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Abstract: A rendezvous problem for a team of autonomous vehicles that is com-
municating through quantized channels is considered. Communication topologies
and feedback control law are presented that solves the rendezvous problem in the
sense that a meeting point for the vehicles is practically stabilized. In particular,
it is shown that uniform quantizers can sometimes be replaced by logarithmic
quantizers and thus reduce the need for communication bandwidth.
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1. INTRODUCTION

Interplay between coordination and communi-
cation is important in many multi-vehicle sys-
tems, e.g., car platoons on automated high-
ways (Varaiya, 1993), formations of autonomous
underwater vehicles (de Sousa and Pereira, 2002),
and multi-robot search-and-rescue missions
(Speranzon and Johansson, 2003). Constrained
communication between vehicles suggest the de-
ployment of distributed (local) control strate-
gies (Lin et al., 2003; Saber and Murray, 2003). In
many cases not only the communication topology
is important, however, but also the amount of
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data being transmitted. Therefore, in this paper
we study multi-vehicle control under quantized
communication. The problem is related to the
stabilization of linear plants with quantized con-
trol, which has recently been extensively studied,
see (Fagnani and Zampieri, 2003) and references
therein.

The main contribution of this paper is to illus-
trates how communication topologies based on
uniformly and logarithmically quantized commu-
nication influence the solution to a multi-vehicle
rendezvous problem. A team of autonomous ve-
hicles with only local position information is to
meet under minimum communication capabilities.
We prove the existence of several classes of solu-
tions to this rendezvous problem. In particular, we
emphasize that uniform quantizers can sometimes



be replaced by logarithmic quantizers and thus
reduce the need for communication bandwidth.

The outline of the paper is as follows. The ren-
dezvous problem is defined in Section 2. Illustra-
tive two-vehicle cases are studied in detail in Sec-
tion 3. Teams of three and more vehicles are then
considered in Section 4. Convergence properties
are investigated through simulations in Section 5.
Some conclusions are given in Section 6.

2. PROBLEM FORMULATION

Consider n ≥ 2 vehicles moving in a plane, with
dynamics described by the discrete-time system

x+ = x + u (1)

y+ = y + v (2)

where x = (x1, . . . , xn)T ∈ X ⊂ R
n and y =

(y1, . . . , yn)T ∈ Y ⊂ R
n, so that (xi, yi) denotes

the position of vehicle i with respect to a fixed
coordinate system. Let U ⊂ R

n and V ⊂ R
n

denote the set of control values. The controls
u = (u1, . . . , un) and v = (v1, . . . , vn) we are
considering are feedback maps from the corre-
sponding state-space X and Y, respectively. Since
the control of the x- and y-coordinates are inde-
pendent, we only consider x in the sequel.

2.1 Quantized communication

We further restrict the communication by impos-
ing that communicated data are quantized. In
particular, uniform and logarithmic quantizations
are considered. Recall the following definitions of
scalar uniform and logarithmic quantizers.

Definition 1. Let δu be a positive parameter. A
uniform quantizer is a map qu : R → R such that

qu(x) = δu

⌊
x

δu

⌋

.

Notice that the error due to the quantization of a
variable x is bounded by δu i.e.,

|qu(x) − x| ≤ δu. (3)

Definition 2. Let δ` be a positive parameter. A
logarithmic quantizer is a map q` : R → R such
that

q`(x) = exp(qu(ln x)).

The quantization error for a logarithmic quantizer
is bounded as

|ql(x) − x| ≤ δ`|x|. (4)

Notice that the parameter δ` depends on δu

through the following expression

δ` = 1 − e−δu .

We are interested in how communication topology
and quantization of transmitted data influence the
performance of the multi-vehicle system. There-
fore, we consider classes of maps Ψδ composed of
various configurations of uniform and logarithmic
quantizers. For simplicity, we suppose that all
quantizers are parameterized in a single quanti-
zation parameter δ.

2.2 Rendezvous

We are interested in the convergence to a multi-
vehicle formation under quantized communication
topology. Especially, we pose the following ren-
dezvous problem.

Definition 3. A feedback law (u) = g(x) solves
the rendezvous problem if for all initial states
x0 ∈ X , and for all ε > 0, there exists δ = δ(ε)
such that

xi − xj → Bε

with i < j and i, j = 1, . . . , n.

A solution to the rendezvous problem is able to
make the vehicles converge arbitrarily close to a
meeting point. Note that the meeting point is not
pre-specified, but is only restricted to be close to
the hyperplane x1 = · · · = xn.

