
DECENTRALIZED DIAGNOSIS OF

EVENT-DRIVEN SYSTEMS FOR SAFELY

REACTING TO FAILURES

Wenbin Qiu and Ratnesh Kumar

Dept. of Elec. & Comp. Eng., Iowa State University,

Ames, IA 50011, U.S.A.

{wqiu,rkumar}@iastate.edu

Abstract: We introduce the notion of safe-codiagnosability, extending the notion of
safe-diagnosability (Paoli and Lafortune, 2003) to the decentralized setting, where
there exist multiple diagnosers performing diagnosis using their own observations
without communicating to each other. For a system, a certain sub-behavior is
deemed safe (captured via a safety specification), and a further sub-behavior is
deemed non-faulty (captured via a non-fault specification). Safe-codiagnosability
requires that when the system executes a trace that is faulty, there exists at
least one diagnoser that can detect this within bounded delay and also before
the safety specification is violated. The above notion of safe-codiagnosability
may also be viewed as an extension of the notion of codiagnosability (Qiu and
Kumar, 2004), where the latter did not have any safety requirement. We show
that safe-codiagnosability is equivalent to codiagnosability together with “zero-
delay codiagnosability” of “boundary safe traces”. (A safe trace is a boundary safe
trace, if exists a single-event extension that is unsafe.) We give an algorithm of
polynomial complexity for verifying safe-codiagnosability. For a safe-codiagnosable
system, the same methods as those proposed in (Qiu and Kumar, 2004) can be
applied for off-line synthesis of individual diagnosers, as well as for on-line diagnosis
using them. Copyright c©2005 IFAC

Keywords: Discrete-event systems, Fault diagnosis, Safety analysis, Decentralized
systems, Automata theory

1. INTRODUCTION

Failure diagnosis is an active area of research,
and has received considerable attention in the
literature. A failure is a deviation from an ex-
pected or desired behavior. Various approaches
have been proposed for failure diagnosis, including

1 The research was supported in part by the Na-

tional Science Foundation under the grants NSF-ECS-

0099851, NSF-ECS-0218207, NSF-ECS-0244732, NSF-

EPNES-0323379, and NSF-ECS-0424048, and a DoD-

EPSCoR grant through the Office of Naval Research under

the grant N000140110621.

fault-trees, expert systems, neural networks, fuzzy
logic, Bayesian networks, and analytical redun-
dancy These are broadly categorized into non-
model based (where observed behavior is matched
to known failures), and model based (where ob-
served behavior is compared against model pre-
dictions for any abnormality).

For discrete event systems (DESs) – systems with
discrete states that change when certain events
occur, a certain model based approach for failure
diagnosis is proposed in (Sampath et al., 1995).
The property of diagnosability requires that once

a failure has occurred, it be detected and diag-
nosed within bounded “delay” (within bounded
number of transitions). The diagnosability can be
tested polynomially as shown later in (Jiang et

al., 2001; Yoo and Lafortune, 2002). In (Das and
Holloway, 2000; Pandalai and Holloway, 2000), a
template based approach was developed for fail-
ure diagnosis in timed discrete event system. The
above approaches can be thought to be “event-
based” as failure is modeled as execution of cer-
tain “faulty events”. An equivalent “state-based”
approach was considered in (Lin, 1994), where
the occurrence of a failure is modeled as reaching
of certain “faulty states”. To facilitate general-
ization of failure specifications, linear-time tem-
poral logic (LTL) based specification and diag-
nosis of its failure was proposed in (Jiang and
Kumar, 2004). A theory for failure diagnosis of
repeatedly-occurring/intermittent failures was in-
troduced in (Jiang et al., 2003).

The above mentioned work dealt with centralized

failure diagnosis, where a central diagnoser is re-
sponsible for failure detection and diagnosis in the
system. (Debouk et al., 2000) addressed the prob-
lem of distributed failure diagnosis based on a “co-
ordinated decentralized architecture”, where local
diagnosers do not communicate with each other
directly, but send local information to a coordi-
nator. Then the coordinator makes the final diag-
nosis decision. (Sengupta and Tripakis, 2002) dis-
cussed the distributed diagnosis problem, where
communication directly exists between local di-
agnosers, and is assumed to be lossless, and in
order. Notion of “decentralized diagnosis” was for-
mulated, which was proved to be undecidable. It
is now understood that decentralized diagnosis is
not strong enough to capture distributed diagnos-
ability under unbounded delay communication; a
required stronger notion is introduced in (Qiu et

