the following lifted discrete-time model
in the delta operator[

δx(tk)
z̆(tk)

]
=

[
Ă(h) B̆w(h)

C̆z(h) 0

] [
x(tk)
w̆(tk)

]
(6)

where

Ă(h) =−Γ11(h)
(
I + hΓ11(h)

)−1
(7)

B̆w(h)B̆′
w(h) =−γ−2

(
I + hΓ11(h)

)−1Γ12(h) (8)

C̆ ′
z(h)C̆z(h) = Γ21(h)

(
I + hΓ11(h)

)−1
(9)

satisfies the bound sup‖w̆‖�=0 ‖z̆‖/‖w̆‖ < γ. �

Observe that the lifted model matrices Ă, B̆w, and C̆z

depend on γ.

3.2 Lifted sampled-data model including integral action

Integral action in sampled-data control is obtained
by introducing a discrete time integrator in the loop.
However, in the optimization criterion we want to in-
clude an integrated continuous-time load disturbance
(added to the control signal) to take care of the inter-
sample behavior. Discrete-time integral action with an
ordinary sampled-data model means however that the
load disturbance either becomes piece-wise constant
(i.e. discrete-time) or a continuous-time integrator ap-
proximation has to be introduced outside the loop (a
weighting filter with a pole close to zero). The first
approach implies an approximation while the latter
one results in numerical problems.

The solution is to include a continuous-time integrator
in the loop and then modify the hold circuit model
for the discrete-time control signal, see Figure 1.
A lifted sampled-data model including this modified
hold function will therefore be derived.

Assume that the control signal is included as the last
states in the state vector, i.e. u =

[
0 Inu

]
x. At the

sampling instants the change of control signal

uδ(tk) =
u(tk) − u(tk−1)

h

is the input to the plant model. All together the
discrete-time update at the sampling instants includes

1

s
Inu

Gp� u(t)

vc(t)

�
�

��h
uδ(tk) zc(t)�

h

+

+�

Fig. 1. Plant model Gp with continuous-time inte-
grated load disturbance vc and discrete-time con-
trol signal uδ(tk) = (u(tk) − u(tk−1))/h.
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Between these updates the system is assumed to be
described by the continuous-time model (5), which in
its lifted form is given by the discrete-time model (6)-
(9). A lifted norm-preserving discrete-time model in
the delta operator for this mixed continuous/discrete-
time model is now presented. First, introduce the
extended discrete-time input and output signals z̄δ =[

z̆′ z′δ
]′

and w̄δ =
[

w̆′ w′
δ

]′
.

Theorem 2. Consider the mixed continuous/discrete-
time system (5), (10) where the control signal u is
included as the last states in the state vector, i.e. u =[

0 Inu

]
x. The induced norm of this mixed system

controlled by a general discrete-time controller (3) is
bounded as sup‖w‖�=0 ‖z‖/‖w‖ < γ iff the following
lifted discrete-time model in the delta operator

⎡
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where

B̆u = (I + hĂ)
[

0
Inu

]
D̆zu = hC̆z

[
0

Inu

]
(12)

controlled by the same controller, satisfies the discrete-
time bound sup‖w̄δ‖�=0 ‖z̄δ‖/‖w̄δ‖ < γ.

Proof: The state jump at time tk in (10) can also be
expressed as

x(t+k ) = x(t−k ) + h

[
0

Inu

]
uδ(tk)

which together with the norm preserving lifted model
(6) from Lemma 1, where δx(tk) = δx(t−k+1, t

+
k ),

implies that the update of the state vector from time
t−k to t−k+1 can be expressed as, cf. Table 1

δx(tk) = δx(t−k+1, t
−
k ) = δx(t−k+1, t

+
k ) + δx(t+k , t−k )

= Ăx(t+k ) + B̆ww̆(tk) +
[

0
Inu

]
uδ(tk)

= Ăx(t−k ) + (I + hĂ)
[

0
Inu

]
uδ(tk)

+B̆ww̆(tk)

In the same way the lifted performance output z̆ is
rewritten as

z̆ = C̆zx(t+k ) = C̆zx(t−k ) + hC̆z

[
0

Inu

]
uδ(tk)

The notations in (12), including the additional dis-
crete inputs and outputs in (10), then gives the lifted
model (11). From an induced norm point of view this
model includes both the continuous-time behavior (5)
and the discrete-time update (10). �

3.3 Closed loop system

To complete this section we note that the closed loop
system obtained when (11) is controlled by (3) has the
general structure[

δx̄(tk)
z̄δ(tk)

]
=

[ A B
C D

] [
x̄(tk)
w̄δ(tk)

]
(13)

with the extended state vector x̄ =
[

x′ x′
K

]′
, Denote

this closed loop system Gz̄δw̄δ
, and observe that the

dependency on the controller K (3) generally can be
expressed as

[ A B
C D

]
=

[
A0 B0

C0 D0

]
+

[
B1

D1

]
K

[
C2 D2

]
(14)

This shows that the closed loop matrices A,B, C,D
are affine in the controller K, and Theorem 2 can be
reformulated as the following corollary.