If the communication is not quantized, then the
rendezvous problem is readily solved also in the
case with no communication. In this case, a de-
centralized deadbeat controller provides a solu-
tion. We consider such a solution trivial, since it
enforces the vehicles to meet in the origin. It is in-
stead desirable to have the meeting point close to
the initial position of the vehicles. In next section,
we present a linear quadratic control problem for
the two-vehicle system that address this problem
and that also suggest a natural extension to the
quantized case.

3. TWO-VEHICLES RENDEZVOUS

Let z = x1 − x2 be the output of the system (1)
when n = 2. In order to avoid aggressive solution
such as the dead-beat control we need to penalize
the control input. Thus we consider an LQ prob-
lem with cost

J(u1, u2) =
∞∑

t=0

z2 + u2
1 + u2

2

=

∞∑

t=0

(x1 − x2)
2 + u2

1 + u2
2.

The resulting state feedback u = Kx gives the
closed-loop system

x+
1 = x1 − k(x1 − x2)

x+
2 = x2 − k(x2 − x1), (5)



with k = 1/(1 +
√

3). It corresponds to

z+ = (1 − 2k)z,

which is asymptotically stable (in general for 0 ≤
k ≤ 1), for the optimal choice of k. This means
the difference x1−x2 tends to zero asymptotically.
Note that (5) it is only stable, thus the two
vehicles, in general, will rendezvous to a point
different from the origin. The linear feedback
K computed above is used to design controllers
when the communication topology is composed of
various configurations of uniform and logarithmic
quantizers.

3.1 Uniform-uniform quantization

Proposition 4. The feedback

u1 = = −k
(
x1 − qu(x2)

)

u2 = = −k
(
x2 − qu(x1)

)
(6)

solve the rendezvous problem

Proof. Let us consider the difference z = x1 −
x2. We introduce the following Lyapunov function
V(z) = |z|. Thus the increment ∆V(z) = V(z+)−
V(z) = |z+| − |z| is such that

∆V(z) = |z − 2kz − qu(x2) + qu(x1)| − |z|
≤ −2k|z| + 2kδ

where we have used (3). Hence ∆V(z) < 0 if |z| >
δ. If we choose δ = ε, then z will asymptotically
converge to Bε. Thus the feedback (6) solves the
rendezvous problem. �

Notice that instead of posing a deterministic LQ
problem, we can consider a stochastic LQ prob-
lem where the quantization error of the uniform
quantizer is approximated by additive white noise,
namely

qu(x) = x + e

and where e is white noise uniformly distributed
in [−δ, δ] and Ee2 = δ2/12. This approach yields
the same feedback control as above.

3.2 Uniform-logarithmic quantization

Proposition 5. The feedback

u1 = −k q`

(
qu(x1) − x2

)

u2 = −k
(
x2 − qu(x1)

)
(7)

solve the rendezvous problem

Proof. Let us consider the difference z = x1 − x2.
As in the proof of Proposition 4,

∆V(z) = |z − k(q`(qu(x1) − x2) − x2 + qu(x1))| − |z|
≤ −2k|z| + k|z|δ + 2kδ + kδ2
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Fig. 1. For large quantization step δ the value of
k1(δ) tends to zero while the value of k2(δ)
tends to the value k2(1), obtained solving an
optimal control problem with n = 1.

where we used (4). ∆V(z) < 0 if

|z| >
2δ(1 + δ)

2 − δ
.

If we choose δ = −1/2 − ε/4 −
√

4 + 20ε + ε2/4,
z converges asymptotically to Bε. Thus the feed-
back (7) solves the rendezvous problem. �

The effect of the logarithmic quantization can be
approximate as multiplicative noise acting on the
system. If, for simplicity, we neglect the presence
of uniform quantization, then we have

x+
1 = x1 + k1(x1 − x2)(1 + e)

x+
2 = x2 + k2(x2 − x1)

where e is white noise uniformly distributed in
[−δ, δ] and variance Ee2(t) = δ2/12. Let z = x1 −
x2, we consider an optimal control problem with
cost

J(u1, u2) = E

∞∑

t=0

z2 + u2
1(1 + e) + u2

2

= E

∞∑

t=0

z2 + (u1, u2)



1 +
δ2

12
0

0 1





︸ ︷︷ ︸

R

(
u1

u2

)

and dynamics

z+ = z + (11)
︸︷︷︸

B

(
u1

u2

)

+ u1e.

