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Abstract: Detection of moving targets in nature is an important problem in neuroscience.
In freshwater turtles, it is believed that the visual cortex performs this job. In this paper,
a set of ‘moving fishes’ are considered and the visual data is compressed using a set
of spatial basis functions. Input to the model cortex is this compressed visual data, and
the associated cortical response is generated. This paper illustrates the role of dynamic
motion reconstruction in a natural scene from the cortical activity waves using a bank of
autoregressive moving average processors.Copyright c©2005 IFAC
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1. INTRODUCTION

The turtle visual cortex responds to visual scenes of
the natural world. It is well known that the visual cor-
tex of freshwater turtles, when stimulated by an input
pattern of visual activity, produces waves of activity.
These activities have been experimentally observed
assuming a stationary and a moving flash as an in-
put (Prechtlet al., 1997); (Senseman, 1996). A large
scale model of the cortex, the NGU model (Nenadicet
al., 2000); (Nenadicet al., 2002), has also been con-
structed with a software package, GENESIS (Bower
and Beeman, 1998), that has the ability to simulate
cortical waves with the same qualitative features as
the cortical waves seen in experimental preparations.
The dynamics of the activity of waves has been stud-
ied as well as estimation and detection problems by
stimulating the NGU cortex model with inputs of flash
patterns (Nenadicet al., 2000); (Nenadicet al., 2002);
(Nenadicet al., 2003); (Du and Ghosh, 2003). It is
believed that the activity waves of a turtle visual cortex
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encode features of the visual scenes, viz. existence of
a target and its shape, position, and velocity. The NGU
model was modified by adding another type of in-
hibitory neurons, subpial cells, to produce the WNGU
model (Ulinskiet al., 2003); (Wanget al., 2004). The
purpose of this paper is to estimate the cortical inputs
from the associated neural responses by constructing
an Autoregressive and Moving Average model and
then reconstruct the visual inputs of natural scenes
with estimates of the cortical inputs. In order to simu-
late cortical responses, suitable cortical inputs have to
be constructed from visual inputs of natural scenes.
The inputs to the cortex have to be of sufficiently
low dimension and yet maintain the spatiotemporal
information of the visual inputs. Cortical inputs are
fed to the cortex model to produce cortical activity
waves which are used to estimate the target in the
visual space. The schematic diagram of the visual sys-
tem is described in Fig 1. With sparse over-complete
representation, natural scenes can be represented as a
linear superposition of a set of sparse basis functions
with coefficients. The coefficients are assumed to be
the activities of retinal neurons and the cortical inputs.
KL-decomposition is used to reduce the dimension of
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Fig. 1. System Diagram
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Fig. 2.3 scenes in this study. From top to bottom are 4 sequential
images of each scene. From left to right are 3 scenes.

the cortical inputs while maintaining the spatiotempo-
ral information of the visual scenes and the reduced
cortical inputs are fed to the WNGU model to produce
cortical responses.

2. SPARSE, OVER-COMPLETE
REPRESENTATION AND KL-DECOMPOSITION

Sparse representation with an over-complete basis set
was proposed to explain and examine the receptive
field properties in terms of a strategy for producing
a sparse distribution of output response to natural
images or scenes (Olshausen and Field, 1997). With
this approach, an image patch,I(x), is described as a
linear superposition of a set of basis functions,φi(x),
with amplitudesai :

I(x) = ∑
i

aiφi(x)+v(x)

wherex denotes spatial position within the patch and
the variablev represents Gaussian noise (i.i.d.) which
is included in the probabilistic model structure in
the images that are not well captured by the basis
functions. The basis functions,φi(x), are trained on
the set of images by adapting the probabilistic model
to the statistics of the images. The basis functions may
be thought of as a set of spatial features of images. The
coefficientsai represent how much of each feature is
contained in the image.

