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Abstract: The linear H*° control problem is stated for time-varying plant with
arbitrary delays and discontinuous coefficients. The image representation of the
plant is explicitly written and full solution to the suboptimal control problem
is presented. Necessary and sufficient conditions for existence of a solution are
derived from the abstract principle of maximum. No Riccati equations are used.
The existence of smooth kernels of optimal integral operators is proved and their
properties are studied. A numerical method is presented for computation of the
optimal kernels for the special case. The case is a model of a car autopilot on a

concave road. Copyright ©)2005 IFAC
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1. INTRODUCTION

A solution to the linear time-varying H*° con-
trol problem is proposed which does not contain
Riccati equations or factorization. The new ap-
proach is a generalization of the time-invariant ®-
approach proposed in [Barabanov and Ghulchak,
2000] for delayed systems with an essential ref-
erence to the abstract principle of maximum
[Matveev and Yakubovich, 1994].

The solution proposed has the following features:

e it does not refer to operator equations, in
particular, to the Riccati equations. Instead,
a number of differential equations are to be
solved;
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e the conditions of the existence of a solution
are necessary and sufficient;

e the image representation (see the behavioral
approach in [Willems, 1991]) of all processes
that satisfy the target inequality is presented;

e parameterization of all controllers that solve
the H* control problem is given;

e the plant equation is of the general type.
It may contain discontinuous coefficients
and not only arbitrary pure delays with
time-varying coefficients but also arbitrary
bounded operators from L? to L?;

e the solution does not contain auxiliary vari-
ables. The kernel functions in the controller
equation and in the image representation
are determined directly from the differential
equations.

In this paper the solution is presented for the full
information case, but it can be directly general-



ized to the input-output problem by the standard
duality and separation technique.

The solution can be used for study of the nonlinear
‘H>° control problem. It gives necessary and suffi-
cient conditions for local optimality of the process
that is not assumed to be in a small vicinity of the
origin.

2. PROBLEM STATEMENT

Definition 1. A mapping G : L*(0,00) — L*(0, 00)
is called causal if for any functions z1,z2 €
L?(0,00) and any t > 0 it follows from the condi-
tion 21 (s) = x2(s) almost everywhere on s € (0, t)
that (G(x1))(s) = (G(x2))(s) almost everywhere
on s € (0,t).

The control system is described by the equation
in generalized functions

= Ax + Bu+Cv + f,

where ueL? (0,00),veL? (0,00). The function f
is in the space (W7, (0,00))* that is the adjoint
space to the Hilbert space of Sobolev W, (0, 00).
The operators A, B and C from L?(0,00) to
L?(0,00) are causal, bounded and exponentially
decreasing. No other restrictions are assumed for
these operators.

The initial conditions of the system are defined
by the function f € (WZ(s,00))*. The set of
all initial conditions at the instant s is defined
as Z = (W(s,00))*. The set of all solutions of
the system equation after the instant s with fixed
f € Wi(s,00) and v = 0 is denoted by

M, (f)={(z,u) € L*(s,00) | & = Az + Bu+ f}.

Definition 2. An admissible feedback strategy for
u is defined as a mapping S : L7 (0,00) X Z —
L? (0,00) such that S(-, Z) is causal, and for any
s> 0 and any function v € L2 (s,00) the system
equation with the initial data Z at the instant s
has a unique solution (z(-),u(-)) € L*(s,o0) for
which v = S(z, Z).

The set of all admissible feedback strategies is
denoted by S. Note that these strategies can be
nonlinear and time-varying. Fix a quadratic cost
function

Fo= [l Quat) + ) ~ Moo .

Assumption 1. (Positive definiteness of the cost
function.) There exists a number ¢ > 0 such that
for any (z,u) € Mg(0) it holds

Folx(-),u(-),0) = e(l|2[lf2(,00) + [1ullE2(0,00))-

Assumption 2. (Minimal stability condition [Fomin,
et al., 1981].) There exists a linear bounded oper-
ator Ssiapie which is an admissible feedback and
such that the closed loop system is uniformly
exponentially stable.