al., 2004), and further this new notion is shown to
be decidable. The decentralized diagnosis problem
with asymmetric communication was discussed
in (Boel and van Schuppen, 2002), where com-
munication is one-way and without delays. In a
prior work (Qiu and Kumar, 2004), we studied the
problem of decentralized failure diagnosis, where
the system failure is diagnosed by multiple local
diagnosers. A notion of codiagnosability was in-
troduced to capture the fact that the occurrence
of any failure must be diagnosed within bounded
delay by at least one local diagnoser using its
own observations of the system execution. Poly-
nomial algorithms were provided for (i) testing
codiagnosability, (ii) computing the delay bound
of diagnosis, (iii) off-line synthesis of diagnosers,
and (iv) on-line diagnosis using them.

In order to react to a failure in a timely fashion,
while it is necessary that the failure be detected
within a bounded delay, such a property alone is

not sufficient. It is also needed that the detection
occur before the system behavior becomes “un-
safe”. To capture this additional requirement for
failure detection, the notion of safe-diagnosability

was introduced in (Paoli and Lafortune, 2003). We
extend this notion to the decentralized setting,
where there exist multiple diagnosers performing
diagnosis using their own observations without
communicating to each other, by formulating the
notion of safe-codiagnosability. For a system, a
certain sub-behavior is deemed safe (captured via
a safety specification), and a further sub-behavior
is deemed non-faulty (captured via a non-fault

specification). The safe behavior includes all of
non-faulty behavior and some of post-fault behav-
ior where system performance may be degraded
but still tolerable. Safe-codiagnosability requires
that when the system executes a trace that is
faulty, then exists at least one diagnoser that
can detect this within bounded delay and also
before the safety specification is violated. The
above notion of safe-codiagnosability may also be
viewed as an extension of the notion of codi-
agnosability (Qiu and Kumar, 2004), where the
latter did not have any safety requirement. We
show that safe-codiagnosability is equivalent to
codiagnosability together with “zero-delay codi-
agnosability” of “boundary safe traces”. (A safe
trace is a boundary safe trace, if exists a single-
event extension that is unsafe.) We give an algo-
rithms of polynomial complexity for verifying safe-
codiagnosability. (The verification algorithm pre-
sented in (Paoli and Lafortune, 2003) was based
upon the structural property of a deterministic
diagnoser, and had an exponential complexity ow-
ing to the exponential size of the diagnoser.) For
a safe-codiagnosable system, the same methods as
those proposed in (Qiu and Kumar, 2004) can be
applied for off-line synthesis of individual diag-
nosers, as well as for on-line diagnosis using them.

2. NOTIONS AND PRELIMINARIES

Given an event set Σ, Σ∗ is used to denote the
set of all finite length event sequences over Σ,
including the zero length event sequence ǫ. A
member of Σ∗ is a trace and a subset of Σ∗

is a language. Given a language K ⊆ Σ∗, the
complement of K, denoted Kc ⊆ Σ∗, is defined
as Kc := Σ∗ − K. If trace s is a prefix of trace t,
it is denoted as s ≤ t. Given a language K ⊆ Σ∗,
its prefix-closure, denoted pr(K), is defined as,
pr(K) := {s ∈ Σ∗|∃t ∈ K s.t. s ≤ t}, and K
is said to be prefix-closed if K = pr(K). The
supremal prefix-closed sublanguage of K, denoted
supP (K) ⊆ K, is defined as, supP (K) := {s ∈
K|pr(s) ⊆ K}. The quotient of K1 with respect
to K2 is defined as K1/K2 := {s ∈ Σ∗|∃t ∈
K2 s.t. st ∈ K1}. The set of deadlocking traces

of a language K are those traces from which
no further extensions exist in K, i.e., s ∈ K is
deadlocking trace if {s}Σ∗ ∩ K = {s}.

