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Abstract: The present work addresses the identification of third-order Volterra models
from input-output process data. Building on previous studies regarding input sequence
design for third-order Volterra models (Soni and Parker, 2004), a new reduced-length
sequence is designed to identify third-order sub-diagonalkernels. This input sequence
leads to a 30% reduction in the data required to accurately estimate the sub-diagonal
kernel. Identification of second-and third-order off-diagonal kernels is carried out using
a random binary sequence (RBS). These input sequences exploit the third-order Volterra
model structure and use the prediction error variance expression as a measure of model
fidelity. The utility of the proposed approach is demonstrated on an isothermal polymer-
ization reactor case study. The reduced length sequence shows excellent performance and
results in an 47% improvement in the sum-squared error (SSE)value of the third-order
sub-diagonal kernel.Copyright ©2005 IFAC
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1. INTRODUCTION

One of the main impediments to the widespread
implementation of nonlinear model based control
schemes in industry is the availability of suitable non-
linear models (Lee, 1999). A number of researchers
have focused on fundamental nonlinear model devel-
opment (Zamamiriet al., 2002; Crowleyet al., 2000).
While these models provide physical insight and have
model parameters with physical correspondence, these
models are time-consuming to develop and often have
a high state dimension. This complexity in the system
model manifests directly in the controller design and
implementation which may be computationally inten-
sive. Since theoretically achievable controller perfor-
mance in a model based control scheme is directly
related to model quality (Morari and Zafiriou, 1989),
control-relevant nonlinear models are essential. An
alternative to the use of fundamental models is to em-
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ploy an empirical, or black-box, model. In empirical
modeling, a mathematical model structure is chosen
and model parameters are calculated to best fit the
process input-output behavior. Since these models are
based only on input-output data, they are compara-
bly easier to develop. However the model parameters
often do not have any physical correspondence. In
spite of this limitation, a vast majority of industrial
model predictive control (MPC) algorithms employ
empirical dynamic models (Qin and Badgwell, 1999).
Hence, nonlinear empirical dynamic model identifi-
cation is an academically as well as an industrially
relevant problem.

The choice of the input signal is one of the primary de-
sign elements in a system identification scheme. The
chosen input sequence should be persistently exciting
to elicit sufficient output response in order to allow
identification of the parameters in the model structure.
It is also desired to be plant-friendly, such that it pro-
vides enough excitation to identify the model param-
eters without causing excessive actuator movement,



and without causing the plant to deviate significantly
from its nominal operating point. The input sequence
must also be as short as possible so as not to interfere
with the nominal plant operation. The metric used to
analyze plant-friendliness in this work is the friendli-
ness factorf , as reported in (Parkeret al., 2001). An
alternative approach is to use multisine signals with
a goal of minimizing the crest-factor (ratio of the`∞
norm of the input to its̀2 norm). The multisine signals
can be designed to emphasize the frequency region of
interest, and minimization of the crest factor improves
the signal to noise ratio of the output thereby making
the sequence plant friendly (Braunet al., 2002). In the
context of this work input signals are designed with
a goal of minimizing actuator wear due to frequent
transitions in the input sequence.

2. THIRD-ORDER VOLTERRA MODELS

The general form of the Volterra model is given as:

y(k) = h0 +
N

∑
i=1

M

∑
j1=1

· · ·
M

∑
jN=1

hi( j1, ..., jN)u(k− j1) · · ·u(k− jN) (1)

In this equation,N is the model order andM is
the model memory, the duration over which the past
inputs have a significant effect on the current out-
put, y(k). The Volterra model kernels are given by
hi( j1, ..., jN) and this model is capable of capturing
a variety of nonlinear systems behavior (Doyle IIIet
al., 1995; Seretis and Zafiriou, 1997). An example
is the ability to capture asymmetric output responses
to symmetric changes in the input; this behavior is
shown by many chemical engineering systems includ-
ing reactors and distillation columns. The identifica-
tion problem involves designing input sequences that
excite the Volterra model kernels and identifying the
same from the resultant input-output data. One ap-
proach used to estimate the Volterra kernels is the
cross-correlation method (Doyle IIIet al., 1995; Pear-
son et al., 1995). Cross-correlation is essentially a
statistical technique which uses the interaction be-
tween the input and output of a system to identify the
Volterra kernels. Ann+ 1-level input sequence (at a
minimum) is required to identify a Volterra model of
ordern by cross-correlation (Nowak and Veen, 1994).
For a detailed description of this technique the in-
terested reader is referred to (Wiener, 1958; Schet-
zen, 1980). In the present sequence tailoring approach,
the third-order Volterra model is first decomposed in
the following manner (Parkeret al., 2001):