In this study, 3 natural scenes were used as visual
inputs to the visual system. Each of the natural scenes
contains 4 sequential images of 280×350 pixels. Ev-
ery image lasts 40ms and the scenes last 160ms as
visual inputs. The targets in the natural scenes are
moving fishes. The images are shown in Fig 2. The
12 images from these 3 scenes were used to train
the set of one hundred 10×10-pixel basis functions,
φi(x), which are shown in Fig 3 (This benefits from
B. A. Olshausen’s program). With this set of basis
functions, any patch of natural scenes can be described
as a linear superposition of the basis functions with
corresponding amplitudesai(t):

W(x, t) = ∑
i

ai(t)φi(x)+v(x, t)

The basis functionsφi(x) are thought of as retinal neu-
rons with certain spatial features and the Olshausen’s
coefficientsai(t) as activities of these retinal neurons.
These activities are inputs to the cortex model. To
construct the cortical inputs from the natural scenes,
Ik(x, t) (wherek indexes the natural scenes) with the
learnt basis functions, every image was split into 35
blocks of 280×10 pixels, indexed byp from left to
right. Each block contains 28 patches of 10×10 pixels,
indexed byq from top to bottom, and every patch is
denoted asWp,q

k (x, t) and can be represented as:

Wp,q
k (x, t) =

100

∑
i=1

ap,q
k,i (t)φi(x)+v(x)

The associated Olshausen’s coefficients,ap,q
k,i (t) ∈

R100, were decomposed with KL-decomposition, and
ap,q

k,i (t) can be represented byâp,q
k,i (t) ∈ R100 as

ap,q
k,i (t) = Vaâp,q

k,i (t)

where Va is a full matrix whose columns are the
corresponding eigenvectors of the convariance matrix
Q∈ R100×100 which is calculated as

Q =
3

∑
k=1

4

∑
t=1

35

∑
p=1

28

∑
q=1

100

∑
i=1

ap,q
k,i (t)ap,q

k,i (t)T .

For every 7 blocks of each natural scene,m predomi-
nant components of every coefficient,âp,q

k,i (t) ∈ R100,
from 196 patches within the 7 blocks were arranged
together into a column vector,A j

k(t) ∈ R196m, where

j = 1...5 andA j
k(t) consists of the coefficients of the

patchesWp,q
k (x, t) with p= 7 j−6, ..., p= 7 j, andq=

1, ...,28. The five vectors will be fed as inputs to the
cortex model, and each of the five vectors goes to40of
the 200 LGN neurons in the visual cortex model. How-
ever, the dimensions of the cortical inputs are too high
and they have to be converted to appropriate inputs of
lower dimension. KL-decomposition was used again
to decompose the high dimensional coefficient vectors
A j

k(t) to obtainβ -coefficient vectors,B j
k(t) ∈ R196m,

in β -space, of the visual inputs for every 7 blocks,
while maintaining the spatiotemporal information of
the visual scenes. ThusA j

k(t) can be represented by

B j
k(t) as

A j
k(t) = VcB

j
k(t)

where Vc is a full matrix whose columns are the
corresponding eigenvectors of the covariance matrix
C∈ R196m×196m which is calculated as

C =
3

∑
k=1

4

∑
t=1

5

∑
j=1

(A j
k(t))(A

j
k(t))

T .

The N β -coefficients corresponding to the firstN
principal components ofB j

k(t) were chosen as the
amplitudes of the cortical signals which last 40ms. In
this study,N was set to be4,8,12, and16. Thus each
scene provides5N cortical signals which last 160ms.
They were appropriately scaled and shifted, and then



Fig. 3.Over-Complete Basis Functions
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Fig. 4.Frames selected from Cortex movies with 3 natural inputs.
From top to bottom are the frames of cortical movies in
response to 3 different natural stimuli. From left to right
are the cortical movie frames at 50, 150, 280 and 350 ms
respectively

fed to the model cortex via LGN neurons. Fig 6, Fig 7,
and Fig 8 show the normalized amplitudes of cortical
inputs in the caseN = 12. With the dimension-reduced
cortical inputs, the associated cortical response of a
large number of pyramidal cells was generated for
1200ms with WNGU cortex model for every visual
scene. Some frames of cortical activity waves are
shown in Fig 4.

3. RECONSTRUCTION OF THE SCENES FROM
THE RESPONSE OF THE TURTLE VISUAL

CORTEX

So far, we have explained that natural stimuli induce
waves of activity in the model cortex. We represent
this wave as a spatiotemporal signalM(x, t). The ac-
tivities of the cells (pyramidal) of the cortex encode
features of the input visual field such as the intensity
profile. A more important issue is the inverse problem:
Decoding the features of the visual inputs from the
activity waves of the model cortex. One problem is to
reconstruct the visual scenes from the responses of the
turtle visual cortex. The cortical inputs which maintain
the spatiotemporal information of the visual scenes
directly activate LGN-Pyramidal conductances, which

subsequently induce the origination and propagation
of the cortical wave. In this paper, the reconstruction
of the scenes from the responses of the turtle visual
cortex consists of two processes: Estimation of theβ -
coefficients which were fed to LGN neurons of the
cortex from the responses of the visual cortex and
reconstruction of visual scenes from the estimatedβ -
coefficients, which are discussed below.