A DES is modeled as a finite state machine

(FSM)/finite automaton (FA) G and is denoted
by G := (X,Σ, α, x0), where X is the set of
states, Σ is the finite set of events, x0 ∈ X
is the initial state, and α : X × Σ → 2X is
the transition function, where Σ := Σ ∪ {ǫ}. G
is said to be deterministic if |α(·, ·)| ≤ 1 and
|α(·, ǫ)| = 0; otherwise, it is called nondetermin-

istic. (x, σ, x′) ∈ X × Σ × X is a transition of
G if x′ ∈ α(x, σ); it is an ǫ-transition if σ = ǫ.
Letting ǫ∗(x) denote the set of states reachable
from x in zero or more ǫ-transitions, the transition
function α can be extended from domain X × Σ
to domain X × Σ∗ recursively as follows: ∀x ∈
X, s ∈ Σ∗, σ ∈ Σ, α(x, ǫ) = ǫ∗(x), and α(x, sσ) =
ǫ∗(α(α(x, s), σ))). The generated language by G is
defined as L(G) := {s ∈ Σ∗|α(x0, s) 6= ∅}, i.e., it
includes all traces that can be executed from the
initial state of G. States reached by execution of
deadlocking traces in L(G) are called deadlock-
ing states. A path in G is a sequence of transi-
tions (x1, σ1, x2, · · · , σn−1, xn), where σi ∈ Σ and
xi+1 ∈ α(xi, σi) for all i ∈ {1, · · · , n − 1}. The
path is called a cycle if x1 = xn.

Given an automaton G = {X,Σ, α, x0}, the com-
plete model of G is defined as G = {X,Σ, α, x0},
where X := X ∪ {F}, and α is defined as follows.
∀x ∈ X,σ ∈ Σ, α(x, σ) :=

{

α(x, σ), if [x ∈ X] ∧ [α(x, σ) 6= ∅]
F, if [x = F] ∨ [α(x, σ) = ∅]

.

Since all events are defined at each state, the
complete model G generates the language Σ∗, i.e.,
L(G) = Σ∗.

Given two automata G = (X,Σ, α, x0) and R =
(Y,Σ, β, y0), the synchronous composition of G
and R is defined as, G||R = (X ×Y,Σ, γ, (x0, y0))
such that

∀(x, y) ∈ X × Y, σ ∈ Σ, γ((x, y), σ) :=

{

α(x, σ) × β(y, σ), if σ 6= ǫ;
(α(x, ǫ) × {y}) ∪ ({x} × β(y, ǫ)), otherwise.

If the system execution is observed through a
single global observer, we can define a global

observation mask as M : Σ → ∆, where ∆ := ∆∪
{ǫ} and ∆ is the set of observed symbols. The
definition of M can be extended from events to
event sequences inductively as follows: M(ǫ) =
ǫ; ∀s ∈ Σ∗, σ ∈ Σ,M(sσ) = M(s)M(σ). Given an
automaton G and mask M , M(G) is the masked

automaton of G with each transition (x, σ, x′) of
G replaced by (x,M(σ), x′). The local observation

masks associated with different local observers are

defined as Mi : Σ → ∆i (i ∈ I = {1, · · · ,m}),
where m is the number of local observers, ∆i :=
∆i ∪ {ǫ} and ∆i is the set of locally observed
symbols.

3. SAFE-CODIAGNOSABILITY

In this section, we present the definition of safe-
codiagnosability and the “separation property” of
safe-codiagnosability. As described in (Qiu and
Kumar, 2004), for the purpose of diagnosis, a

system with deadlocking states can be converted

to a deadlock free system by adding a self-loop

labeled ǫ at each of its deadlocking state without

affecting the diagnosis analysis. So without loss of
generality, we assume a system to be diagnosed, a
“plant”, to be deadlock free.

Definition 1. (Qiu and Kumar, 2004) Let L be
the prefix-closed language generated by a plant,
and K be a prefix-closed sublanguage specifying
the non-faulty plant behavior (K ⊆ L). Assume
there are m local sites with observation masks
Mi : Σ → ∆i (i ∈ I = {1, · · · ,m}). (L,K) is
said to be codiagnosable with respect to {Mi} if

(∃n ∈ N)(∀s ∈ L − K)(∀st ∈ L − K, |t| ≥ n) ⇒

(∃i ∈ I)(∀u ∈ M−1

i
Mi(st) ∩ L, u ∈ L − K) (1)

Lemma 1. Let L and K be prefix-closed plant and
non-fault specification languages respectively with
K ⊆ L, and for i ∈ I, Mi be observation mask of
site i. Then (L,K) is codiagnosable with respect
to {Mi} if and only if

∃n ∈ N : [(L − K)Σ≥n ∩ L] ∩
i∈I

M−1

i
Mi(K) = ∅.