ŷ(k) = h0 +L(k)+D(k)+S(k)+O(k) (2)

L(k) =
M

∑
i=1

h1(i)u(k− i)

D(k) =
M

∑
i=1

h2(i, i)u
2(k− i)+

M

∑
i=1

h3(i, i, i)u
3(k− i)

S(k) = 3
M

∑
i=1

M

∑
j 6=i

h3(i, i, j)u2(k− i)u(k− j)

O(k) =
M

∑
i=1

M

∑
j 6=i

h2(i, j)u(k− i)u(k− j)+

M

∑
i=1

M

∑
j 6=i

M

∑
` 6= j 6=i

h3(i, j, `)u(k− i)u(k− j)u(k− `)

Here, L, D, S, and O represent the linear, nonlin-
ear diagonal, third-order sub-diagonal, and nonlinear
off-diagonal terms, respectively. The Volterra model
can be assumed symmetric without loss of generality
(Rugh, 1981).

2.1 Third-order Volterra model Identification

The identification of the Volterra model coefficients
is carried out based on the decomposition (2). As a
metric to analyze model fitness, consider the third-
order Prediction Error Variance (PEV) expression:

σ2
p = σ2

0 + σ2
u

M

∑
i=1

δ2
1(i)+ (κ +2)σ4

u

M

∑
i=1

δ2
2(i, i)

+2σ4
u

M

∑
i=1

i−1

∑
j=1

δ2
2(i, j)+ (m6−

m2
4

σ2
u
)

M

∑
i=1

δ2
3(i, i, i)

+9(κ +2)σ6
u

M

∑
i=1

M

∑
j 6=i

δ2
3(i, i, j)

+6σ6
u

M

∑
i=1

M

∑
j 6=i

M

∑
` 6= j 6=i

δ2
3(i, j, `) (3)

The first term represents the bias term whereas the sec-
ond, third, and fourth terms describe the contributions
due to coefficient errors in the linear, second-order
diagonal, and the second-order off-diagonal terms.
The last three terms represent the third-order diago-
nal, third-order sub-diagonal and the third-order off-
diagonal contributions to the PEV, respectively. In
this work, input sequences are designed based on the
structure and coefficients of the terms in (2) and (3).
Thus, an input-sequence with a high variance, a high

kurtosis, and a high value of the coefficient(m6− m2
4

σ2
u
),

would be a candidate to identify the linear and nonlin-
ear diagonal kernels. For the third-order sub-diagonal
terms, if an input sequence is designed such that no
more than two points have non-zero values within the
model memoryM then the third-order off-diagonal
contribution to ˆy(k) would be zero identically (accord-
ing to (2)). Furthermore, the ratio of the coefficient of
the third-order sub-diagonal term to that of the second-
order off-diagonal term in (3) is:

C3SD

C2OD
= 4.5(κ +2)σ2

u (4)

Thus, a sequence with a high kurtosis (κ) and a
high variance would ensure that the third-order sub-
diagonal terms dominate. Finally, an RBS is employed
to estimate the off-diagonal kernels. The theoretical
kurtosis of an RBS is−2 so the off-diagonal term
contributions dominate the PEV expression if an RBS
of high input variance is designed.
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Fig. 1. Full length input sequence used for sub-
diagonal identification. Bottom: zoom of the plot
to show pulsesα1 andα2 andM length zeros.

