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Abstract: We introduce a theoretical framework for the dynamic sensor coverage
problem for the case with multiple discrete time linear stochastic systems placed
at spacially separate locations. The objective is to keep an appreciable estimate of
the states of the systems at all times by deploying a few limited range mobile
sensors. The sensors implement a Kalman filter to estimate the states of all
the systems. In this paper we present results for a single sensor executing two
different random motion strategies. Under the first strategy the sensor motion is
an independent and identically distributed random process and a discrete time
discrete state ergodic Markov chain under the second strategy. For both these
strategies we give conditions under which a single sensor fails or succeeds to solve
the dynamic coverage problem. We also demonstrate that the conditions for the
first strategy are a special case of the main result for the second strategy. Copyright
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1. INTRODUCTION

Sensor coverage is the problem of deploying mul-
tiple sensors in an unknown environment for the
purpose of automatic surveillance, cooperative ex-
ploration or target detection. Recent years have
witnessed increased interest among the commu-
nication, control and robotics researchers in the
area of mobile sensor networks. Each individual
node in such a network has sensing, computa-
tion, communication and locomotion capabilities.
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When the environment is rapidly changing finding
an efficient deployment strategy becomes a key
issue for any application.

Coverage can be static (fixed sensors) or dynamic
(mobile sensors). Static sensor coverage is desir-
able if the area to be covered is less than the union
of the ranges of the sensor nodes. Static sensor
coverage problem has been considered in (Cortes
et al., 2004) and in the references there in. The
dynamic sensor coverage becomes necessary when
a limited number of sensors is available and the
area of interest can not be covered by a static con-
figuration of sensors. There have been attempts to
empirically solve the dynamic coverage problem
using simulations and actual robots (Batalin and



Sukhatme, 2002) but a sound theoretical base is
still missing in the literature.

In this paper we consider N discrete time linear
systems located at different points in space. One
may think of dividing the uncertain area under
consideration using a grid and then these N
systems can be thought to represent the dynamics
of local environment change at the grid points. We
analyze the case when a single sensor is deployed.
The sensor maintains discrete time Kalman filter
estimates of the states of all the N systems. In
order to model the limited range of the sensor,
we constrain the sensor to receive measurements
only for the system where it is physically located
at that time instant. All the tools developed in this
paper can be applied to the case where multiple
grid points fall in the sensory range and hence
the sensor receives measurements from more than
one system. This extension requires only minor
modifications, and is left as a future research
direction.

For a system where the sensor is located, the
sensor implements both the time update and mea-
surement update laws of the Kalman filter. For
all the other systems for which the sensor did not
receive any measurements, only the time update
law is implemented. The motion of the sensor is
an i.i.d. random process under the first strategy
and a discrete time discrete state (DTDS) Markov
chain in the later strategy. For successful cover-
age the sensor needs to hop from one system to
another such that the error covariance matrices of
the estimates of states of all the N systems are
bounded at all times. Intuition tells us that the
sensor should spend more time at a location where
the environment is changing rapidly than at one
where the dynamics are relatively slow. The re-
sults we present in this paper satisfy this intuition.
A similar set of results, developed independently,
have been presented in (Gupta et al., 2004)

In Section 2. we describe the problem mathemat-
ically. In Section 3 and 4 we present success and
failure results for a single sensor moving according
to two different motion strategies. In Section 5, we
conclude and identify future research directions.

2. PROBLEM DESCRIPTION

Consider N independently evolving LTI systems,
whose dynamics are given by

{

xi,k+1 = Aixi,k + wi,k

yi,k = Cixi,k + vi,k

(1)

where xi,k, xi,k+1, wi,k ∈ R
ni and yi,k, vi,k ∈

R
mi , wi and vi are Gaussian random vectors

with zero mean and covariance matrices Qi and

Ri respectively and i takes values in the set
{1, 2, 3, · · · , N}. Let Sn(S+

n ) denote the set of
symmetric positive semidefinite(definite) matrices
of dimension n.

As already mentioned, the space to be covered
can be discretized using a grid and the above N
systems can be thought to represent the dynamics
of certain local variables at the grid points. These
variables can be temperature, barometric pressure
in case of weather monitoring, threat emergence
rate in case of surveillance, uncertain location of
adversaries and friends in a situational awareness
task and congestion measure at various routers in
the case of a network.

In reality the independent evolution of the sys-
tems assumption may not always hold, as the
dynamics of systems proximate in space may be
highly dependent or even coupled. The results for
the coupled environment case are under develop-
ment, but the basic intuition and insight into the
coverage problem remain the same.

