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Abstract: Multiobjective optimal power plant operation requires an optimal mapping 
between unit load demand and pressure set-point in a Fossil Fuel Power Unit (FFPU). In 
general, the optimization problem with varying unit load demand cannot be solved using 
a fixed nonlinear mapping. This paper presents a modern heuristic method, Particle 
Swarm Optimization (PSO), to realize the optimal mapping by searching the best solution 
to the multiobjective optimization problem, where the objective functions are given with 
preferences. This optimization procedure is used to design the reference governor for the 
control system. The approach provides the means to specify optimal set-points for 
controllers under a diversity of operating scenarios. Moreover, the PSO makes it possible 
for the optimization process to be implemented on-line in the operation of the FFPU.  
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In recent years, reliable supply of electric power has 
been challenged severely since accidental blackouts 
and environmental impacts cause many critical 
problems in the society. Furthermore, stringent 
requirements on conservation and life extension of 
major equipment of power plants have to be fulfilled. 
To solve these problems, various mathematical 
approaches have been suggested for multiobjective 
optimization of power plant, such as minimization of 
load tracking error, minimization of fuel 
consumption and heat rate, maximization of duty 
life, minimization of pollutant emissions, etc. 
 

First of all, the Fossil Fuel Power Unit (FFPU) must 
meet the load demand of electric power at all the 
time, at constant voltage and at constant frequency 
(Elgerd, 1971). Although a typical daily cycle exists 
on the load demand for the FFPU, a control system 
basically has to provide optimized wide-range cyclic 
operation, by being able to follow any given unit load 
demand. In order to realize the wide-range operation, 
a set-point scheduler is used by mapping demand for 
power and pressure from the given unit load demand. 
Both multiobjective optimization and a set-point 
scheduling are achieved through optimal mapping 
between the given unit load demand and pressure set-
point scheduling. In general, a fixed nonlinear 
mapping does not allow for process optimization 
under operating conditions different from the 



 

     

originals. Moreover, the optimization process has to 
be implemented in the on-line operation of the 
FFPU. 
 
This paper presents a modern heuristic method, 
Particle Swarm Optimization (PSO), for the 
multiobjective optimal power plant operation. 
Basically, the PSO has been developed for nonlinear 
continuous optimization problem based on the 
experience gained from the study of artificial life and 
psychological researches. Eberhart and Kennedy 
(1995) developed the PSO based on the analogy of 
the swarm of bird and the school of fish (Lee and El-
Sharkawi, 2002). One of the main researches is to 
examine how natural creatures behave as a swarm 
and to reconfigure the swarm model inside a 
computer. The basic PSO and its variations have 
been applied to many engineering applications for 
the optimization (Park, et al., 2003; Eberhart and Shi, 
2000). In FFPU, the swarm is consisting of agents, 
which are components of the control system. Each 
agent searches for the best solution in the solution 
space with given rules and informs its performance 
to other agents. The agent is expressed as a vector in 
the solution space, which is a set of control inputs. 
Thus, it will be shown that the PSO technique can be 
successfully applied to the multiobjective power 
plant optimization problem. Furthermore, it will be 
shown that on-line implementation of the PSO is also 
possible. 
 
Following the introduction, the power plant control 
system is described in Section 2. Section 3 describes 
the multiobjective optimization technique (PSO). 
Section 4 shows simulation results to demonstrate 
the feasibility of the proposed approach. The final 
section draws some conclusions. 
 
 

2. POWER PLANT CONTROL SYSTEM 
 
2.1 Control Structure 
 
In order for the control system to have more stable 
and faster response to load changes, this paper uses 
the coordinated control scheme (CCS), which 
requires references (or set-points) for both power 
demand (Ed) and pressure demand (Pd) (Gery, 1988). 
The control structure is shown in Fig. 1, where the 
controller is developed in three main modules: 
reference governor, feedforward controller, and 
feedback controller. The multiobjective optimization 
is performed in the reference governor. The results of 
the multiobjective optimization are the set points for 
the power and pressure (Ed and Pd) for the 
feedforward and feedback controllers. The outputs of 
the two controllers are added to become input to the 
FFPU. The output of the FFPU is fed back to the 
feedback controller, which regulates the output 
variations due to load disturbances and compensates 
for the variation in load demand. 
 