Remark 1. We can introduce the notion of “zero
delay codiagnosability” by setting n = 0 in
the definition of codiagnosability provided by
Lemma 1. Then (L,K) is said to be zero-delay

codiagnosable with respect to {Mi} if

(L − K) ∩
i∈I

M−1

i
Mi(K) = ∅, (2)

which is equivalent to ∩
i∈I

M−1

i
Mi(K) ∩ L ⊆

K, i.e., (L,K) is zero-delay codiagnosable if
and only if the non-faulty behavior K is de-

composable (Rudie and Wonham, 1992) with re-
spect to the non-faulty+faulty (plant) behavior
L. We say a faulty sublanguage H ⊆ L − K is
zero-delay codiagnosable with respect to {Mi} if
H ∩

i∈I

M−1

i
Mi(K) = ∅.

Definition 1 captures the system property that a
failure event can be diagnosed within bounded
delay after its occurrence by at least one of the

local sites. In order to react to a failure in a timely
fashion, it is also needed that a failure be detected
before system behavior becomes “unsafe”. Safe
behavior includes all of non-faulty behavior and
some of post-fault behavior where system perfor-
mance may be degraded but still tolerable. The
safety specification, denoted KS , is another prefix-
closed sublanguage of plant language, containing
the non-fault specification, i.e., K ⊆ KS ⊆ L.

Definition 2. Let L be the prefix-closed language
generated by a plant, and K and KS be prefix-
closed non-fault and safety specification languages
contained in L, respectively (K ⊆ KS ⊆ L).
Assume there are m local sites with observation
masks Mi : Σ → ∆i (i ∈ I = {1, · · · ,m}).
(L,K,KS) is said to be safe-codiagnosable with
respect to {Mi} if

(∃n ∈ N)(∀s ∈ L − K)(∀st ∈ L − K, |t| ≥ n) ⇒

(∃i ∈ I)(∃v ∈ pr(st) ∩ KS)

(∀u ∈ M−1

i
Mi(v) ∩ L, u ∈ L − K) (3)

Definition 2 has the following meaning. A system
is safe-codiagnosable if there exists a delay bound
n such that for all faulty trace s ∈ L − K
and all extension t of s with length longer than
delay bound (|t| ≥ n), there exists a site i
and a safe prefix v of st such that for all v-
indistinguishable u at site i, u is a faulty trace
in L − K. Informally, Definition 2 means that for
any faulty trace, there exists at least one local site
that can unambiguously detect that failure within
bounded delay and before safety is violated.

Just as we provided an alternative definition of
codiagnosability in Lemma 1, we provide an al-
ternative definition of safe-codiagnosability in the
following lemma.

Lemma 2. Let L,K, and KS be prefix-closed
plant, non-fault specification, and safety specifi-
cation languages respectively, and for i ∈ I, Mi

be observation mask of site i. Then (L,K,KS)
is safe-codiagnosable with respect to {Mi} if and
only if

∃n ∈ N : [(L − K)Σ≥n ∩ L]

∩supP [∩
i∈I

M−1

i
Mi(K) ∪ Kc

S] = ∅.

To facilitate the development of a test for safe-
codiagnosability, we show that the property of
safe-codiagnosability can be separated into codi-
agnosability together with zero-delay codiagnos-
ability of set of boundary safe traces, where a
boundary safe trace is a safe trace for which exists
a single-event extension that is unsafe.

Definition 3. Given prefix-closed plant language
L and safety specification language KS , a safe
trace s ∈ KS is called a boundary safe trace if
exists σ ∈ Σ such that sσ ∈ L−KS , i.e., s ∈ [(L−
KS)/Σ] ∩KS . The set of all boundary safe traces
is called the boundary safe language, denoted K∂

S
,

and is given by K∂
S

= [(L − KS)/Σ] ∩ KS .

Theorem 1. Let L, K and KS be plant language,
non-fault specification language, and safety speci-
fication language, respectively. (L,K,KS) is safe-
codiagnosable with respect to {Mi} if and only if
1. (L,K) codiagnosable with respect to {Mi}:
∃n ∈ N : [(L − K)Σ≥n ∩ L] ∩

i∈I

M−1

i
Mi(K) = ∅;

2. K∂
S

zero-delay codiagnosable with respect to
{Mi}: K∂

S
∩

i∈I

M−1

i
Mi(K) = ∅.