3. PRINCIPLE OF MAXIMUM

The maximin control problem contains two con-
secutive LQ problems. The inner LQ problem
seems to be standard but the solution is not easy
for the general operators in L2. The resulting
operator is proved to be continuous in the appro-
priate norm of the dual space to the Sobolev space
W2,

Theorem 1. Let Assumptions 1 and 2 hold. Then
for any s > 0 and any function f € (Wi(s,00))*
there exists a unique process (z°,u’) on which
the cost function F(x, u,0) is minimal on the set

M (f)-

Moreover, the mapping (z°(-),u°(-)) = T5(f) is a
linear operator. It is bounded uniformly for s > 0
in the norms (W3 (s, >))* — L?(s, 00).

The outer maximization problem is solved in the
next Theorem. The authors do not know a solu-
tion that does not refer to the abstract principle of
maximum presented in [Matveev and Yakubovich,
1994]. According to the next Theorem any sta-
tionary point of the Lagrange function is proved
to provide a solution to the maximin control prob-
lem.

For any s > 0 define

Ay =inf{) | veLsz}l(I;OO) (m,u)érfl\fls(Cv) Fy < 00}
Theorem 2. Let s>0, f€(W7(s,00))* and A>A;.
Suppose Assumptions 1 and 2 hold. Then there
exist a unique quadruple (z°, u",v°,9) in the sets
(z,u,v) € L*(s,0), ¢ € W(s,00) which is a
stationary point of the Lagrange function

Lutruo) = [ IFG@).u(0.00)
2y (£) (1) — A ()~ Bu(t)—Colt) — £ (t))]dt

and satisfies the condition (x,u) € M;(Cv+f).
Moreover, the function v° and the process (z°, u°)
solve the maximin control problem

max min Fs,
vEL2(s,00) (z,u)EM(Co+f)

the function ¢ is the dual variable in the problem
of inner minimization by (z,u) with fixed v = 09,
and the mapping P : f — (2°,u°, v°,¢°) is linear
and continuous in the norms f € (WZ(0,00))*,
(2%,u% %) € L?%(s,00), ¥° € Wi(s,00). The



norms of the operators P; are bounded uniformly
for s > 0.0

4. BASIC OPERATORS

Following the behavioral approach of Willems
[1991] introduce the state variable X = col(z, u, v),
the matrix Q = diag{Qo,In,,—Al,,} of the
quadratic form and the plant operator R =

(0/0t—A, —B,—C).

It follows from Theorem 2 that the optimal pro-
cess in the maximin control problem satisfies the
standard set of the optimality conditions and the
plant equation

QX (t) =Rp(1),
RX(t) = f(t)-

This set of equations can be derived also from the
standard Pontryagin principle of maximum. Its
generalization, the abstract principle of maximum
[Matveev and Yakubovich, 1994] was used for the
proof that the adjoint variable i) belongs to the
space L?(s,00). This condition is important for
solution of the corresponding minimax game that
is well known as the H® control problem for the
time-varying delayed systems.

The optimality equations are the same as in the
linear functional equation that is basic in the ®-
approach to the H* control problem. Therefore,
a generalization of the direct approach to the in-
finite dimensional game problem can be obtained
from the equations that leads to the numerical
algorithms similar to [Afanassieva et al, 2001].

The operators f — (x, u, v,) are proved to be in-
tegral. Denote there kernels by K(t, ). They can
be explicitly transformed to the kernel functions
from the following Theorem.