There are N possible locations at which the sensor
can be at a given time. If the sensor is in state i
at time k it only has access to the measurement of
the ith system at that time. The state transitions
occur at a fixed time interval which is assumed to
be the same as the sampling period of all the N
systems without any loss of generality.

The sensor runs N Kalman filter recursions, one
for each of the N systems. For system i the time
update equations of the Kalman filter are imple-
mented at all time instants, whereas the measure-
ment update equations are implemented only at
those time instants when the sensor happens to
be at location i.

Let Sk be the stochastic process describing the
motion of the sensor. Sk takes values in the set
{1, 2, 3, · · · , N}. Let Ii,k be the indicator function
describing whether or not the sensor is at location
i at time k. Therefore Ii,k = 1 if and only
if Sk = i. We model the covariance matrix of
the measurement noise for the ith system in the
following manner.

V ar(vi,k) =

{

Ri, Ii,k = 1

σi
2I, Ii,k = 0

.

When the sensor is not at the location i no obser-
vation is made for system i and this corresponds
to the limiting case of σ → ∞. Following a similar
approach as in (Sinopoli et al., 2004) we get the
following Kalman filter equations:

x̂−
i,k+1 = Aix̂i,k (2)

P−
i,k+1 = AiPi,kAT

i + Qi (3)

x̂i,k+1 = x̂−
i,k+1 + Ii,k+1P

−
i,k+1C

T
i



× (CiP
−
i,k+1C

T
i + Ri)

−1
(yi,k+1 − Cix̂

−
i,k+1) (4)

Pi,k+1 = P−
i,k+1 − Ii,k+1P

−
i,k+1C

T
i

× (CiP
−
i,k+1C

T
i + Ri)

−1
CiP

−
i,k+1. (5)

Eq. (2) and Eq. (3) are the time update relations
for the estimate and the error covariance. It can
be clearly seen from Eq. (4) and Eq. (5) that the
measurement update is performed only when the
sensor is at location i.

Using the above equations the recursive relation
for the a priori error covariance matrix can be
written as

P−
i,k+1 = AiP

−
i,kAT

i + Qi − Ii,k+1AiP
−
i,kCT

i

× (CiP
−
i,kCT

i + Ri)
−1

CiP
−
i,kAT

i . (6)

For the rest of the paper we will drop the −
superscript from P−

i,k. An important observation is
that Eq. (6) is stochastic in nature due to presence
of the random variable Ii,k+1. We now have N of
these stochastic recursive equations, one for each
of the N systems. So to maintain an appreciable
estimate of the states of all N systems we would
want that limk→∞ IE[Pi,k] remains bounded for all
i.

Since both Ii,k+1 and Pi,k are random variables,
we know that

IE[Pi,k+1] = IE
[

IE[Pi,k+1|Pi,k]
]

(7)

where the inner expectation operator is over Ii,k+1

and the outer expectation is over Pi,k. Therefore

IE[Pi,k+1]

= IE[AiPi,kAT
i + Qi − ρi,k+1AiPi,kCT

i

× (CiPi,kCT
i + Ri)

−1
CiPi,kAT

i ] (8)

where ηi,k+1 = Pr[Ii,k+1 = 1|Pi,k].

Definition 1. We say that the dynamic sensor
coverage problem has been successfully solved if
the N limits

lim
k→∞

IE[Pi,k] , i ∈ {1, 2, · · · , N}

are finite for any set of initial conditions Pi,0 ≥ 0.

If there exists an i ∈ {1, 2, · · · , N} such that
limk→∞ IE[Pi,k] is unbounded for some Pi,0 ≥ 0,
then the sensors have failed to solve the dynamic
coverage problem.

Based on the above definition, we now present
success and failure results for two different sensor
motion strategies for a single sensor.

3. SK INDEPENDENT AND IDENTICALLY
DISTRIBUTED

Under this strategy at each time instant the sensor
chooses to visit location i with probability πi,

Fig. 1. Failure region

which is independent of the history of Sk. In this
case ηi,k+1 = Pr[Ii,k+1 = 1|Pi,k] = Pr[Ii,k+1] = πi.
So (8) reduces to

IE[Pi,k+1]

= IE[AiPi,kAT
i + Qi − πiAiPi,kCT

i

× (CiPi,kCT
i + Ri)

−1
CiPi,kAT

i ] (9)

Now this equation is exactly the same as the one
analyzed in (Sinopoli et al., 2004) for packet based
networks. The following two results easily follow.