2.2 Estimation of bias, linear, and nonlinear diagonal
parameters

Since the bias, linear, and nonlinear diagonal kernels
are involved in calculating the sub- and off-diagonal
kernels, their identification is carried out first to im-
prove subsequent kernel estimates. Akin to the results
of (Florian Jr. and Parker, 2002), a 4M + 4 length
deterministic input sequence is used to estimate the
bias, linear, and diagonal parameters, and is given as:

u(k) =


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










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

























β1 k = 0
0 1≤ k≤ M

−β1 k = M +1
0 M +2≤ k≤ 2M +1
β2 k = 2M +2
0 2M +3≤ k≤ 3M +2

−β2 k = 3M +3
0 3M +4≤ k≤ 4M +3

(5)

This sequence ensures that the contributions due to
the nonlinear sub-diagonal and off-diagonal terms are
zero identically, (u(k− i)u(k− j) = 0 ∀i 6= j (i, j ≤
M)). The parametersβ1 and β2 represent the pulse
heights of the input-sequence and are selected such
thatβ2 = 56> β1 = 11.2. The smaller pulse precedes
the larger pulse to ensure that that any residual error
from the large pulse response does not corrupt the
small pulse output data. Based on the definition of
a friendliness factor in (Parkeret al., 2001), this se-
quence has a friendliness factorf = 93%.

2.3 Estimation of sub-diagonal parameters

The estimation of the sub-diagonal parameters is car-
ried out as in (Soni and Parker, 2004). The input,
shown in Figure 1, is a plant-friendly (f = 94%) CSRS
sequence with a value of 13,102 for the ratio given
by (4). This ensures that the third-order sub-diagonal
kernel contributions dominate. Furthermore, for this
sequence the contribution due to the third-order off-
diagonal terms is zero identicallyi.e. u(k− i)u(k−
j)u(k− `) = 0 ∀i 6= j 6= ` and(i, j, `≤ M). The total
length of the sequence is 3M(M − 1) and the pulse
heightsα1 andα2 are 11.2 and 56 respectively.
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Fig. 2. Reduced length input sequence used for sub-
diagonal identification. Bottom: zoom of the plot
over the first two sub-units to show increasing
pulse separation

2.4 Identification of off-diagonal parameters

The identification of the off-diagonal kernels uses
residualization and a cross-correlation technique, as in
(Parkeret al., 2001).

3. REDUCED SEQUENCE FOR SUB-DIAGONAL
IDENTIFICATION

The input sequence used for the sub-diagonal identi-
fication in Section 2.3 is of length 1140 for a value
of M = 20. In many cases, the value ofM may be
high so that a substantial amount of data is required to
estimate the third-order sub-diagonal kernel. On the
contrary, short input sequences are plant-friendly as
they lead to a reduction in the duration for which the
plant operates in identification mode, thereby reducing
off-specification product. This motivates the design of
a reduced length input-sequence for third-order sub-
diagonal kernels. The main reason for the large num-
ber of data-points in the sub-diagonal sequence in
Section 2.3 was the presence of M zeros after every
other pulse, as shown in Figure 1 (bottom). While
this effectively eliminated interactions between all but
the intended pulses, it added significantly to sequence
length without adding input excitation.

The structural basis of the reduced-length sequence
(Figure 2) is similar to the one in Section 2.3; the
reduced-length sequence also involves two pulses, and
the gap between them successively increases. A key
difference can be observed by considering the first
sub-unit of the reduced-length input sequence:

u(k) =


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











γ1 k = 1
γ2 k = 2
0 3≤ k≤ M

−γ2 k = M +1
−γ1 k = M +2
0 M +3≤ k≤ 2M
γ2 k = 2M +1
γ1 k = 2M +2
0 2M +3≤ k≤ 3M

−γ1 k = 3M +1
−γ2 k = 3M +2
0 3M +3≤ k≤ 4M

(6)



For this input sequence, the input data from points
2M + 1 to 4M is the same as that fromM + 1 to
2M, with the exception that the order of the pulses is
interchanged;i.e. γ2 forms the first, andγ1 the second
pulse. This was done for two main reasons. First,
to avoid singularities in the solution of the estimator
equations. Second, when only the first 2M points were
used as a sub-unit, the resulting sub-diagonal kernels
were poorly estimated owing to the interchanging
order of pulses for each sub-unit. The addition of the
second 2M points averages out the contribution of
both pulse orders,i.e. (γ1,γ2) and (γ2,γ1), resulting
in smooth estimates for the sub-diagonal kernel. For
the next sub-unit there is a gap of one point between
the two pulses. This gap length successively increases
by one, until the gap length is of(M

2 −1) points. This
results inM

2 sub-units, each of length 4M so that the
total length of this sequence is 2M2. An important
benefit of the four pulse-pair sequence sub-unit is that
each coefficient is estimated from four points instead
of two for the sequence in Section 2.3. This makes the
estimator algorithm more robust to noise.