Theorem 3. There exists an integral operators KC,

Kf(t) = fooo K(t,r)f(r)dr, from L%u_mu((), 0)
to L721m+nu+nv(0aoo)7 and KV f — ¢ from

L2 (0,00) to L2 (0,00) with the kernel K¥(t,r) =
col(K¥(t,7), K¥(t,7)) such that

1. The operators K and K¥ are bounded.

2. The operator K is causal, that is, K(¢,7) = 0
for t < r.

3. For almost all (¢,7) € (0,00) x (0,00) the
optimality conditions hold

QK(t,r) = R*K¥(t,r)
where the operator R* is applied to the function
of t under fixed r.
4. For almost all » > 0 the plant equation holds
for the generalized functions of ¢

RK(t,r) = (B,C)é(t—r). O

The optimality conditions and plant equation can
be written in the operator form: QK = (R*KY),
and RK = (B,C) where the operation (-); means
taking the causal part of the operator.

Let nyy, = n, + n, and E,, be the identity
operator in the space LZ (0,00). Denote the
dimension of the manifest variable X by nx =
Nz + Ny + 1y, The basic operator from L2 (0, 00)
to L2 (0,00) is defined as

0
o= () x

The matrix of the quadratic form X*QX under
x = 0is J = diag{I,,, — Ay, }. The next assertion
is crucial for the image representation of the plant.

Theorem 4. It holds R® =0 and &*Q® = J.

5. MAIN RESULTS

Theorem 5. (Image representation.) The set of
functions 2 = col(U,V) € L2 (0,00) is in the
one to one correspondence with the set £ of all
solutions of the plant equation X = col(z,u,v) €
L?(0, c0) under zero disturbances. This correspon-
dence X2z is causal both sides and gives the
image representation

X = ®3, 2 =J719*QX,

or in the explicit form

/O K2 (6, U () + K2(t, 7V (1) dr,
u(t)=U(t) + /0 (K1 (t,rU(r) + K2t )V (r)] dr,

v(t) =V (t) + /0 (K. (t,m)U(r) + K. (t,7)V(r)] dr

and back in the causal form

U(t) = u(t) + (K¥(t, 1)) 2(t) +
/0 (A KDY (5, 1) 2(5) + (B KL )(s, £)) u(s)

+((C*KY)(s,1)"v(s)] ds,
V(1) = v(t) = AT (1) a(t) —

3 [ AR 6,0)70(6) + (K25, 0)"u(e)
+((C*KY)(s, 1)) v(s)] ds.

Furthermore, the cost function can be represented
as

FX) = / " (), u(t), o(t)) dt = 2]}

= U1172(0,00) = MV IIZ2(0,00)-



Split ® in accordance to the dimensions of x, u,
v:
Tu v

b, ©
® = ((I)u (I)'U) = (I)uu (I)u'u
P, @

vu v

Lemma 1 Assume A\ > A. Then the inverse oper-
ator ®_.! exists, is bounded and causal. Moreover,
H(I)vv UUH S )‘ 1/2

Lemma 2. Let A\ > A and D : L2 (0,00) —
L? (0,00) be an arbitrary causal Lipschitz map-
ping with the Lipschitz constant less than v/A.
Then the mapping ®,, + ®,,D is invertible and
the inverse mapping is Lipschitz and causal.

Definition 3. Let v>0. A mapping T /,: (v, Z) —
z=(z,u) from L2 (0,00)xZ to L2 (0,00) is called
~v-contracting if there exist £ > 0 such that for any
vi,v2 € L2 (0,00) and any Z € Z if (z1,u1) =
Tz/v(’Ul, Z) and (1‘2, UQ) = TZ/U(UQ, Z) then

/ F(aa(t) — a(t), (1) — us(t),0) di <

(7 + &)l = va .

An admissible feedback strategy (respectively,
a generalized disturbance feedback) is called ~-
contracting if the closed loop mapping (v, Z) —
z = (x,u) is vy-contracting.