Proposition 2. Consider the system in Eq. (1). Let
(Ai,

√
Qi) be controllable, (Ai, Ci) be detectable

and Ai be unstable for all i. The sensor motion is
governed by an i.i.d. distribution with Prob[Sk =
i] = πi. Now if

N
∑

i=1

1

α2
i

< N − 1 (10)

where αi is the spectral radius of Ai, then a
single sensor fails to solve the dynamic coverage
problem.

PROOF.

N
∑

i=1

1

α2
i

< N − 1 =⇒
N
∑

i=1

(

1 − 1

α2
i

)

> 1.

Therefore for any steady state probability vec-
tor π there exists an i s.t. πi < 1 − 1/αi

2.
Now from (Sinopoli et al., 2004) we know that
limk→∞ IE[Pi,k] is unbounded for some initial con-
dition Pi,0 ≥ 0. Thus a single sensor can not solve
the dynamic sensor coverage problem. 2

It can be seen that Eq. (10) is a measure of how
fast the systems evolve. In Fig. 1 the region above
the curve is where a single sensor fails to solve the
dynamic coverage problem for 2 systems. It should
be noted that if one system is evolving very slowly
then the sensor can tolerate very fast dynamics of
the other system before it fails. In such a scenario
the sensor distributes its time, spending relatively
large amount of time observing the fast system.

We now give some conditions under which its
possible to solve the dynamic sensor coverage



problem by employing a single sensor. Before that
we need to carry over a few terms from (Sinopoli
et al., 2004).

For real symmetric Y , define Ψi(Y,Z) as

Ψi(Y,Z) =




Y
√

π(Y Ai + ZCi)
√

1 − πY Ai√
π(A′

iY + C ′
iZ

′) Y 0√
1 − πA′

iY 0 Y





and πu
i as

πu
i = arg min

π

(

∃0 ≤ Y ≤ I, Z | Ψi(Y,Z) > 0
)

.

Proposition 3. Let sensor motion be an i.i.d. pro-
cess with distribution π. If

∑N

i=1 πu
i < 1 and if

π lies in the convex hull of the N points, ai,
i = 1, · · · , N , defined as

ai =

[

πu
1 · · · πu

i−1 1−
∑

k 6=i

πu
k πu

i+1 · · · πu
N

]T

,

then the dynamic coverage problem is solved.

PROOF. Since π lies in the convex hull of the
above points, therefore there exist βi ≥ 0,

∑

i βi =
1, s.t.

πj = πu
j

∑

i6=j

βi + βj(1 −
∑

i6=j

πu
i )

= πu
j (1 − βj) + βj(1 −

∑

i6=j

πu
i )

> πu
j (1 − βj) + βjπ

u
j

= πu
j

Now it was shown in (Sinopoli et al., 2004) that if
πi > πu

i then E[Pi,k] remains bounded as k → ∞
for all initial conditions Pi,0 ∈ Sni

, and hence the
result follows. 2

4. SK VARIES ACCORDING TO AN
ERGODIC MARKOV PROCESS

In this section we will let Sk be a discrete time
discrete state DTDS Markov process with transi-
tion probability matrix T . Tij is the probability
that the sensor will be at location j at time k + 1
given that it is in location i at time k. If πi,k is
the probability of finding the sensor in location i
at time k, then the column vector πk follows the
recursion

πT
k+1 = πT

k T
This kind of model is better for sensor motion
because there may be physical constraints on the
motion of the sensor. For example the sensor
may not be able to move between two systems
located far away in space in one time interval.
Such restrictions can be imposed by making the

corresponding transition probability between such
states equal to zero.

Markov chains have been used earlier for search
and surveillance problems in the operations re-
search community (Jeffcoat, 2004).

Under the ergodicity assumption we know that
the Markov chain Sk has a unique steady state
distribution and limk→∞ πk = π for all initial
probability distributions. (Brémaud, 1999)

For the analysis of the Markov chain case we
define the following relations for X ∈ Sn.

h(X)
4
= AXA′ + Q (11)

f(X)
4
= AXC ′(CXC ′ + R)

−1
CXA′ (12)

g(X)
4
= h(X) − f(X) (13)

In the rest of this paper hi(X), gi(X) and fi(X)
will refer to the same functional forms as described
above but with parameters of system i. For exam-
ple hi(X) = AiXA′

i +Qi for i ∈ {1, 2, · · · , N}. At
this point we would like to remind the reader that
under the estimation scheme described in section
2. the recursion of the error covariance matrix of
location i can be written in terms of hi and gi as,

Pi,k+1 =

{

hi(Pi,k) Sk 6= i
gi(Pi,k) Sk = i

(14)

We now present some preliminary results required
to prove our main Theorem.