4. VERIFICATION OF
SAFE-CODIAGNOSABILITY

The algorithm for verifying safe-codiagnosability
is based upon checking whether there exists a
situation that violates the conditions of safe-
codiagnosability. From Theorem 1, we know that
safe-codiagnosability can be verified by checking
codiagnosability of (L,K) together with zero-
delay codiagnosability of K∂

S
, the set of boundary

safe traces.

Algorithm 1. Consider the non-fault specifica-
tion, and the safety specification models, G =
(X,Σ, α, x0), R = (Y,Σ, β, y0), and RS =
(YS ,Σ, βS , yS

0), respectively. The corresponding
plant, non-fault specification, and safety specifica-
tion languages are L = L(G),K = L(R), and KS =
L(RS), respectively, where K ⊆ KS ⊆ L. Let Mi

be the observation mask of site i (i ∈ I). To check
the safe-codiagnosability of (L,K,KS), perform
the following steps:

Step 1: Check the codiagnosability of (L,K)

Construct a testing automaton T = (G‖R)×R×R
for verifying the codiagnosability of (L,K). This
automaton is defined as T = (Z,ΣT , γ, z0), where

. Z = (X × Y) × Y × Y .

. ΣT = Σ
3
, where Σ = Σ ∪ {ǫ}.

. z0 = ((x0, y0), y0, y0).

. γ : Z × Σ
3

→ Z is defined as: ∀z =
((x, y), y1, y2) ∈ Z, σT = (σ, σ1, σ2) ∈ ΣT −
{(ǫ, ǫ, ǫ)}, γ(z, σT) := ((α(x, σ), β(y, σ)),
β(y1, σ1), β(y2, σ2)) if and only if

[M1(σ) = M1(σ1)] ∧ [M2(σ) = M2(σ2)]

∧[(α(x, σ) 6= ∅) ∨ (β(y, σ) 6= ∅)∨

(β(y1, σ1) 6= ∅) ∨ (β(y2, σ2) 6= ∅)]

Note that the silent-transition ǫ is defined at
each state of any automaton as a self loop by

default. The testing automaton T is used to track
if exists a triplet of traces s, u1 and u2 such that
s is a faulty trace (s ∈ L − K), and ui is a s-
indistinguishable non-fault trace under mask Mi

(i ∈ {1, 2}).

Then check if exists an “offending cycle” clT =
(zk, σk

T
, zk+1, · · · , zl, σl

T
, zk) such that ∃i ∈ [k, l]

such that (yi = F) ∧ (σi 6= ǫ), where zi =
((xi, yi), yi

1, y
i
2) ∈ Z, and σi

T
= (σi, σi

1, σ
i
2) ∈ ΣT .

If the answer is yes, then (L,K) is not codiagnos-
able, and (L,K,KS) is not safe-codiagnosable as
well. Otherwise, go to the next step.

Step 2: Compute the set of “boundary safe states”

B in G‖RS

Construct the composition G‖RS , and define the
set of boundary safe states as, B := {(x, yS) ∈ X×
YS |∃σ ∈ Σ : α(x, σ) 6= ∅, βS(y

S
, σ) = ∅}. Note

that if s ∈ L(G‖RS) = L(G) ∩ L(RS) = L ∩
KS = KS is such that execution of s results in
reaching a state (x, yS) ∈ B, then exists σ ∈ Σ
such that sσ ∈ L − KS , i.e., s ∈ (L − KS)/Σ. It
follows that s ∈ K∂

S
.

Step 3: Check the zero-delay codiagnosability of

K∂
S

with respect to {Mi}

Construct a testing automaton TS = (G‖RS) ×
R×R for verifying the zero-delay codiagnosability
of K∂

S
, where TS is obtained by replacing R by RS

in the testing automaton T constructed above.
Let TS = (ZS ,ΣT , γ

S
, zS

0), where ZS , γ
S
, and

zS
0 of TS are defined similarly as Z, γ, and z0

of T , respectively (with R replaced by RS). Then
check if exists an “offending state” ((x, y

S
), y1, y2)

in TS with (x, y
S
) ∈ B. K∂

S
is zero-delay co-

diagnosable if and only if the answer is no. If
K∂

S
is zero-delay codiagnosable, then (L,K,KS)

is safe-codiagnosable as well (since (L,K) was de-
termined to be codiagnosable above). Otherwise,
(L,K,KS) is not safe-codiagnosable.