Theorem 6. (Small gain.). Let v > +/A. Then the
set of all ~-contracting generalized disturbance
feedbacks coincides with the set of mappings

u = ((I)uv + (I)uuDZ) o (q)vv + (I)UuDZ)_l(U) +uz,

where Dy for any Z € Z is an arbitrary causal
mapping from L2 (0,00) to L2 (0,00) with the
Lipschitz constant Lp < ~; the function uy =
S%(Z,0) depends on the initial conditions Z and
SY is an arbitrary generalized disturbance feed-
back. O

Remark. Under the conditions of Theorem 6 the
solution of the plant equation under a fixed ~-
contracting feedback is written as

r = (<b:mj + q):nuD) o ((I)vv + q)qu>_1('U) + Tz,
U= (Pyyp + PyuD) 0 (Do, + Py D) 1 (v) + uzg.
If the operator @, + ®,,, D is continuously invert-

ible then the generalized disturbance feedback can

be replaced by the admissible feedback strategy
U= (q)uv+<I>uuD)o(q)quq)mD)_l(zfzz)+uz.

All the ~-contracting feedback strategies can be
obtained in this way.

6. SOLUTION FOR SYSTEMS WITH PURE
DELAYS

The plant is described by the linear scalar time-
varying delayed equation

a(p, T)y(t) = b(p, Nu(t) + c(p, p)o(t),

where y is the output, u is the control, v is
the disturbance. The operators a, b and ¢ are
time-varying and depend on the differentiation
operator p = d/dt and on the set of nonnegative
delays 7 = (7)j_1, A = (Ak)io and p = (uk)j,
with m < n in the following way:

Y= )+ Y (0)

Zak

b ()u™ R (¢ — Ap),

MSi

b(p, Au(t) =

k=0

(v (= ).

NE

c(p, wv(t) =

>
Il
=)

The coefficients ag, by and c; are assumed to be
bounded. They may have jumps.

Under zero initial conditions at ¢ = 0 and with
fixed v > 0 it is required to describe all solutions
of the system that belong to L?(0,00) and satisfy
the target inequality

/ TP + )P dt < 2 / " loo)? dt.
0 0

It is also required to find all controllers that
provide the target inequality for any function
v € L0, 00).

The full solution is presented in section 5 for the
more general case. For the case considered in this
section it can be reduced to the following algo-
rithm. First, define the adjoint operators a*(p, 1),

b*(p, A), c*(p, ) as

n k

@ (.7 (0) = DD T a1 0+ 7)),
k=0
m k

(0 N00) = S~ S (D00 + A ),
k=0
m k

(0 )0(0) = S (1 e (D001 + ).
k=0

The main computational problem contains a so-
lution to the next two series of the differential
equations. For any fixed r > 0 it is required to
find a function v € L?(—o00,0) and a solution to
the disturbed plant equation on ¢ € R:

a(p, 7)y(t) = b(p, \)u(t) +c(p, p)o(t) +r(p)(t—r)

where r(p) = b(p, A) or r(p) = ¢(p, p), that satisfy
on t € [r,00) the relations



y(t) a*(p,7)

ut) | = =" A) | ()

u(t) 72t (p, 1)
and the functions (y(t),u(t),v(t),v(t)) are zero
for ¢ < r. Denote the solutions by K,(t,r) =
(B (t,r), Ky (¢, 7), K, (8, 7)) if r(p) = b(p, A),

and by K,(t,r) = (KY(t,r), K!(t,
r(p) = ¢(p, 1), respectively.

The equations are linear in . It can be proved
that a solution in L?(r, o) is unique if exists.

r), Ky (7)) if

Theorem 7. 1. A solution to the problem stated
exists if and only if the solutions K,(-,r) and
K,(-,7) exist in L?(r,00) for any v > 7o and for
any r > 0.

2. Assume a solution exists and fix v = .
Then the set of all solutions (y, u, v) of the target
inequality is in the one-to-one correspondence to
the set of the pairs (U,V) € L?*(0,00) such that
U]l < 4|IV||. The relation is given by

/O (KY (6, U(r) + Kt )V (r)] dr,
u(t)=U(t) + /0 (KU (r) + Kp(t,r)V(r)] dr,

v(t) =V (¢) —l—/o (K2 (t,m)U(r) + K2 (t,r)V (r)] dr.