Lemma 4. If X ≥ Y , then g(X) ≥ g(Y ) and
h(X) ≥ h(Y ).

PROOF. See (Sinopoli et al., 2004). 2

Lemma 5. If U ∈ S
+
n and V ∈ Sn, then ∃ a scalar

t ≥ 0 such that tU − V ∈ Sn.

PROOF. By Weyl’s Theorem (Horn and John-
son, 1985), t ≥ 0

λmin(tU − V )≥ λmin(tU) + λmin(−V ),

= tλmin(U) − λmax(V ),

where λmin is the minimum eigenvalue and λmax

is the maximum eigenvalue So any t ≥ λmax(V )
λmin(U)

proves the Lemma. Such a t always exists because
λmin(U) > 0. 2

Lemma 6. g(X) ≥ Q,∀X ≥ 0 and if C is invert-
ible then, g(X) ≤ AC−1RC

′−1A′ + Q,∀X ≥ 0.

PROOF. Clearly g(X) ≥ g(0) = Q. For any
X ≥ 0, as C−1RC

′−1 ∈ S
+
n , by Lemma 5, ∃t ≥ 0

such that



X ≤ tC−1RC
′−1,

g(X)
a

≤ g(tC−1RC
′−1),

= t/(t + 1)AC−1RC
′−1A′ + Q,

≤AC−1RC
′−1A′ + Q,

by using Lemma 4 in a. 2

Lemma 7. (a) If A is unstable then

lim
k→∞

hk(X0) = ∞, ∀X0 ∈ Sn.

(b) If the spectral radius of A, α < 1 and the pair
(A,

√
Q) is observable, then the Lyapunov

difference equation Xk+1 = h(Xk) converges
to a unique positive semidefinite solution T >
0 as k → ∞. In other words the following
infinite sum

lim
k→∞

[

AkX0A
′k +

k−1
∑

m=0

AmQA′m

]

is a finite positive definite matrix T > 0 for
all X0 ≥ 0, where T = h(T ).

PROOF. See (Gajić and Qureshi, 1995) 2

The following probabilities will be useful in our
analysis. The derivation is relatively simple and
we omit the proofs due to space constraints. Tii is
the ith diagonal entry of the transition probability
matrix and πi is the steady state probability of
finding the sensor at location i.

ρi,hh = Pr[Sk+1 6= i|Sk 6= i] =
1 − πi(2 − Tii)

1 − πi

ρi,hg = Pr[Sk+1 = i|Sk 6= i] = 1 − ρi,hh

ρi,gg = Pr[Sk+1 = i|Sk = i] = Tii

ρi,gh = Pr[Sk+1 6= i|Sk = i] = 1 − ρi,gg (15)

Theorem 8. (a) Let (Ai, Ci) be detectable and
(Ai,

√
Qi) be observable, and if the sensor

motion is described by an ergodic Markov
chain Sk then the sensor fails to solve the
Dynamic Coverage problem if at least one of
the following conditions hold.

ρi,hh =
1 − πi(2 − Tii)

1 − πi

>
1

αi
2
, i ∈ 1, 2 · · ·N

where αi is the spectral of Ai.
(b) If in addition all Cis are invertible then the

sensor solves the Dynamic Coverage problem,
if all the following conditions hold

ρi,hh =
1 − πi(2 − Tii)

1 − πi

<
1

αi
2
, i ∈ 1, 2 · · ·N

PROOF. For simplicity we prove this result for
the case when the initial probability distribution
of the sensor is the same as the steady state dis-
tribution. In practice if one knows the transition

Table 4: Illustration of how to find

the lower bound
Probabilities Values Lower bounds

(1 − πi)ρ
2

i,hh
h3

i
(Pi,0) h3

i
(Pi,0)

πiρi,ghρi,hh h2

i
gi(Pi,0) h2

i
(Qi)

(1 − πi)ρi,hgρi,gh higihi(Pi,0) hi(Qi)

πiρi,ggρi,gh hig
2

i
(Pi,0) hi(Qi)

(1 − πi)ρi,hhρi,hg gih
2

i
(Pi,0) Qi

πiρi,ghρi,hg gihigi(Pi,0) Qi

(1 − πi)ρi,hgρi,gg g2

i
hi(Pi,0) Qi

πiρ
2

i,gg
g3

i
(Pi,0) Qi

probability matrix of a Markov chain, implement-
ing such a constraint is easy.

