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Abstract: Detection of moving targets in nature is an important problem in neuroscience.
In freshwater turtles, it is believed that the visual cortex performs this job. In this paper,
a set of ‘moving fishes’ are considered and the visual data is compressed using a set
of spatial basis functions. Input to the model cortex is this compressed visual data, and
the associated cortical response is generated. This paper illustrates the role of dynamic
motion reconstruction in a natural scene from the cortical activity waves using a bank of
autoregressive moving average processoopyright(©2005 IFAC
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1. INTRODUCTION encode features of the visual scenes, viz. existence of
atarget and its shape, position, and velocity. The NGU

The turtle visual cortex responds to visual scenes of model was modified by adding another type of in-
the natural world. It is well known that the visual cor- hibitory neurons, Subpia| cells, to produce the WNGU
tex of freshwater turtles, when stimulated by an input model (Ulinskiet al, 2003); (Wanggt al, 2004). The
pattern of visual activity, produces waves of activity. purpose of this paper is to estimate the cortical inputs
These activities have been experimentally observedfrom the associated neural responses by constructing
assuming a stationary and a moving flash as an in-an Autoregressive and Moving Average model and
put (Prechtlet al,, 1997); (Senseman, 1996). A large then reconstruct the visual inputs of natural scenes
scale model of the cortex, the NGU model (Nenagtic  with estimates of the cortical inputs. In order to simu-
al., 2000); (Nenadiet al, 2002), has also been con- |ate cortical responses, suitable cortical inputs have to
structed with a software package, GENESIS (Bower pe constructed from visual inputs of natural scenes.
and Beeman, 1998), that has the ability to simulate The inputs to the cortex have to be of sufficiently
cortical waves with the same qualitative features as|ow dimension and yet maintain the Spatiotempora|
the cortical waves seen in experimental preparations.information of the visual inputs. Cortical inputs are
The dynamics of the activity of waves has been stud- fed to the cortex model to produce cortical activity
ied as well as estimation and detection problems bywaves which are used to estimate the target in the
stimulating the NGU cortex model with inputs of flash  visual space. The schematic diagram of the visual sys-
patterns (Nenadiet al, 2000); (Nenadiet al, 2002);  tem is described in Fig 1. With sparse over-complete
(Nenadicet al, 2003); (Du and Ghosh, 2003). It is representation, natural scenes can be represented as a
believed that the activity waves of a turtle visual cortex |inear superposition of a set of sparse basis functions
with coefficients. The coefficients are assumed to be
1 partially supported from NSF grant ECS-9976174 the activities of retinal neurons and the cor'tical inputs.
2 Partially supported from NSF grant ECS-9976174, and ECcs- KL-decomposition is used to reduce the dimension of
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The basis functiong (x) are thought of as retinal neu-

rons with certain spatial features and the Olshausen’s
Fig. 1. System Diagram coefficientsa; (t) as activities of these retinal neurons.
These activities are inputs to the cortex model. To
construct the cortical inputs from the natural scenes,
Ik(x,t) (wherek indexes the natural scenes) with the
learnt basis functions, every image was split into 35
blocks of 280<10 pixels, indexed by from left to
right. Each block contains 28 patches of11D pixels,
indexed byq from top to bottom, and every patch is
denoted a®y"%(x,t) and can be represented as:
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Fig. 2.3 scenes in this study. From top to bottom are 4 sequential

images of each scene. From left to right are 3 scenes. i , . q
The associated Olshausen’s coefficierdS; (t) €

the cortical inputs while maintaining the spatiotempo- R1%0 were decomposed with KL-decomposition, and

ral information of the visual scenes and the reduced _pq ~D.q 100
cortical inputs are fed to the WNGU model to produce %;'(t) can be represented hﬁi (t) eR™Tas

cortical responses. aPd(t) = VaaPa(t)

where V; is a full matrix whose columns are the
corresponding eigenvectors of the convariance matrix
2. SPARSE, OVER-COMPLETE Qe IRG%O“OO v%hicgh is calculated as
REPRESENTATION AND KL-DECOMPOSITION
3 4 35 28 100