3. Denote the integral operators with the ker-
nels (K¥ KU, K K?) by (K¥ K2, K KY), re-
spectively. Then all linear controllers that provide
the target inequality for any nonzero function v €
L?(0,00) can be parameterized by the equation

Kiu(t) = Kyy(t) + (KiDu(t) — Dy(t) — £, Dy(t))

where D is an arbitrary linear causal operator
from L?(0,00) to L?(0,00) such that ||D| < 7.
|

The assertion of Theorem 7 follows from Theorem
5. The main linear equation in the function v can
be solved numerically, for instance, by the sweep
method.

7. SPECIAL CASE

Consider a simple model of the car autopilot. A
car is riding on the road at a constant speed.
The road surface is not flat, the edges of the road
are lower than the middle line for the rain water
to leave the road. This slope of the road surface
generates a force that tries to turn a car if it is not
located at the middle line. The autopilot measures
the deviation and tries to compensate it.

The road profile is approximated by the function
—ay? where y is the distance between the car mass

centre and the road middle line. The coefficient of
concavity a is not constant along the road. The
system is described by the equation

i(t) = a()y(t) + bou(t) + w(t)
where u is the control and w is the disturbance.
For simplicity assume that a(t) = ag for ¢ € [0, T
and a(t) = a; for t > T. The disturbance w
reflects small nonflatness or small obstacles on the
road. Since any small stone or nonflatness acts on
the front wheels of a car and then acts on the rear
wheels the disturbance contains a pure delay
w(t) = cou(t) + crv(t — 1)

where 7 = d/V is the time for riding the distance
d between the front and the rear wheels. Hence,
we have a time-varying control system with a
pure delay in the disturbance. Under zero initial
conditions it is required to design a controller
that provides for all nonzero v € L?(0,00) the
inequality

||y||%2(0,oo) + ||u||%2(0,oo) < 72||U||%2(o,oo)-

In accordance to Theorems 3 and 5 the problem
is equivalent to solution in L?(0, c0) of the system

D(t) = alt)yb(t) +y(t),
v(t) =72 (cotp(t) + cro(t + 7))

together with the plant equation on the ray [r, 0o).
For calculation of the function K™(t,r) the initial
conditions are y(r) = 0, y(r) = bo and all variables
are zero for ¢ < r. For calculation of the function
K" (t,r) the last initial condition is replaced by
y(r) = ¢o and the function ¢ has a jump of the
amplitude c; at the time r + 7.

First consider the delay free special case 7 =
0 and assume a solution exists. The system is
time-invariant on the interval [T,00) and the
characteristic polynomial admits the factorization

=7 (co+e1)? = f(2)f(—2)
where f(z) = 2% + g1z + hy is a Hurwitz poly-
nomial. Since 1y € L?(T,o0) it must satisfy the
equation

) =1 + g19 + hatp = 0,

that has 2 degrees of freedom. The second and
the third derivatives of 1) have jumps at the point
t=T,

2t —2a12* +at + b3

t>T,

W(T - 0)=
— ’(/J(3)(T —0)=

(T 4 0) —
PI(T +0)

It remains to solve the equation
Y@ —2a09 + (af + 05 — 7 (co+ 1)) =0

on (t,T) under 4 mixed boundary conditions.
Denote the solution by (y°(¢,7),¥°(¢,r)).

(Aa)y(T),
(Aa)y(T).



Consider the general case 7 > 0 and assume r +
7 < T. Then the function ¢ on the ray [T, c0)
satisfies the equation

() = 2019(t) + [af + b5 — 7 (cf + DY (t)
—y2eocr [t —T) + (¢t +T)] =0

with the initial data ¢(s),s € [T — 7,T], (T) =
Y7, (T) = % and the condition ¢ € L*(T,c0).
If a solution exists then the operator in the left
hand side of the equation admits spectral fac-
torization and the differential equation takes the
form K;(p)K1(—p)¥(t) = 0 where the operator
K, is stable and K (p)(t) is equal to

w(t>+91¢(t)+h1w(t)+/f E1(s)v(t — s) ds.