3.1 Estimation of theβ -coefficients from the responses
of the visual cortex

In the visual cortex model, the activitiesrm(t) of
679 pyramidal cells, wherem indexes the pyramidal
cells, encode the features of the visual inputs. In other
words, the activities of pyramidal cells directly encode
the amplitudes of theβ -coefficients which were fed to
the cortex model. So the first step in reconstruction
of the visual images is to estimate the amplitudes of
theseβ -coefficients. The responses of pyramidal cells
were filtered with a second order low pass filter and
the smooth activities were used to estimate theβ -
coefficients. Because the dimension of the activities,
679, is too high to estimate theβ -coefficients, the ac-
tivities were clustered locally. The cortical space was
subdivided evenly into 8×8=64 small square patches
and the average activity of the cells in every patch
was obtained. Excluding those patches without any
pyramidal cells or with average activity close to zero,
45 average activities from other patches were used in
the estimation of theβ -coefficients. An ARMA model
(Goodwin and Sin, 1984), with neural activities as
input andβ -coefficient cortical signals as output with
200ms time delay, was chosen for the estimation of
the β -coefficients . The200ms time delay makes the
ARMA model causal. In this study, the ARMA model
used is2nd order and is described below:

y(t) =−A1y(t−1)−A2y(t−2)

+B1u(t−1)+B2u(t−2)

wherey(t) andu(t) are output and input respectively.
In this paper, for each of the 3 scenes, we have:

β̂k(t) =−A1β̂k(t−1)−A2β̂k(t−2)

+B1Rk(t−1)+B2Rk(t−2)

where k indexes the visual stimuli,̂βk(t) is the esti-
mate ofβ -coefficient vector andRk(t) is the average
activity vector of 45 dimensions. The parameter matri-
cesA1, A2, B1, andB2 were trained using the Matlab
Identification Toolbox. 2 examples of the estimates of
the β -coefficient signals are shown in Fig 5. The es-
timates of theβ -coefficients were obtained by taking
the means of the estimatedβ -coefficient signals within
the interval from200+ 40( j − 1) + 6 ms to 200+
40j −5 ms wherej = 1,2,3, and4. The estimates of
the β -coefficients for the caseN=12 are shown with
the actualβ -coefficients in Fig 6, Fig 7, and Fig 8.



Fig. 5. 2 examples of the estimates of theβ -coefficient signals.
The solid lines are the actualβ -coefficient signals and the
dotted lines the estimated ones. The black bars are the esti-
mate of the correspondingβ -coefficients by taking the means
of the estimatedβ -coefficient signals within the interval from
200+40( j−1)+6 ms to200+40j−5 ms wherej = 1,2,3,
and4. The width of the bars represents the interval where the
means are obtained
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Fig. 6. Scene 1. The estimates of theβ -coefficients for the case
in which N=12 of theβ -coefficients of every 7 blocks were
fed to the visual cortex. From top to bottom are 4 frames
of images in scene 1. The black bars are the estimatedβ -
coefficients and the blank bars are the actualβ -coefficients

3.2 Reconstruction of the visual scenes from the
estimatedβ -coefficients

Above, the estimation of theβ -coefficients from the
average activities of the pyramidal cells was dis-
cussed. In this section, the estimatedβ -coefficients
were used to reconstruct the visual scenes which had
been used as visual inputs. Simply, the estimatedβ -
coefficients were scaled and shifted inversely, and then
the Olshausen’s coefficients were estimated by taking
2 linear superpositions of the eigenvectors obtained
in the 2 KL decompositions with the estimatedβ -
coefficients. Then the scenes were reconstructed by
the linear superposition of the set of the sparse ba-
sis functions with the estimated Olshausen’s coeffi-
cients. Fig 9, Fig 10, and Fig 11 show the images
reconstructed from estimatedβ -coefficients compared
with the images represented by the sparse basis func-
tions; and images reconstructed from the actualβ -
coefficients ofN principal components for the case
N=12. And the reconstructed images with estimated
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Fig. 7. Scene 2. The estimates of theβ -coefficients for the case
in which N=12 of theβ -coefficients of every 7 blocks were
fed to the visual cortex. From top to bottom are 4 frames
of images in scene 2. The black bars are the estimatedβ -
coefficients and the blank bars are the actualβ -coefficients