Remark 2. Let |X|, |Y | and |YS | be the number of
states in plant G, non-fault specification R, and
safety specification RS respectively, and |Σ| be the
number of events. L = L(G),K = L(R),KS =
L(RS). Assume there are m local sites. It was
shown in (Qiu and Kumar, 2004) that the com-
plexity for constructing the testing automaton T
and checking codiagnosability of (L,K) is O(|X|×
|Y |m+1 × |Σ|m+1). Using a similar analysis, we
can verify that the complexity for constructing
the testing automaton TS and checking the zero-
delay codiagnosability of K∂

S
is O(|X| × |YS | ×

|Y |m ×|Σ|m+1). It follows that overall complexity
of checking safe-codiagnosability of (L,K,KS) is,
O(|X| × (|Y | + |YS |) × |Y |m × |Σ|m+1).

Once a system is deemed safe-codiagnosable, the
same methods as those presented in (Qiu and

Kumar, 2004) can be applied for the synthesis of
local diagnosers as well as for on-line diagnosis
using them. This is because a diagnoser simply
observes the plant behavior and reports a fault
when it becomes certain about it. The property of
safe-codiagnosability guarantees that at least one
diagnoser become certain within bounded delay of
the occurrence of a fault and prior to the system
behavior becoming unsafe. Details are omitted
here.� �� � ��� � �� � � �� �

� �� ��� � � � �	
	 �
�
 ��� �

 �

 �� ��
� �

 �� � � � � �� � �� � � � � �� � � � � � � � ��� �� � � � � �� � ��� � � �� � � � �� � � � � � �� � �� � � � !� ! � � !� � "
� � # � �� � � � !� ! � � !� � " $ % � & � ' � � � !� (� � � �) � �� � *$ % + � � ,, " $ %� - " - "

Fig. 1. Models G, R and RS1, and testing automa-
ton TS1

(right)

.....///0 1//223 435 43 465 226465 46435 226465 46465 227 475 46465 227 475 46435228 485 43 465223 435 43 435 228 485 43435//09/:0..//..///0:::9 :/:9 /:/ /://:/ /:///09/:0
;. < =.1> ?@>AB1BA.C BD E FGH

;I< J>?CBEK .LCDM.CDE NGH O ;P QQ FGH< R F R F
S TU V W.1 . .I

Fig. 2. Safe specification model RS2 and testing
automaton TS2

Example 1. Figure 1 (a), (b) and (c) show a plant
model G, a non-fault specification model R, and a
safety specification model RS . The set of events is
given by Σ = {a, b, f}. There are two local sites,
with their observation masks given as follows:

. M1(a) = a,M1(b) = M1(f) = ǫ;

. M2(b) = b,M2(a) = M2(f) = ǫ.

It can be verified that (L(G), L(R)) is codiag-
nosable with respect to {Mi} by constructing a
testing automaton T = (G‖R) × R × R, which is
omitted here.

Since L = L(G) = pr(ab∗ + faab∗) and KS1
=

pr(ab∗ + fa), the boundary safe language K∂
B1

=
[(L − KS1

)/Σ] ∩ KS1
= {fa}. Following the trace

fa, state “3” in G and state “3” in RS1
are

reached. Thus, the set of boundary safe states is

given by, B1 = {(3, 3)}. Figure 1 (d) shows a part
of the testing automaton TS1

= (G‖RS1
)×R×R,

where an offending state ((3, 3), 1, 1) is reached.
Therefore, K∂

B1
is not zero-delay codiagnosable

with respect to {Mi}, and thus (L,K,KS1
) is not

safe-codiagnosable with respect to {Mi} as well.

Now, if we relax the safety requirement by con-
sidering a new enlarged safety specification model
RS2

as shown in Figure 2 (a), the system be-
comes safe-codiagnosable. To see this, since KS2

=
pr(ab∗ + faa), the boundary safe language is
given by, K∂

B2
= [(L − KS2

)/Σ] ∩ KS2
= {faa}.