The feedback law is linear and given by

K = (R + BT PB + Ω(P ))−1BT P

where P is the solution of a generalized Riccati
difference equation and Ω(P ) is the following
matrix

Ω(P ) =



1 +
δ2

12
0

0 0



 ,

see (Beghi and D’Alessandro, 1998). The optimal
feedback is

k1(δ) = k + aδ2 + O(δ4)

k2(δ) = k + bδ2 + O(δ4)



where k is the same value computed solving the
deterministic optimal control problem and a, b are
two real values an order of magnitude less than
k. If we plot k1(δ) and k2(δ) we observe that for
large value of δ the gain k1(δ) tends to zero, see
Figure 1, meaning that the first vehicle, whose
input depends on the logarithmically quantized
value of the relative distance x1 − x2, does not
move since x1−x2 is known with very large error.
On the other hand the second vehicle, which rely
on a perfect knowledge of the position of the first,
applies a large input in order to move towards it
(see Figure 1). The value of the gain for δ = 1 is

k2(1) =
1 +

√
5

3 +
√

5

which the optimal gain static gain when we have
a single vehicle.

3.3 Logarithmic-logarithmic quantization

An interesting communication configuration is the
one where the data is exchanged over logarithmic
quantized channel. We assume also here that the
uniform quantization can be neglected. For this
communication configuration we can show that for
a particular choice of k in the interval 0 ≤ k ≤ 1
the two vehicles do not rendezvous in average.
Also in this case we model the logarithmic quan-
tization as a multiplicative noise.

Proposition 6. Consider feedback laws

u1 = −kq`(q`(x1) − x2)

u2 = −k(x2 − q`(x1))

with k = 1/2, then the two vehicle do not
rendezvous in average.

Proof. Modeling the quantization as multiplicative
noise we have

x+ =

(
1/2 1/2
1/2 1/2

)

x + e1

(
−1/2 0
1/2 0

)

x

+ e2

(
−1/2 1/2

0 0

)

x + e1e2

(
−1/2 0

0 0

)

x

where we assume that e1 and e2 are random
variables uniformly distributed and independent.
Let

Q(t) = E
(
x(t)xT (t)

)
=

(
Q1(t) Q2(t)
Q2(t) Q3(t)

)

then we can study the stability properties of

P (t + 1) = A(λ)P (t) (8)

E(z2) = (1 − 1)P (t)

(
1
−1

)

= (1 − 2 1)
︸ ︷︷ ︸

C

P (t)

(9)

where P (t) = (Q1(t), Q2(t), Q3(t)) and where we
assume E(e2

1) = E(e2
2) = λ. If we consider

q(z) = det
(
zI − A(λ)

)

and we study the polynomial p(s) = q
(
(1 +

s)/(1 − s)
)

we find out with Routh-Hurwitz that
the polynomial p(s), and thus q(z), is not stable.
Since the system (9) is observable, then we can
conclude that system (9) is an unstable system,
meaning that the variance increases, and thus the
two vehicles are likely to not rendezvous. �

4. N -VEHICLES RENDEZVOUS

For any pair of vehicles (i, j), i < j we define an
output variable wi,j = xi − xj . Let w be a vector
collecting all subset of such output variables.
Similar to the two vehicles case we consider an
optimal control problem with cost function

J(u) =

∞∑

t=1

wT w + uT u

=
∞∑

t=1

xT WT Wx + uT u. (10)

Note the matrix W T W is singular, it is anyway
possible to regularize the problem. Consider any
subset z = {zi,j} of w. Let Z ∈ R

(n−1)×n such
that z = Zx. Then there exists a matrix L such
that

w =

(
I
L

)

z.

Minimizing the cost function (10) subject to the
dynamics (1) is equivalent to minimizing the cost

J(u) =

∞∑

t=1

zT (I + LT L)z + uT u (11)

subject to dynamics z+ = z + Zu. The optimal
control law for the system (1) is such that u =
KZx with 3

KZ = −k(nI − 1), k =
n +

√
n2 + 4n

n(2 + n +
√

n2 + 4n)
.

(12)

The matrix W can be interpreted as the incident
matrix of a complete digraph G = (V,E), with
card(V ) = n, where edges between vertices repre-
sent communication between vehicles. The matrix
Z is the incident matrix of a directed tree in the
graph G. Each pair of edges (i, j) and (j, i), i < j
represents a quantized communication channel be-
tween vehicle i and vehicle j.

3 The matrix 1 represent the n × n unit matrix.
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Fig. 2. Three different communication topologies for n = 3. Solid lines denote uniformly quantized
communication channels, and dashed lines logarithmically quantized communication channels.

4.1 Uniform quantization

Proposition 7. The feedback

ui = −k(n − 1)xi + k
n∑

j=1 j 6=i

qu(xj),

with k as in (12), solves the rendezvous problem.