0
Since the operator K;(—p) is antistable the
equation on the ray [T,c0) can be written as
K1(p)y(t) = 0. It can be proved similarly to
results of [Afanassieva, et al., 2001] that the sup-
port set of the function & is located in [0, 7].
The function & and positive numbers g1, hy are
uniquely determined from the equation

& ()b () (t)+ / T a6 (st ds =0

with the boundary conditions
€1 (T) = 0’ él (T) = 77200013 g% = 2(h1 + G/Q),
261(0) = ai + b5 — 7 7*(c§ + ).

The function ) satisfies also the equation

Ko(p)Ko(—p)(t) =0,

where the causal operator K is defined similar
to K7 by equations where the parameter a; is
replaced by ag. The operator K is described by
the parameters go, ho and the function &, defined
on the segment [0, 7]. The function ) has the same
jump at t =T as derived for the case 7 = 0.

ter+r7,T],

Since v(t — 1) = 0 for ¢ < r + 7 the function ¢
satisfies

Ko(p)Ko(—p)vo(t) = =y 2Fu(t),

The function 1 and two its derivatives are contin-
uous at t = 7. It holds also () = 0 for t < r and

y(r) = ¥(r) — aoy(r) = 0.

When calculating K*(t,r) the function ¥ is
continuous at ¢t = r + 7 and y(r) = PO (r) —
aoz/}(r) = bp. When calculating K" (¢,r) the third
derivative 1 has a jump at t = r + 7 of the
amplitude ¢; and §(r) = @ () — agy)(r) = co.

The recursive procedure for solution of the basic
system of equations with 7 > 0 consists of the
operations mentioned above. First, the functions
yo = y° and g = ¢° are determined from the
delay-free model.

t € [r,r+7].

Assume 1); is computed. The recursion contains
solution of the equations

Ki(p)j+1(t) =0,  te (T,00),
Ko(p)Ko(—p)j1(t) =0, te(r+7T),
Ko(p)Ko(—p)j1(t) = =y 2G5 (1), te(r,r + 7).

Each equation contains boundary conditions that
are algebraic equations containing the values of
;41 at the boundary point. Each equation also
requires the values of ¢ on the interval of the
length 7 that is located outside the interval of the
equation. For those initial conditions the previous
values of ¢; are substituted. The second equation
is solved in two steps. First, an equation with the
causal operator Ko(p) is solved from the left edge
t = r 4+ 7 to the right edge t = T and with
the initial condition ;(s), s € (r,7 + 7). Then
the next equation with the anticausal operator
Ko(—p) and initial condition ¢;(s), s € (T, T+7),
is solved in the backward direction.

Theorem 8. The described algorithm exponen-
tially converges for all sufficiently small 7 > 0.
|

It was noticed from experiments that the algo-
rithm successfully converges for the values of 7
that are not so small. The method can be easily
generalized to the plants with a finite number of
jumps in coefficients. The regulator equation is
obtained in the integral form. It is causal and
can be approximated by a regulator with a finite
number of pure delays.

REFERENCES

Afanassieva G.B., Barabanov A.E., Shtanenko
T.I. (2001). H* filtering of linear delayed
systems. Furopean Control Conference, Porto,
Portugal.

Barabanov A.E., Ghulchak A.M. (2000). Numeri-
cal solution and operator approach to H*° con-
trol of linear delayed systems. Proc. of the 39th
IEEE Conf. on Decision and Control.

Fomin V.N., Fradkov A.L., Yakubovich V.A.
(1981). Adaptive control of dynamic plants.
Nauka, Moscow.

Matveev A.S., Yakubovich V.A. (1994). Abstract
theory of optimal control. St. Petersburg Univ.
Publ.

Willems J.C. (1991). Paradigms and puzzles in the
theory of dynamical systems. IEEE Trans. on
Aut. Contr. 36, 259-294.



