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Abstract: In this paper the first Lyapunov coefficient of the emerging periodic solution in
the Hopf bifurcation is established. A change of coordinates is introduced to eliminate some
guadratic and cubic terms in the dynamic equations and the center manifold theory is used to
reduce the dynamics to dimension tWIDpyrigh@ZOOS IFAC
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1. INTRODUCTION stability of the emerging periodic solution. See (Ver-
duzco and Alvarez, 2004; Hamet al., 2004).
The creation of periodic orbits from equilibria as a
real parameter crosses a critical value, is one of the
simplest variations of the phase space in parametrized 2. HOPF BIFURCATION
differential equations. In (Hopf, 1942) was proved the
commonly known Hopf bifurcation theorem, and from Theorem 1.Suppose that the system
then, numerous papers have dealt with this kind of )
bifurcation. &= f(z,p)

In (Chow and Mallet-Paret, 1977) the method of aver-
aging is employed to ensure the Hopf bifurcation. In
(Schmidt, 1978; Alexander and York, 1978) is showed
that the Lyapunov’s Center theorem can be derivedAl) D, f(zo,po) has a simple pair of pure imaginary

with z € R™, u € R has an equilibriun{zo, uo) at
which the following properties are satisfied:

from the Hopf’s theorem. In (Hassard and Wan, 1978) eigenvalues and no other eigenvalues with zero
the center manifold theorem is used to derive a for- real parts.

mulae for the first Lyapunov coefficient. In (Hsu, (A2) LetA(u), A(u) be the eigenvalues @, f (o, 1)
1976) is showed that the classical Belousov-Zaikin- which are imaginary gt = y, such that
Zhabotinskii reaction undergoes the Hopf bifurcation. d

In this paper a change of coordinates is introduced to dp (BeA ) lu=po = # 0. (1)

try to simplify the formulae derived in (Hassard and
Wan, 1978). The idea is follow the new coordinates
until the two dimensional center manifold, eliminate
the quadratic terms and simplify the cubic terms. The
significance of this result is at the bifurcation control
theory of nonlinear control systems that undergo the
Hopf bifurcation, where is important to establish the

Then there is a unique three-dimensional center mani-
fold passing througlizg, 1o) € R™ x R and a smooth
system of coordinates for which the Taylor expansion
of degree three on the center manifold, in polar coor-
dinates, is given by

7= (du + ar?)r,
f=w+ cp + br.

1 Mail address: Universidad de Sonora, Rosales and Transver- . o . .
sal, Hermosillo, Sonora, Mexico. Phone: +52.662.2592155, Fax: If @ # 0, there is a surface of periodic solutions in
+52.662.2592219. E-mail: verduzco@gauss.mat.uson.mx the center manifold which has quadratic tangency with



the eigenspace ok(uyg), S\(MO) agreeing to second Then, our goal is to determine the stability of the

order with the paraboloigg = —%r2. If a < 0, then emerging periodic 'solution in the system (6-7). We
these periodic solutions are stable limit cycles, while use the center manifold theorem to reduce the stability
if @ > 0, are repelling. analysis to the planar equation (6), and then utilize (2)

to calculate the first Lyapunov coefficient. Before that,

we propose a change of coordinates to eliminate some

For bidimensional systems, there exists an eXpreSSiorhuadratic terms in the system (6-7) in such way that
to find the called first Lyapunov coefficieat Con- R, — 0 and R, be simplest in (2)

sider the system

z=Jx+ F(x),
4. CHANGE OF COORDINATES
_(0-w _ [ Fu(z) _
whereJ = (w 0 ) (@) = (Fg(x) ) F(0)=0 Consider the change of coordinates
andDF(0) = 0. Then
1 z=x+ Py(x) + Ps(x), 8
0 =——(Ri +wRy), @ o) () ©
16w w=y+Q(z), 9)
where with P, P; : R? — R?, Q : R2 — R" 2, where
P, and @ are quadratic functions an8s is a cubic
Ri=Fiu0y(Flz,z, + Fliyu,) (3) function. Then,

7F21112 (F211xl + FQIzmz)

z=x+ Py(x) + Ps(x
_Flwlcchlexl +F1I2I2F2I2$2 2( ) 3( )

dz 8P2 8P3 dx
RZ = lelxlxl + Flarlzgccg + F2zlzlzg + F2:62:62:vg4) g E =1+ 67(37) + E(LL’) E
dx - 8P2 6P3 -t dz
3. PROBLEM FORMULATION < oa (I o @t m($)> at 19
Consider the nonlinear system But,
é:F(faﬂ) (5) OP. oP -1 OP. OP
2 3 2y 288

whereé € R™ andp € R. The vector fieldF'(¢, u) is )
assumed to be sufficiently smooth, wit{0, 0) = 0. n (3132(36)> i
We suppose that fop, ~ 0, the matrix DF(0, i) Oz

has the eigenvalues(u) + iw(u), with «(0) = 0,

a/(0) # 0 andw(0) = wy > 0, and the others

n — 2 eigenvalues are reals, and negatives. Then, it Juz=Ju(x + Pa(x) + P3(x))
follows that, from the Hopf theorem, the system (14)

undergoes the called Hopf bifurcation at the origin and,
& =0wheny = 0.