 
2.2 Power Unit Model 
 

The FFPU under study is a 160MW oil-fired drum-
type boiler-turbine generator unit. It is represented by 
a third order Multiple Input-Multiple Output 
(MIMO) nonlinear model with three inputs and three 
outputs (Bell and Åström, 1987). The inputs are 
positions of valve actuators that control the mass 
flow rates of fuel (u1 in pu), steam to the turbine (u2 
in pu), and feedwater to the drum (u3 in pu). The 
outputs are electric power (E in MW), drum steam 
pressure (P in kg/cm2), and drum water level 
deviation (L in m). The state variables are electric 
power (E), drum steam pressure (P), and fluid 
(steam-water) density ( fρ ). The state equations are:  
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The drum water level output is calculated using the 
following algebraic equations: 

2 1 3(0.85 0.14) 45.59 2.51 2.09eq u P u u= − + − −   (2.a) 
(1/ 0.0015) /(1/(0.8 25.6) 0.0015)s f P= − − −α ρ (2.b) 

50(0.13 60 0.11 65.5)f s eL qρ α= + + −                (2,c) 

where sα  is the steam quality, and eq  is the 
evaporation rate (kg/sec). Positions of valve actuators 
are constrained to [0,1], and their rates of change 
(pu/sec) are limited to: 

10.007 / 0.007du dt− ≤ ≤                                      (3,a) 

22.0 / 0.02du dt− ≤ ≤                                           (3,b) 

30.05 / 0.05du dt− ≤ ≤                                          (3,c) 

2.3 Operating Windows 
 
In order to get optimal solution, the solution space 
must be predefined from the given model and 
constraints, (1)-(3). The solution space is obtained 
using power-input operating windows which are 
driven by the inverse steady-state equations: 

9 / 8
1 2 3(0.0018 0.15 ) / 0.9u u P u= +                        (4,a) 

9 / 8 9 / 8
2 (0.16 ) / 0.73u P E P= +                              (4,b) 

3 2((1.1 0.19) ) /141u u P= −                                   (4,c) 

However, the inverse steady-state equations require 
the relationship between power and pressure. For this 
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Fig. 1. Coordinated controller structure for FFPU. 



 

     

relationship, the equilibrium points need to be found 
from the given model and constraints. First, solve the 
given model equation (1) by setting the derivatives 
equal to zero and find all possible and meaningful 
equilibrium points. The resulting power-pressure 
operating window is shown in Fig. 2, which is 
represented by upper and lower limits. Secondly, 
determine the power-input operating windows by 
solving the inverse steady-state model (4) for all 
points in the power-pressure operating window. Fig. 
3 shows the power-input operating windows 
corresponding to various power ranges in the 
solution space for the optimization. 
 
 

3. MULTIOBJECTIVE OPTIMIZATION 
 
3.1 Overview of the Basic PSO 
 
Basically, the PSO is developed through simulation 
of birds flocking in two-dimensional space 
(Reynolds, 1987). The position of each bird (called 
agent) is represented by a point in the X-Y 
coordinates and also the velocity is similarly defined. 
Bird flocking is assumed to optimize a certain 
objective function. Each agent knows its best value 
so far (pbest) and its current position. This 
information is an analogy of personal experience of 
an agent. Moreover, each agent knows the best value 
so far in the group (gbest) among pbests of all 
agents. This information is an analogy of an agent 
knowing how other agents around it have performed. 
Each agent tries to modify its position using the 
concept of velocity. The velocity of each agent can 
be updated by the following equation: 

1
1 1

2 2

( )

                 ( )

k k k
i i i i

k
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v wv c rand pbest s

c rand gbest s

+ = + × −

+ × −
                       (5) 

where k
iv is velocity of agent i at iteration k , w  is 

weighting function, 1c  and 2c  are weighting factors, 

1rand  and 2rand  are random numbers between 0 

and 1, k
is  is current position of agent i  at iteration 

k , ipbest  is the pbest of agent i , and gbest  is the 
gbest of the group. The following weighting function 
is usually utilized in (5): 

max max min max(( ) /( ))w w w w iter iter= − − ×                (6)            

 

 
where maxw  is the initial weight, minw  is the final 
weight, maxiter  is the maximum iteration number, 
and iter  is the current iteration number. Using the 
above equations, a certain velocity, which gradually 
bring the agents close to pbest and gbest can be 
calculated. The current position (search point in the 
solution space) can be modified by the following 
equation: 

1 1k k k
i i is s v+ += +                                                        (7)                             

The model using (5) is called Gbest model. The 
model using (6) in (5) is called Inertia Weights 
Approach (IWA). Fig. 4 shows the concept of 
modification of a search point by the PSO. 
 