Corollary 3. The induced norm of the mixed system
(5), (10) controlled by a discrete-time controller (3) is
bounded as ‖Gzw‖ < γ iff the H∞ norm

‖Gz̄δw̄δ
‖∞ < γ (15)

4. MULTI CRITERIA SAMPLED-DATA
H∞ CONTROLLERS

In the synthesis of low order multi criteria sampled-
data controllers we first show how an iteration be-
tween two linear matrix inequalities (LMIs) can be
used to optimize an H∞ criterion. This scheme is then
extended to a multi criteria H∞ problem.

4.1 PK iteration between two LMIs

Assume that a candidate controller K in (14) is given.
Consider the mixed system (5), (10) controlled by K.
The induced norm of the resulting closed loop mixed
system Gzw is bounded as ‖Gzw‖ < γ if and only if
there exists a P = P ′ > 0 such that

LP =

⎡
⎢⎣
A′P + PA PB C′

B′P −γI D′

C D −γI

⎤
⎥⎦ +

h

⎡
⎢⎣

A′

B′

0

⎤
⎥⎦ P

[ A B 0
]

< 0 (16)

where (A,B, C,D) in (14) depends on the lifted γ
dependent model (11).

Based on the resulting P we are searching for an
updated version of K. However, introducing (14) for a
given P but unknown K, we observe that (16) is not an
LMI anymore, since it includes quadratic expressions
in K.



Replacing P in the second term of (16) with PP−1P
and applying a Schur complement yields however the
following LMI in K, cf. (14)

LK =

⎡
⎢⎢⎢⎢⎣
A′P + PA PB C′ √

hA′P

B′P −γI D′ √
hB′P

C D −γI 0√
hPA

√
hPB 0 −P

⎤
⎥⎥⎥⎥⎦ < 0

(17)
These two LMIs open up for an iterative algorithm
solving both P , K and minimizing γ.

Algorithm 1

(1) Compute an initial guess of a low order stabiliz-
ing controller K and the related minimal γ value
in (15), see further comments below.

(2) Compute the lifted γ dependent model (11) and
the resulting closed loop system Gz̄δw̄δ

.
(3) For the given K and γ, solve the LMI (16) for

P > 0.
(4) For the given P in Step 3, solve the LMI (17) for

K, including minimization of γ.
(5) Iterate 2-4 until γ has converged.

In Step 1 an initial minimal value of γ is required. This
is preferably obtained by γ iteration of the LMI (16),
where the lifting procedure needs to be repeated in
each iteration. A more efficient alternative is to replace
the LMI by solving the corresponding Riccati equa-
tion, cf. (Gahinet and Apkarian, 1994), (Lennartson et
al., 2004a).

This alternating LMI scheme, which we call PK iter-
ation (c.f. DK iteration in µ synthesis), was recently
presented for discrete time delta operator models, see
(Lennartson et al., 2004a). In the examples we have
studied the alternating iteration has converged rapidly.
Most improvement in γ is in fact achieved during
the first 10 iterations. No significant improvement is
normally achieved after 20-30 iterations.

The key to avoid local minima is to obtain an ini-
tial low order controller K not too far from the op-
timal solution. One successful approach is to apply
controller reduction based on a full order controller,
see e.g. (Anderson and Liu, 1989) and (Lennartson et
al., 2004a).

4.2 Multi criteria minimization

To obtain a fair comparison between different con-
trollers, as will be demonstrated in the next section,
it is desirable to add a number of constraints in the
control design. More explicitly consider a set of mixed
continuous/discrete-time closed loop systems Gziwi

for i = 0, . . . , � and the following bounds on their in-
duced norms ‖Gziwi

‖ < γi. The related multi criteria
optimization problem is then formulated as

min
K

γ0 γi ≤ ci i = 1, . . . , � (18)

This constrained nonlinear optimization problem can
be solved by extending the PK-iteration in Algo-
rithm 1 as follows:

Algorithm 2

(1) Compute an initial guess of a low order stabi-
lizing controller K and a minimal γ0, see com-
ments after Algorithm 1, and let γi = ci for
i = 1, . . . , �.

(2) For each Gziwi
for i = 0, . . . , � compute the

lifted γi dependent model (11) and the result-
ing closed loop system matrices Ai,Bi, Ci,Di,
cf. (13), (14).

(3) For the given K and γi, solve the LMIs Pi > 0,
LPi

< 0 (16) for i = 0, . . . , �.
(4) For the given Pi in Step 3 solve the coupled LMIs

LKi
< 0 (17) with K as unknown, including

minimization of γ0.
(5) Iterate 2-4 until γ0 has converged.