1 . 0%f 9% f
We assume thab F(0, 0) is in Jordan formi.e,, fzw) = 5”@(@ 0)z + 2" 920w (0,0)w
192f 10%f
1 0% f
0 :§($+"')T@(0a0)(l’+‘“)
whereJy = < SJ°> ,Withwy > 0,andJg = o2 f
\ wo 2%2 +(x+"')Tazaw(ovo)(erQ(z))
1
: 1 o
) where); < 0Ofori=1,...,n—2. +§(y+Q(x))TaTjé(o,o)(y+Q(x))
/\n—QZ +1837f(0’0)(:c+...,x+...7x+...)+...
Now, if ¢ = , with z € R2 andw € R"2, 6 023
A Y 1 1 0%f o2 f
then, expanding system (14) aroupie- 0 andyu = 0, - §mT@(O’ 0)z + xT@(O, 0)Py(x)
yields ; )
w0000 + 277 0.0
2=Jyz+ f(z,w) (6) Fow zow

193f
w=Jsw + g(z,w) ) —&—6@(0,0)(%%@4_...’



then, simplifying we obtain
i = Jyx + fo(z) + fa(x) + - (11)
where

fg(l’) = JHP2<$) — %

Folw) = TuPy(x) — % ()

2 2
T%(o, 0)Py(x) + x* o°f

020
r 0°f 10°f -
+x azaw(o 0)y + = ==(0,0)(x, z, x)

6 023
O ) o).

Now then, from (9),

1 0%f
() gz + §mT@(O, 0)x,

+x

(0,0)Q(z)

w=y+Q(x)
dw dy Q
dar + (‘333( )
dy dw Q

- - WT
& d—szSw—i—g(z,w)

dt
92 @) (o) + Fola) +-)
but,

2

70%g 0°g

e 2(0 0)z + 8zaw(0’0)w
r10%g
57
702

1
gz w) = 52"

+w 3 (0,0)w +
1 g
B 9.2 (O 0) )

2" 92
then, simplifying, we obtain

y=Jsy+ga(x) +---, (12)

where

= JsQ@) - Ryge (3)
1 Ta g
—|—§ 9 2(0 0)x.

From the normal form theory, there exiBj(x) such

that fo(z) = 0. If
_ [ pu(w)
Py(z) = (ng(.%‘)> )

Ga(z)

Wherepgi(x) = agi.’L‘% + bo;x122 + CQZ'.’E%, and

1 a2f f21($)
2 T82(0 0)z <J”22(5C)>7

Wherefgi(m) = /ﬂglll'% + lo;x129 + mgil'%, then

koo + lo1 + 2mao

a21 = — 3w >
0
—ko1 + lo2 — 2myy
g2 = — 3&)0 )
—2k21 — Iz + 2myy
boy = — 30 )
—2k22 + la1 + 2mao
b22 - - 3w0 )
_ 2kag —lo1 +ma2
Co1 = T30,
e — —2k21 — log — may
22 3o

Now, we are going to find’s(z) andQ(x) such that

8P3

0=JgP3(x) — ( )
+z Agsf(o 0)Py(x) + 2" O (0,0)Q(z)
0227 0z0w "’
1 3f 14
+éa—(0 0)(z,z,z), (14)
e, f3(z) = 27 2L (0,0)y. If
_ ( pai(2)
Ps(x) = (pgg(ﬂ;‘)) )
whereps; (z) = asg;x§ + by;xizs + c30123 + dsx3,
q1(z)
Qz) = : ;
Qn72(m)

whereg;(z) = §;2%, and

r0%f

T @(0, O)PQ(.’L') +

183][ o Fll('r)
6@(070)(%‘%"%) - (Fzz(x)>

WhETEFl‘i(l‘) = 81‘1.23:13 + Sigx%xg + Sigml.ﬁ% + Si4$g;

besides, if
_ [ fAilzw)
f(z,w) = (f;(z,w)> )
then,

_(9%fx
00 = (G500) 09

9 f,(0,0)  9*£x(0,0)
0210w, 0210wy, _9
92 f1(0,0) 92 f(0,0) |’
0290wy 0290wy, _2

now then,

Fiew0,0)Q(2) Zazlaw "
20(0,0)Q(x) =
g Zakaoo I

622810 J e



where

n—2 (92
Qi=Y fk(o’jo)(Sj, (16)

therefore,

T
Q?szw(OyO)Q(x) = (iT;::Eg 8) (i

)
(z)
_ ((Juxl + Q12$1$2 >

4213?1 + Q22$1$2

)