Proof. Similar to the proof of Proposition 8. �

4.2 Uniform-logarithm quantization

Since the logarithmic quantized channels are more
efficient, because less bits need to be transmitted
compared with uniform quantized channels, we
would like to have a communication topology
with as many link as possible. Let n = 3, we
consider topologies where the digraph G has a tree
representing uniformly quantized channels and
the remaining edges representing logarithmically
quantized channels. Since we have tree vehicles
the number of possible directed trees, up to a
re-labeling of the vertices are three as shown in
Figure 2.

Proposition 8. Let us define the following vectors
corresponding to the three different topologies
shown in Figure 2,

c1
1 =

(
q`(qu(x1) − x3), q`(qu(x2) − x3)

)

c1
2 =

(
q`(qu(x1) − x3), q`(qu(x2) − x3)

)

c1
3 =

(
qu(x1), qu(x2)

)

c2
1 =

(
q`(qu(x1) − x2), q`(qu(x1) − x3)

)

c2
2 =

(
qu(x1) − x2), q`(qu(x1) − x3)

)

c2
3 =

(
qu(x1), q`(qu(x1) − x2)

)

c3
1 =

(
q`(qu(x1) − x2), q`(qu(x2) − x3)

)

c3
2 =

(
qu(x1), q`(qu(x2) − x3)

)

c3
3 =

(
q`(qu(x1) − x2), qu(x2)

)
.

The feedback control laws

uj
i (t) = −kj

i,1c
j
i,1 − kj

i,2c
j
i,2 ∀i = 1, . . . , 3 ∀j = 1, . . . , 3

(13)

with [kj
i,1, k

j
i,1], for i = 1, 2, 3 and j = 1, 2, 3, ith

row of the matrix K defined in (12) with n = 3,
solve the rendezvous problem.

Proof. Assume the communication topology is the
first one (see Figure 2). We prove the statement
for such case, the other can be proved in a similar
way. In this case

K = k





2 −1
−1 2
−1 −1





We introduce the Lyapunov function V(zi,j) =
|zi,j |, with zi,j ∈ {z1,3, z2,3} Let ∆V(zi,j) =
V(z+

i,j) − V(zi,j), then we have

∆V(z1,3) ≤ −3k|z1,3| + 2kδ2 + 2kδ|z1,3| + kδ2

+ kδ|z2,3| + 3kδ

∆V(z2,3) ≤ −3k|z2,3| + 2kδ2 + 2kδ|z2,3| + kδ2

+ kδ|z1,3| + 3kδ.

Thus we have ∆V(z1,3) < 0 and ∆V(z2,3) < if

|z1,3| >
3δ(1 + δ) + δ|z2,3|

3 − 2δ

|z2,3| >
3δ(1 + δ) + δ|z1,3|

3 − 2δ
.

For any ε > 0 there exists δ = −1/2 − ε/2 +√
1 + 6ε + ε2/2 such that z1,3 and z2,3 asymptot-

ically converges to the ball Bε. Thus the feed-
back (13) solve the rendezvous problem. �

5. SIMULATION RESULTS

A simulation study have been done for the three-
vehicle case. In Figure 3 with are shown the tra-
jectories of the three vehicles for the three dif-
ferent communication topologies of Figure 2. In
dotted line is shown the trajectory of the vehicles
when the communication is without quantization
(perfect). In solid line is shown the trajectories
of the vehicles communicating using topology 1,
in dashed line the trajectories when topology 2 is
used and in dashed-dotted the trajectories when
topology 3 is used. We can notice the three ve-
hicles rendezvous (at the point marked with a
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Fig. 3. Trajectories for three vehicles for the three
different topologies of figure 2. In the simu-
lations we assumed the uniform quantization
error equal to zero.

square, diamond and star), but trajectories are
very different depending on the topology. If we
consider the time evolution of z1,2 = x1 − x2 and
z2,3 = x2 − x3 and shown in Figure (4(a)) (in
Figure (4(b)) are shown similar time evolutions
for the relative distances in the y-coordinate),
we can notice that vehicles communicating using
the topology 1 (cf., Figure 2) rendezvous slowly
than when communicating using the other two
topologies. This behavior can be explained con-
sidering that the third vehicle knows with higher
accuracy the position of the two vehicles V1, V2

while these two last have a very rough information
of their relative distance to the vehicle V3, due
to the logarithmically quantized communication.
This results in slower performance, compare to the
remaining topologies.

6. CONCLUSIONS

In this paper we have considered the “multi-
vehicle” rendezvous problem under quantized
communication topologies. In particular results
have been derived for two and three vehicles sys-
tems for different topologies and various config-
urations of uniform and logarithmic quantizers.
Some simulation results showing the behavior of
the different topologies have been studied in order
to verify the results. The trajectories followed by
the vehicles seem to depend upon the communi-
cation topology used.
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