Sparse representation with an over-complete basis set Q= z Z Z Z _Zlaif,’iq(t)aiffiq(t)T-
was proposed to explain and examine the receptive k=1t=1p=lg=li=
field properties in terms of a strategy for producing For every 7 blocks of each natural scemepredomi-
a sparse distribution of output response to naturalnant components of every coefficieaf;(t) € R1%,
images or scenes (Olshausen and Field, 1997). Withfrom 196 patches within the 7 blocks were arranged
this approach, an image patdfx), is described as a  together into a column vecto#y (t) € R*%", where

linear superposition of a set of basis functiopgx), j=1.5 andAIJ((t) consists of the coefficients of the
with amplitudesa;: patches\>9(x,t) with p=7j —6,...,p=7j, andq =
I(x) = Zai(ﬂ(x) Fv(X) 1,...,28. The five vectors will be fed as inputs to the
I

cortex model, and each of the five vectors goettof

wherex denotes spatial position within the patch and the 200 LG_N neuronsin the V|su_al cc_)rtex model. HOW'
the variablev represents Gaussian noise (i.i.d.) which ever, the dimensions of the cortical inputs are too high

is included in the probabilistic model structure in and they have to be converted to appropriate inputs of

the images that are not well captured by the basislov(‘;er d|menS|0E. };!_-gzgompqsmoln waf? ‘%Sed again
functions. The basis functiong(x), are trained on to decompose the high dimensional coefficient vectors

J i ] J 196m
the set of images by adapting the probabilistic model Ak(t) to obtaw;Br-]coe_fﬂmeln_t VeCtOerBk(t) €R bl ' K
to the statistics of the images. The basis functions mayIn B-space, of the visual inputs for every 7 blocks,

be thought of as a set of spatial features of images. TheWh"e maintaining the spatiotemporal information of

coefficientsa; represent how much of each feature is thje visual scenes. Thl&(t) can be represented by
contained in the image. By(t) as

iy —v.pl
In this study, 3 natural scenes were used as visual ) AdD) *_VCB"(t)
inputs to the visual system. Each of the natural scenesVhere Ve is a full matrix whose columns are the
contains 4 sequential images of 28860 pixels. Ev- corresponding e|g_en\{ectors of the covariance matrix
ery image lasts 40ms and the scenes last 160ms a$§ € RI9TM<196M which is calculated as
visual inputs. The targets in the natural scenes are 3 45 ] | T
moving fishes. The images are shown in Fig 2. The C=> le (A (A1)
12 images from these 3 scenes were used to train k=1e=1=1
the set of one hundred %10-pixel basis functions, The N B-coefficients corresponding to the first
@(x), which are shown in Fig 3 (This benefits from principal components oB|J<(t) were chosen as the
B. A. Olshausen’s program). With this set of basis amplitudes of the cortical signals which last 40ms. In
functions, any patch of natural scenes can be describedhis study,N was set to b, 8,12, and16. Thus each
as a linear superposition of the basis functions with scene provideSN cortical signals which last 160ms.
corresponding amplitudes(t): They were appropriately scaled and shifted, and then



subsequently induce the origination and propagation
of the cortical wave. In this paper, the reconstruction
of the scenes from the responses of the turtle visual
cortex consists of two processes: Estimation offthe
coefficients which were fed to LGN neurons of the
cortex from the responses of the visual cortex and
reconstruction of visual scenes from the estimaed
coefficients, which are discussed below.

3.1 Estimation of th@-coefficients from the responses
of the visual cortex

In the visual cortex model, the activitiag,(t) of
679 pyramidal cells, wherm indexes the pyramidal
cells, encode the features of the visual inputs. In other
words, the activities of pyramidal cells directly encode
the amplitudes of th@-coefficients which were fed to
the cortex model. So the first step in reconstruction
of the visual images is to estimate the amplitudes of
theseB-coefficients. The responses of pyramidal cells
were filtered with a second order low pass filter and
the smooth activities were used to estimate fhe
coefficients. Because the dimension of the activities,
679, is too high to estimate tH#coefficients, the ac-
tivities were clustered locally. The cortical space was
subdivided evenly into 88=64 small square patches
and the average activity of the cells in every patch
was obtained. Excluding those patches without any
pyramidal cells or with average activity close to zero,
. .o A5 gverage activities from other patches were used in
From top to bottom are the frames of cortical movies in . . ..
response to 3 different natural stimuli. From left to right the es“matlon of Fhﬁ'coemCIentS' An ARMA_deel
are the cortical movie frames at 50, 150, 280 and 350 ms (Goodwin and Sin, 1984), with neural activities as
respectively input andgB-coefficient cortical signals as output with

fed to the model cortex via LGN neurons. Fig 6, Fig 7, 200ms time delay, was chosen for the estimation of

and Fig 8 show the normalized amplitudes of cortical the B-coefficients . The200ms time delay makes the
inputs in the cashl = 12. With the dimension-reduced ARMA model causal. In this study, the ARMA model