Finally, the coefficients of the function®;(z) and
Q(z) that satisfy the equation (14), must to satisfy the

next system of equations:

Gi11 =1 + wolaze — c32) a7

qi12 = c2 — 3wo(az1 — dz2)

G21 = c3 — wo(az1 — dsz)

o2 = ¢4 — 3wo(aze — c32)
0=c5 + (c32 + b31)
0=cs + (d31 + ¢32)
0=c7 + (ds2 — b32)
0=rcs + (ds2 — ¢31)

wherec; are constants for eagh=1,...,8.

The last four equations have many solutions. If we
fixed one of them, then, the first four equations have
n unknown variablesas;, as2, and then — 2 ¢; that

wheregs () is giving by (13).

5. CENTER MANIFOLD

Consider the system (19-20), we seek a center man-
ifold » : R? — R"2, such thaty = h(x), with
h(0) =0, Dh(0) = 0 and

Oh

@) (Tt )

(Jsh(z) + ga() ---) = 0.(21)

From (13),

JsQ( aﬁ(z)JHx

) - ox
1 0%

g21(x)

ga2(z) =

§2m—2(x)

x
1 T829 plg )

pn72(33)
Wherepi(:c) = pil.’bi + pi2T1x2 + pl-gxg, then
§2i(2) = ginai + giow122 + giza3,

with g;1 = pi1 + Xibs, giz = Pi2 + 2wod;, and

are implicit in thegy;. The next hypothesis ensure us 9gi3 = Pi3-

one solution of the subsystem of four equations with then, ifh; (z) =

n unknown variables.

(H1) There exist,, j., k., such that

02 fr, (0,0)

A A et s 18

8zi7,(’)wj,,, # 0 ( )
for r = 1,2, wherej; # jo, andi; # is O

k1 # ko.
Summarizing: The system

z=Jdgz+ f(z,w)
w=Jsw+ g(z,w)

is transformed, by the change of coordinates

z=x+ Pa(x) + Ps(x),
w=y+Q(z),
in the system
2
o°f
5200 (0,0)y + --- (29)
y=Jsy+ ga(x) +---, (20)

Jb:JHx—l—a:

= ;2% + Bix w2 + 323, Substi-
tuting in (21), we obtain that

o — ~ wo(gi2Ai + 2gi3wo) + gi1 (A + 2w3)

—gi2Ai +2(gi1 — g
g, = —92 +§1 9i3)wo 22)
5 — wo(gizAi — 2gi3wo) — gis(AF + 2w3)
' A ’
fori=1,...,n—2.

Then, the dynamics on the center manifold is giving
by

o0 f
0z0w

i =Jyr+a’ (0,0)h(x) + ---

where eacth;(x) is giving by (22).

6. THE FIRST LYAPUNOQV COEFFICIENT

From (15),



2 92 £,(0, 0,
Z azlﬁwj (@)
fk'zw(070)h’(x) = n72

-1 3225‘wj
but
n—2 n—2 59
Za [0.0), Za £#(0,0) )
; 0z;0w; 7 ~ z;0w; )7t
7j=1 J=1
n—2
a2fk(0,0)
+ ; Ozzawj ﬂj 12
n—2
+ (; 0z;0w; J 2
= Oékiﬁ + Briziza + %ﬁ%»
where
82fk(0 0)
Qi = Z . 90 Y
= 0z;0w;
n—2
92 11(0,0)
Bri = B
= 82L8wj J
n—2
(92]‘k(07 0)
Vi = Z g
= 621810]'
Therefore,
ha(z)
T zZw 0,0)h ("1 ) )
Faw(0,0m() = ( 32
where
hi(x) = anal + (B + cuz)aies
+(Vi1 + Bio)T123 + Yio T3
From (2),
R, =0, and

Ry =6(a11 + 711) + 2(a22 + 711 + Bz + Ba1),

then, the first Lyapunov coefficient is giving by

1
= (3(a11 +v11) + @22 + v11 + Bz + F21)

a:8(

7. CONCLUSIONS

The first Lyapunov coefficient has been calculated for
a particular class of nonlinear systems. This approach
introduce a change of coordinates to simplify the dy-
namics on the center manifold, in a such way that diss-
appear the quadratic terms. This method permits some
degree of manipulation in the dynamic equations, that,
surely it is possible to find simpler expressions for the
dynamics on the center manifold.
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