Thus, the set of boundary safe states is given
by, B2 = {(4, 4)}. The new testing automaton
TS2

= (G‖RS2
)×R×R is shown in Figure 2 (b),

where no offending states (states with first pair of
coordinates being (4, 4)) are reached. Therefore,
K∂

B2
is zero-delay codiagnosable with respect to

{Mi}, and thus (L,K,KS2
) is safe-codiagnosable

with respect to {Mi} as well.

5. CONCLUSION

This paper studies the property of being able to
react safely to failures in a decentralized setting.
For this purpose a notion of safe-codiagnosability
is introduced by extending the notion of safe-
diagnosability (Paoli and Lafortune, 2003) to the
decentralized setting. Safe-codiagnosability cap-
tures the property that when a system executes
a trace that is faulty, there exists at least one di-
agnoser that can detect this within bounded delay
and also before the system behavior becomes “un-
safe”. Necessary and sufficient conditions for safe-
codiagnosability are established, showing that
safe-codiagnosability can be separated into the
properties of codiagnosability together with “zero-
delay codiagnosability” of “boundary safe traces”.
Algorithm with polynomial complexity is pro-
vided for verifying safe-codiagnosability. For a
safe-codiagnosable system, the same methods as
those for a codiagnosable system are applicable
for the synthesis of local diagnosers as well as for
on-line diagnosis using them.

REFERENCES

Boel, R. K. and J. H. van Schuppen (2002). De-
centralized failure diagnosis for discrete-event
systems with constrained communication be-
tween diagnosers. In: Proceedings of Interna-

tional Workshop on Discrete Event Systems.
Das, S. R. and L. E. Holloway (2000). Characteriz-

ing a confidence space for discrete event tim-
ings for fault monitoring using discrete sens-
ing and actuation signals. IEEE Transactions

on Systems, Man, and Cybernetics—Part A:

Systems and Humans 30(1), 52–66.

Debouk, R., S. Lafortune and D. Teneketzis
(2000). Coordinated decentralized protocols
for failure diagnosis of discrete event systems.
Discrete Event Dynamical Systems: Theory

and Applications 10, 33–79.
Jiang, S. and R. Kumar (2004). Failure diag-

nosis of discrete event systems with linear-
time temporal logic fault specifications.
IEEE Transactions on Automatic Control

49(6), 934–945.
Jiang, S., R. Kumar and H. E. Garcia (2003).

Diagnosis of repeated/intermittent failures in
discrete event systems. IEEE Transactions on

Automatic Control 19(2), 310–323.
Jiang, S., Z. Huang, V. Chandra and R. Ku-

mar (2001). A polynomial time algorithm
for diagnosability of discrete event systems.
IEEE Transactions on Automatic Control

46(8), 1318–1321.
Lin, F. (1994). Diagnosability of discrete event

systems and its applications. Discrete Event

Dynamic Systems: Theory and Applications

4(1), 197–212.
Pandalai, D. and L. Holloway (2000). Template

languages for fault monitoring of timed dis-
crete event processes. IEEE Transactions on

Automatic Control 45(5), 868–882.
Paoli, A. and S. Lafortune (2003). Safe diagnos-

ability of discrete event systems. In: Proceed-

ings of IEEE Conference on Decision and

Control. Vol. 3. Hawaii, USA. pp. 2658–2664.
Qiu, W. and R. Kumar (2004). Decentralized

failure diagnosis of discrete event systems. In:
Proceedings of 2004 International Workshop

on Discrete Event Systems. Reim, France.
Qiu, W., R. Kumar and S. Jiang (2004).

Decidability of distributed diagnosis un-
der unbounded-delay communication. IEEE

Transactions on Automatic Control. Submit-
ted.

Rudie, K. and W. M. Wonham (1992). Think
globally, act locally: decentralized supervi-
sory control. IEEE Transactions on Auto-

matic Control 37(11), 1692–1708.
Sampath, M., R. Sengupta, S. Lafortune,

K. Sinaamohideen and D. Teneketzis (1995).
Diagnosability of discrete event systems.
IEEE Transactions on Automatic Control

40(9), 1555–1575.
Sengupta, R. and S. Tripakis (2002). Decentral-

ized diagnosis of regular language is unde-
cidable. In: Proceedings of IEEE Conference

on Decision and Control. Las Vegas, NV.
pp. 423–428.

Yoo, T. S. and S. Lafortune (2002). Polynomial-
time verification of diagnosability of partially
observed discrete-event systems. IEEE Trans-

actions on Automatic Control 47(9), 1491–
1495.