. d . B .
cortical inputs, the associated cortical response of aused is2"" order and is described below:
large number of pyramidal cells was generated for
1200ms with WNGU cortex model for every visual y(t) = —Agy(t — 1) — Agy(t — 2)
2%3\/% | nsltzrgeﬂr frames of cortical activity waves are +Bu(t — 1) + Bou(t — 2)

Scene 1!
Scene
Scene m

Fig. 4.Frames selected from Cortex movies with 3 natural inputs.

wherey(t) andu(t) are output and input respectively.
In this paper, for each of the 3 scenes, we have:

3. RECONSTRUCTION OF THE SCENES FROM i R i
THE RESPONSE OF THE TURTLE VISUAL Be(t) = —AgB(t — 1) — AgB(t — 2)

CORTEX +B1R(t — 1) + BoRy(t — 2)

So far, we have explained that natural stimuli induce where k indexes the visual stimuﬁ%k(t) is the esti-
waves of activity in the model cortex. We represent mate off3-coefficient vector andR(t) is the average
this wave as a spatiotemporal sigh4(x,t). The ac- activity vector of 45 dimensions. The parameter matri-
tivities of the cells (pyramidal) of the cortex encode cesAs, Ao, B1, andB, were trained using the Matlab
features of the input visual field such as the intensity Identification Toolbox. 2 examples of the estimates of
profile. A more important issue is the inverse problem: the -coefficient signals are shown in Fig 5. The es-
Decoding the features of the visual inputs from the timates of the3-coefficients were obtained by taking
activity waves of the model cortex. One problem is to the means of the estimatgdcoefficient signals within
reconstruct the visual scenes from the responses of thehe interval from200+ 40(j — 1) + 6 ms to 200+
turtle visual cortex. The cortical inputs which maintain 40j —5 ms wherej = 1,2, 3, and4. The estimates of
the spatiotemporal information of the visual scenes the -coefficients for the cas®=12 are shown with
directly activate LGN-Pyramidal conductances, which the actual3-coefficients in Fig 6, Fig 7, and Fig 8.
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M Fig. 7. Scene 2. The estimates of tBecoefficients for the case
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Fig. 5. 2 examples of the estimates of tBecoefficient signals.

The solid lines are the actu@-coefficient signals and the

dotted lines the estimated ones. The black bars are the esti-

mate of the correspondirfgrcoefficients by taking the means ) M

of the estimategB-coefficient signals within the interval from i

200+ 40(j — 1) + 6 ms t0200+40j — 5 ms wherej = 1,2, 3, T

and4. The width of the bars represents the interval where the

means are obtained
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in which N=12 of the-coefficients of every 7 blocks were
fed to the visual cortex. From top to bottom are 4 frames
of images in scene 2. The black bars are the estimgted
coefficients and the blank bars are the acfisabefficients
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Fig. 6. Scene 1. The estimates of tBecoefficients for the case sl |‘ M m Mm M “ |‘ I N
in which N=12 of theB-coefficients of every 7 blocks were 111} QR R

fed to the visual cortex. From top to bottom are 4 frames -H 1

of images in scene 1. The black bars are the estim@ted 4

coefficients and the blank bars are the acfirabefficients ]
3.2 Reconstruction of the visual scenes from the 7] N“‘

. o Al M |‘ il
estimate3-coefficients

Above, the estimation of thg-coefficients from the 1
average activities of the pyramidal cells was dis- 7 mﬂm H M mn H H IL H
cussed. In this section, the estimatBetoefficients M J]][ ull H MH Al L]

were used to reconstruct the visual scenes which had

been used as visual inputs. Simply, the estim@ied  Fig. 8. Scene 3. The estimates of tfecoefficients for the case
coefficients were scaled and shifted inversely, and then in which N=12 of the3-coefficients of every 7 blocks were
the Olshausen’s coefficients were estimated by taking ~ fed to the visual cortex. From top to bottom are 4 frames
2 inear superpositons of the eigenveciors obtained ¢ 14655 " sene 2 e back ar e e el

in the 2 KL decompositions with the estimat¢d

coefficients. Then the scenes were reconstructed byB-coefficients in all cases dfi=4,8,16 are shown in
the linear superposition of the set of the sparse ba-Fig 12, Fig 13, and Fig 14.