 
3.2 Multiobjective Optimization in FFPU 
 
The multiobjective optimization problem of the 
FFPU is to find an optimal solution in the solution 
space that minimizes the load tracking error, fuel 
usage, and throttling losses in the main steam and 
feedwater control valves (Garduno-Ramirez and Lee 
2000). Therefore, the following objective functions 
can be described for minimization: 

1 ( ) uld ssJ u E E= −                                                (8,a) 

2 1( )J u u=                                                             (8,b) 

3 2( )J u u= −                                                           (8,c) 

4 3( )J u u= −                                                           (8,d) 

Fig. 2. Power-pressure operating window.  
Fig. 3. Power-input operating windows. 
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Fig. 4. Concept of modification of a search point  
by PSO. 



 

     

where uldE  is the unit load demand (MW), and 

ssE is the corresponding generation (MW) as 
provided by the steady-state equation: 

2 2 1 3((0.73 0.16) / 0.0018 )(0.9 0.15 )ssE u u u u= − −  (9) 

The objective functions are described as following: 
1 ( )J u  accounts for the power generation error, 

2 ( )J u  accounts for fuel consumption through the 
fuel valve position, and 3 ( )J u  accounts for energy 
loss due to pressure drop across the steam valve. 
Since the pressure drop increases as the valve closes, 
it is desired to keep it open as wide as possible, thus 
it is desired to maximize 2u , or equivalently 
minimize 2u− . Similarly, 4 ( )J u  accounts for energy 
loss due to the pressure drop in the feedwater control 
valve. Thus, the multiobjective optimization is to be 
performed to minimize all objective functions 
defined above under a given set of preference. 
 
 
3.3 PSO for Multiobjective Optimization in the 

FFPU 
 
Initialization; The first step of the PSO for the FFPU 
is random generation of the agents in the solution 
space. The agents represent the search points in the 
solution space, which are expressed by controls 1u , 

2u , and 3u . Moreover, the initial velocities are also 
generated randomly within the same space. 
Whenever the unit load demand is changed, the 
initial agents and velocities are created in the 
solution space corresponding to the given unit load 
demand. In order to speed up the search for an 
optimal solution, 1c  and 2c  are set to 2, 0 8maxw .= , 
and 0 3minw .=  in the PSO. These values are obtained 
from experimental results by testing the convergence 
rate. The number of agents is 40 and the iteration is 
130. The initial pbests are equal to the current search 
points and gbest is found by comparing the pbests 
among the agents. 
 
Evaluation; The evaluation of search point for each 
agent is performed by using the deviation of each 
objective function from its possible minimum value, 
which then is weighted with a preference value. In 
the multiobjective optimization, the objective 
functions are often in conflict to each other when 
performing the optimization. Thus, it is proposed to 
minimize the maximum deviation of the objective 
functions instead of directly minimizing the 
multiobjective functions (Garduno-Ramirez and Lee 
2001). The maximum deviation of the multiobjective 
functions is defined as following: 

pi
ki

m δδ max
,...,1=

=                0≥piδ                      (10.a) 

*( ) ( )pi i i iJ u J u= −δ β , ki ,...,2,1= , Ω∈u     (10.b) 

  * min{ ( ); }i iJ J u u= ∈ Ω , ki ,...,2,1=             (10.c) 

where mδ is the maximum deviation of the 
multiobjective functions, piδ  is weighed deviation, 

iβ  is the preference value, *
iJ  is the minimum 

possible value of the objective function iJ , and Ω  is 
the solution space. After evaluation, if the new value 
is better than the current pbest of agent, the pbest 
value is replaced by the new value. If the best new 
value among all pbests is better than the current 
gbest, gbest is replaced by the best new pbest value 
and the agent number with the best value is stored.  
 
Modification; The modification of current search 
point is performed by (5), (6), and (7) in every 
iteration. The first term in the right-hand side of (5) 
is for diversification in the search procedure, which 
tries to explore new areas. The second and third 
terms are for intensification in the search procedure. 
It helps to converge to their pbests and/or gbest. The 
method has a well-balanced mechanism to utilize 
diversification and intensification efficiently in the 
search procedure (Shi and Eberhart, 1998). Fig. 5 
shows the total flow chart of the PSO in the FFPU. 
 