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Fig. 8. Scene 3. The estimates of theβ -coefficients for the case
in which N=12 of theβ -coefficients of every 7 blocks were
fed to the visual cortex. From top to bottom are 4 frames
of images in scene 3. The black bars are the estimatedβ -
coefficients and the blank bars are the actualβ -coefficients

β -coefficients in all cases ofN=4,8,16 are shown in
Fig 12, Fig 13, and Fig 14.

4. RESULTS

In the above section, the estimation of theβ -coefficients
and the reconstruction of the visual scenes were dis-
cussed. Fig 15 shows the relative errors of the scenes
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Fig. 9. Scene 1. From left to right are the images represented
by the sparse basis functions, images reconstructed from
the actualβ -coefficients ofN principal components and the
reconstructed images with estimatedβ -coefficients for the
case ofN=12 from top to bottom. From top to right are 4
frames of images in scene 1
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Fig. 10. Scene 2. From left to right are the images represented
by the sparse basis functions, images reconstructed from
the actualβ -coefficients ofN principal components and the
reconstructed images with estimatedβ -coefficients for the
case ofN=12 from top to bottom. From top to right are 4
frames of images in scene 2
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Fig. 11. Scene 3. From left to right are the images represented
by the sparse basis functions, images reconstructed from
the actualβ -coefficients ofN principal components and the
reconstructed images with estimatedβ -coefficients for the
case ofN=12 from top to bottom. From top to right are 4
frames of images in scene 3
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Fig. 12.Scene 1. From left to right are the reconstructed images
with estimatedβ -coefficients in all cases ofN=4, 8, 16. From
top to right are 4 frames of images in scene 1
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Fig. 13.Scene 2. From left to right are the reconstructed images
with estimatedβ -coefficients in all cases ofN=4, 8, 16. From
top to right are 4 frames of images in scene 2
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Fig. 14.Scene 3. From left to right are the reconstructed images
with estimatedβ -coefficients in all cases ofN=4, 8, 16. From
top to right are 4 frames of images in scene 3
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Fig. 15.The relative errors of the scenes represented by the sparse
basis functions(Olshausen), the scenes reconstructed from
the actualβ -coefficients ofN principal components(Main
Comp) and the reconstructed scenes with estimatedβ -
coefficients(Estimated) to the original scenes versus the
choices ofN=4,8,12,16. The solid lines are for Olshausen’s
representation, the dotted lines are for actual Main Comp
representation and the dashdot lines are for Estimated scenes.
From top to bottom are scene 1, scene 2 and scene 3



represented by the sparse basis functions, the scenes
reconstructed from the actualβ -coefficients ofN prin-
cipal components, and the reconstructed scenes with
the estimatedβ -coefficients to the original scenes ver-
sus the choices ofN=4, 8, 12, and 16. The relative
error of an objective image is defined as the matrix
norm of the difference between the objective image
and the original image normalized by the matrix norm
of the original image. The relative error of a scene is
defined as the mean of the relative errors of all frames
of images contained in this scene. Theβ -coefficients
were estimated very well whatever the choice ofN
is. This point can be seen in Fig 5, Fig 6, Fig 7,
and Fig 8(The other cases were not included here).
The point can also be seen by comparing the relative
errors of the scenes reconstructed from the actualβ -
coefficients ofN principal components and the recon-
structed scenes with the estimatedβ -coefficients to the
original scenes versus the choices ofN in Fig 15 where
these two lines are very close for all 3 scenes. The
ARMA model can estimate theβ -coefficients from the
responses of the visual cortex model. The quality of
the reconstructed scenes is improved as the numberN
increases. Information loss occurred since only part of
β -coefficients were fed to the visual cortex. Informa-
tion loss also occurred in sparse representation. The
contrast of the object in the image to the background
affects the reconstruction of the scenes. Overall, the
features of visual stimuli can be reconstructed very
well from the activity waves of the visual cortex with
an ARMA model. This study also illustrates that the
visual cortex plays an important role in encoding in-
formation on visual inputs.
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