sis functions with the estimated Olshausen’s coeffi-

cients. Fig 9, Fig 10, and Fig 11 show the images

reconstructed from estimatg@dcoefficients compared 4. RESULTS

with the images represented by the sparse basis func-

tions; and images reconstructed from the acial  Inthe above section, the estimation of hieoefficients
coefficients ofN principal components for the case and the reconstruction of the visual scenes were dis-
N=12. And the reconstructed images with estimated cussed. Fig 15 shows the relative errors of the scenes
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9. Scene 1. From left to right are the images represented
by the sparse basis functions, images reconstructed from
the actualB-coefficients ofN principal components and the
reconstructed images with estimatBecoefficients for the
case ofN=12 from top to bottom. From top to right are 4
frames of images in scene 1

10. Scene 2. From left to right are the images represented
by the sparse basis functions, images reconstructed from
the actualB-coefficients ofN principal components and the
reconstructed images with estimatBecoefficients for the
case ofN=12 from top to bottom. From top to right are 4
frames of images in scene 2

11. Scene 3. From left to right are the images represented
by the sparse basis functions, images reconstructed from
the actualB-coefficients ofN principal components and the
reconstructed images with estimatBecoefficients for the
case ofN=12 from top to bottom. From top to right are 4
frames of images in scene 3

12.Scene 1. From left to right are the reconstructed images
with estimateq3-coefficients in all cases ®§=4, 8, 16. From
top to right are 4 frames of images in scene 1

Fig. 13.Scene 2. From left to right are the reconstructed images
with estimate3-coefficients in all cases &=4, 8, 16. From
top to right are 4 frames of images in scene 2

Fig. 14.Scene 3. From left to right are the reconstructed images
with estimate@3-coefficients in all cases ®=4, 8, 16. From
top to right are 4 frames of images in scene 3
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Fig. 15.The relative errors of the scenes represented by the sparse
basis functions(Olshausen), the scenes reconstructed from
the actualp-coefficients ofN principal components(Main
Comp) and the reconstructed scenes with estimgied
coefficients(Estimated) to the original scenes versus the
choices 0fN=4,8,12,16. The solid lines are for Olshausen’s
representation, the dotted lines are for actual Main Comp
representation and the dashdot lines are for Estimated scenes.
From top to bottom are scene 1, scene 2 and scene 3



represented by the sparse basis functions, the sceneBrechtl, J. C., L. B. Cohen, P. P. Mitra, B. Pesaran and

reconstructed from the actydtcoefficients oN prin- D. Kleinfeld (1997). Visual stimuli induce waves
cipal components, and the reconstructed scenes with  of electrical activity in turtle cortexProc. Natl.
the estimateB-coefficients to the original scenes ver- Acad. Sci94, 7621-7626.

sus the choices dil=4, 8, 12, and 16. The relative Senseman, D. M. (1996). Correspondence between
error of an objective image is defined as the matrix visually evoked voltage sensitive dye signals
norm of the difference between the objective image and activity recorded in cortical pyramidal cells
and the original image normalized by the matrix norm with intracellular microelectrode¥is. Neurosci.

of the original image. The relative error of a scene is 13,963-977.

defined as the mean of the relative errors of all framesUlinski, P. S., W. Wang and B. K. Ghosh (2003). Gen-
of images contained in this scene. Theoefficients eration and control of propagating waves in the
were estimated very well whatever the choiceNof visual cortex Proceedings of 42nd IEEE Confer-
is. This point can be seen in Fig 5, Fig 6, Fig 7, ence on Decision and Contrpp. 6429-6434.

and Fig 8(The other cases were not included here).Wang, W., B. K. Ghosh and P. S. Ulinski (2004).
The point can also be seen by comparing the relative Integrative physiology of subpial cellSubmitted
errors of the scenes reconstructed from the aggual to Journal of Computational Neuroscience

coefficients ofN principal components and the recon-
structed scenes with the estimafedoefficients to the
original scenes versus the choice®dh Fig 15 where
these two lines are very close for all 3 scenes. The
ARMA model can estimate th@-coefficients from the
responses of the visual cortex model. The quality of
the reconstructed scenes is improved as the nuidber
increases. Information loss occurred since only part of
B-coefficients were fed to the visual cortex. Informa-
tion loss also occurred in sparse representation. The
contrast of the object in the image to the background
affects the reconstruction of the scenes. Overall, the
features of visual stimuli can be reconstructed very
well from the activity waves of the visual cortex with
an ARMA model. This study also illustrates that the
visual cortex plays an important role in encoding in-
formation on visual inputs.
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