(a) Pi,k+1 can take 2k+1 different values with
different probabilities for a given value of Pi,0

depending on the values of S1, S2 · · ·Sk+1.
From Lemma 6 we know that gi(X) ≥ Qi,
and from Lemma 4 we know that hi is an
increasing function. Therefore

E[Pi,k]≥ πiQi +
(1 − πi)

ρi,hh

ρk
i,hhhk

i (Pi,0)

+
πiρi,gh

ρi,hh

k−2
∑

m=0

ρm+1
i,hh hm+1

i (Qi) (16)

To illustrate how we obtain the above in-
equality we consider the case when k = 3,
in table 4. The right hand side of the above
equation is the inner product of the 1st and
3rd rows of the table. Using Lemma 7 the
sensor would fail to solve the dynamic cover-
age problem, if the following condition holds
for at least one system i.

ρi,hh =
1 − πi(2 − Tii)

1 − πi

>
1

αi
2

(b) If Cis are invertible then we can find an upper
bound using Lemma 6

E[Pi,k]≤ πiMi +
(1 − πi)

ρi,hh

ρk
i,hhhk

i (Pi,0)

+
πiρi,gh

ρi,hh

k−2
∑

m=0

ρm+1
i,hh hm+1

i (Mi) (17)

where Mi = AiC
−1
i RiC

′
i
−1

A′
i + Qi Now the

first term on the right hand side is finite.
From Lemma 7 the second term is finite as
k → ∞ if ρi,hhαi

2 < 1. The third term
after summing the geometric series can be
rewritten as

πiρi,gh

ρi,hh

[

k−1
∑

m=1

Ãm
i Mi(Ã

m
i )′

+
ρi,hh

1 − ρi,hh

k−2
∑

m=0

Ãm
i Qi(Ã

m
i )′(1 − ρk−1−m

i,hh )

]

where Ãi =
√

ρi,hhAi. Again using Lemma 7
we know that this term is finite as k → ∞ if
ρi,hhαi

2 < 1. 2



Fig. 2. Sk is a markov process, N = 2.
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Fig. 3. Bounds on error covariance.

Note that for the N = 2 case, π1 = (1−T22)/(2−
T22 − T11) and π2 = 1 − π1, where Tii ∈ (0, 1)
for ergodicity. It can be easily verified using (15)
that ρ1,hh = T22 and ρ2,hh = T11. Therefore the
instability region from Theorem 8 is the shaded
region in Fig. 2. Now a 2 state Markov chain is an
i.i.d. distribution for the case when T11 + T22 = 1.
Now we can see from Fig. 2 that if 1/α2

1 +1/α2
2 <

1, then the point P lies below the line and thus
the dynamic coverage problem cannot be solved
by an i.i.d. sensor motion algorithm. This shows
that Proposition 2 is a special case of Theorem 8.

Example 1. Consider 2 scalar systems with pa-
rameters A1 = 1.25, C1 = 0.2, R1 = 2.5, Q1 = 20,
A2 = 1.7, C2 = 0.4, R2 = 2 and Q2 = 10. The
quantity 1/α2

1 + 1/α2
2 = 0.986 < 1, therefore an

i.i.d. sensor motion strategy will not be able solve
the dynamic coverage problem, but a Markov
chain strategy with the following transition prob-
ability matrix

T =

[

0.3 0.7
0.4 0.6

]

solves the coverage problem with the expected
error covariance contained between the lower and
upper bounds as shown in Fig. 3.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we define the dynamic sensor cover-
age problem. We have considered a simple case in

which N spatially separated linear systems whose
dynamics are decoupled have to be observed by a
single mobile sensor. Due to the finite range of the
sensor, it can make measurements for a particular
system, only if it happens to be at that system.
We have modeled the motion of the sensor as an
iid process and as an ergodic Markov chain.

There are several avenues of research that this
paper opens up. The most immediate one is the
introduction of feedback. It should be noted that
even though this paper gives success and failure
bounds on probabilities for random sensor motion
algorithms, it does not talk about how to change
the motion algorithm based on the uncertainty
profile in the space. The question of “Where to

move?” based on the confidence in estimates, re-
quires further analysis. Constructive proceedures
for an appropriate transition probability matrix,
respecting physical motion constraints between
spacially separate locations need to be developed.

Other research directions that we are currently
pursuing are solving the coverage problem when
the dynamics of the environment are coupled and
dependent at different locations and the dynamic
coverage problem with multiple sensors.
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