 
3.4 Set-point Scheduler 
 
The result of PSO procedure gives a set of optimal 
solution ( * *

1 2, ,u u and *
3u ) from the solution space 

1 2 3( ,   and )Ω Ω Ω for the given unit load demand 
( )uldE  as shown in Fig. 6, which is the configuration 
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Fig. 5. Total flow chart of the PSO in the FFPU. 
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of reference governor in FFPU. For the controllers, 
the scheduler maps the optimal solutions into set-
points, demand power dE  and pressure dP , by direct 
steady-state equations: 

* * * *
2 2 1 3((0.73 0.16) /(0.0018 ))(0.9 0.15 )dE u u u u= − −    (11.a) 

* *
3 2141 /(1.1 0.19)dP u u= −                                       (11.b) 

 
4. SIMULATION RESULTS 

 
In the following simulations, the results by the basic 
PSO technique will be shown. Simulations deal with 
three different cases:  
  Case 1; minimize only 1( )J u  
Case 2; minimize 1 2( ) and ( )J u J u  
Case 3; minimize 1 2 3 4( ),  ( ),  ( ) and ( )J u J u J u J u  

The objective functions are equation (8) and a vector 
of preference values is given as β  = [1, 0.5, 1, 0]. 
This means that 1β =1 is for 1 ( )J u , 2 0.5β =  for 

2 ( )J u , 3 1β =  for 3 ( )J u , and 4 0β =  for 4 ( )J u . 
These values imply the priorities of each objective 
function in the multiobjective optimization problem, 
where 1 is the highest and 0 is the lowest priorities in 
the optimization.  
 
4.1 Solution Space 
 
Fig. 7 shows a unit load demand that resembles a 
typical load cycle. It has different rising and falling 
slopes and different constant powers. With the given 
unit load demand and the plant model, the solution 
space is obtained from the power-input operating 
windows (Fig. 4). Fig. 8 shows the solution space 

1 2 3( ,   and )Ω Ω Ω for the given unit load demand. 
The gaps between upper and lower limits are the 
solution space for the optimization process. 
 
4.2 Optimal Solution Trajectories 
 
Next step is to perform the PSO for the 
multiobjective optimization with predefined 
objective functions and preference values. Figs. 9-11 
show the optimal input trajectories that are optimal 
solutions in the solution space. In Fig. 9, fuel 
consumption, 1u  is reduced as the number of 
objectives is increased, which is desirable. Fig. 10 
shows that the valve opening 2u  is increased as the 
number of objectives is increased, which is also 
desirable. On the other hand, Fig. 11 shows that the 
results are almost same for all cases.  This is because 
the solution space for the feedwater valve is very 
small as shown in Fig. 8. All simulation results are 
improved as the number of objectives is increased. 
These optimal solutions are the values of gbest that 
are found through the PSO technique. 
 
4.3 Set-Point Trajectories 
 
Finally, the power and pressure set-point trajectories 
are obtained by set-point scheduler as shown in Fig. 
12 and Fig. 13, respectively. The demand power 

( )dE is the same as the unit load demand as shown in 
Fig. 12. The demand pressure set-points, ( )dP  
mapped for different number of objective functions 
are shown in Fig. 13. This is because the power-
pressure operating window is quite large and the 
same amount of power can be produced on a wide 
range of pressure as shown in Fig. 2. As additional 
objective functions are added in the optimization, the 
plant is operating more conservatively in lower 
pressure. Thus, all simulation results show that the 
PSO technique can be accommodated well in the 
multiobjective optimization problem and also in the 
on-line implementation since the pressure set-point 
need to be updated only when the unit load demand 
is changed during the load cycle. Moreover, the 
computing time is reasonably short for on-line 
implementation in the FFPU. 
 
 

5. CONCULSION 
 
The Particle Swarm Optimization (PSO) technique is 
presented as an alternative optimization technique for 
solving a multiobjective optimization problem. The 
feasibility of the using the PSO is demonstrated in 
designing optimal set-points for the multiobjective 
optimal power plant operation. The optimal mapping 
between unit load demand and pressure set-point is 
realized and the mapping can also be realized for 
time-varying load demand. Therefore, the Particle 
Swarm Optimization (PSO) is shown to solve the 
multiobjective optimization effectively. 

 

    Fig. 7. Unit load demand. 
 

 
Fig. 8. Solution space by the given unit load demand. 



 

     

 
Fig. 9. Optimal input 1u  trajectories. 
 

 
Fig. 10. Optimal input 2u  trajectories. 

 
Fig. 11. Optimal input 3u  trajectories. 
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