�Gf

yδ(tk)

wδ(tk)

�
�

�
�

�
+

�
h

+

+

+

nc(t)

zδ(tk)zc(t)

Fig. 2. Anti-alias filter Gf including continuous as
well as discrete sensor noise nc and wδ .

5. CHOICE OF SAMPLING RATE AND
ANTI-ALIAS FILTER

The multi criteria design method presented above is
now applied as a systematic evaluation procedure for
the choice of proper sampling rates and anti-alias fil-
ters. Consider the combined sampled-data system in
Fig. 1 and Fig. 2, including an integrated continuous-
time load disturbance vc and anti-alias filter Gf . Intro-
duce the criteria, cf. (4)

Jv = ‖Gzcvc
‖ MS = ‖Gzδwδ

‖
Ju = ‖Gunc

‖ JHF = ‖Guδnc
‖

(19)

These criteria are sampled-data generalizations of the
ones used for evaluation of continuous-time PID type
controllers in (Kristiansson and Lennartson, 2000).
They measure load disturbance performance (Jv), sta-
bility margin (MS)(inverse of the minimal distance to
the point −1 in the Nyquist curve), control activity
(Ju), and high frequency sensitivity to sensor noise
and uncertainties (JHF ). In the following example
Jv will be minimized subject to constraints on the
other criteria. Since these criteria together capture
the most important demands on a feedback system,
a fair comparison between different control strategies
is achieved. Especially observe that the alias phe-
nomenon is captured, since the criteria include the
intersample behavior of the closed loop system.

Example 1. Consider the continuous-time plant model

Gp(s) =
e−0.5s

(1 + s)(1 + 0.7s)(1 + 0.72s)(1 + 0.73s)

where the time delay is modelled as a second or-
der Padé approximation. As anti-alias filter, first and



fourth order Butterworth filters with different band-
widths

ωbf = α1/nωN n = 1, 4 (20)

normalized by the Nyquist frequency ωN = π/h.
When the parameter α � 1, then α = |Gf (jωN )|
is the filter gain (damping) at ωN . A fourth order PID
type sampled-data controller is designed such that Jv

is minimized, subject to the constraints

MS ≤ 1.7 Ju ≤ 10 JHF ≤ 50

Note that integral action is achieved due to the inte-
grated load disturbance in the sampled-data model,
cf. Fig. 1. The sampling period is chosen as h = 0.1,
which according to Table 2 implies 9.5%-13.2% per-
formance deterioration Jv(h)/Jv(0) compared to the
continuous-time performance Jv(0). The different
outcomes depend on the choice of the anti-alias filter.

Table 2. Load performance Jv(h) relative to the cor-
responding continuous-time performance Jv(0), and
sampling frequency ωs = 2π/h related to the closed
loop bandwidth ωb for different anti-alias filters of

order n and bandwidth α1/nωN (20).

h n α Jv(h)/Jv(0) ωb ωs/ωb

0.1 1 0.1 10.0% 1.47 43

0.1 1 1 10.8% 1.48 42

0.1 4 0.1 13.2% 1.54 40

0.1 4 1 9.5% 1.63 39

Too large damping (small α and low bandwidth
α1/nωN ) implies a significant phase lag in the control
loop, which implies worse performance Jv , since the
same stability margin MS ≤ 1.7 is required. Too small
damping (larger α and higher bandwidth α1/nωN )
means on the other hand that the alias phenomenon
shows up especially in the HF criterion JHF . This
implies that the control activity needs to be reduced,
which also deteriorates the performance Jv .

An optimal α value for a fourth order anti-alias filter is
close to one in this example. This can be compared to
text book recommendations, where typically α = 0.1
or less is suggested. On the other hand a first order
filter gives slightly better performance for α = 0.1
compared to α = 1.

Table 2 also shows that with a performance deteri-
oration of about 10%, the relation ωs/ωb ≈ 40. In
the classical text book on digital control (Franklin et
al., 1998) 20 ≤ ωs/ωb ≤ 40 is recommended. In
this example ωs/ωb = 20 implies a deterioration of
about 35%, which indicates that the higher sampling
rate selection is more reasonable, especially when the
phase lag of the anti-alias filter and the intersample
behavior are taken into account.

6. CONCLUSIONS

A systematic evaluation procedure for the choice of
sampling rate and anti-alias filter has been presented.

It is based on a multi criteria controller design using
the delta operator. Sampled-data measures are intro-
duced to capture the intersample behavior.

The evaluation shows that higher sampling rates than
typical text book recommendations are reasonable,
when anti-alias filter and the intersample behavior are
taken into account. It is also observed that the design
of an anti-alias filter is a compromise between too
much damping resulting in significant phase lag, and
too much HF noise caused by the alias phenomenon.
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