To calculate the estimator equations for the reduced-
length sequence, consider Figure 3. From the figure,
two distinct regionsa and b can be identified. The
region a (length M − q) corresponds to the output
data-set used to estimate theh3(p, p+ q, p+ q) and
h3(p, p, p + q) kernel coefficients forq = 1,2, ..., M

2
andp= 1,2, ..,M−q. The regionb (lengthM− i) data
are used to estimate theh3(i, i + j, i + j) andh3(i, i, i +
j) kernel coefficients fori = M −1,M − 2, ..., M

2 + 1
and j = 1,2, ...,M − i. Note that the first two points
of the next sub-unit, 4M + 1 and 4M + 2, are also
required for estimation of the kernels. For each of
the next sub-units, the length of regiona decreases
by 1, whereas that of regionb increases by 1, until
the M

2 sub-unit where they have the same length. This
can be visualized in terms of a right triangle. For the
first sub-unit, regiona is the hypotenuse and region
b is the opposite vertex. For each successive sub-
unit, the regions move towards the center, until they
finally converge for theM2 sub-unit and are of the same
length.
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Fig. 3. A schematic of the first sub-unit of the reduced
sequence.

For simplicity consider estimating only theh3(1,2,2),
and theh3(1,1,2) kernels:









y(3)
y(M +3)
y(2M +3)
y(3M +3)









=









γ2
1γ2 γ2

2γ1

−γ2
2γ1 −γ2

1γ2

γ2
2γ1 γ2

1γ2

−γ2
1γ2 −γ2

2γ1









[

h3(1,2,2)
h3(1,1,2)

]

Y = A

[

h3(1,2,2)
h3(1,1,2)

]

(7)

The solution to these kernel contributions is given as:
[

h3(1,2,2)
h3(1,1,2)

]

= (A T
A )−1

A
TY

This can now be generalized for thea regions of the
entire sequence so that the solution is:

H = (U T
U )−1

U
T
Y (8)

In this equation,Y is a column vector of output
data points.U is a non-square block-diagonal matrix,
with A in (7) along the main diagonal. The column
vectorH represents the sub-diagonal coefficients. The
calculation for the kernel contributions corresponding
to the b regions for the entire sequence proceed in
a similar manner, with the exception that the matrix
along the block diagonal ofU is given by:









−γ3
2 γ3

2
γ2
1γ2 −γ2

2γ1

−γ3
1 γ3

1
γ2
2γ1 −γ2

1γ2









The equations thus derived are equivalent to those
obtained by starting from the PEV expression and
minimizing the sum-squared prediction error (as in
(Soni and Parker, 2004)) given by:

Jsd =
2M2+1

∑
k=1

{z(k)− ẑ(k)}2 (9)

In this equation, ˆz(k) is the model output prediction in
response to the reduced-length input sequence.

4. IDENTIFICATION ALGORITHMS

The following algorithms for third-order Volterra
model identification are considered:

Algorithm 1

(1) The bias, linear, and nonlinear diagonal param-
eters are estimated using a four-pulse, five-level,
4M +4 length (84 point) sequence.

(2) The second-order off-diagonal kernel is esti-
mated using a cross-correlation technique as in
(Parkeret al., 2001). A 12,000 point RBS is used
as the input sequence. Pre-whitening is used to
eliminate the contributions of the bias, the linear,
and the nonlinear diagonal kernels.



(3) A tailored sequence with length 3M(M − 1)
(1140 points) is used to excite the system and
residuals are calculated by subtracting off the
bias, linear, and nonlinear diagonal contribu-
tions. Third-order sub-diagonal coefficients are
estimated from these residuals.

(4) The third-order off-diagonal terms are estimated
similar to the second-order off-diagonal kernels.
Pre-whitening is used to eliminate the contri-
butions of the bias, linear, second-order, third-
order diagonal, and the third-order sub-diagonal
kernels.

Algorithm 2

(1) The estimation of bias, linear, and nonlinear di-
agonal kernels is carried out as in Algorithm 1.

(2) The sequence described in Section 3 (801 points)
is used to calculate the third-order sub-diagonal
kernels. Pre-whitening is first carried out to elim-
inate the contributions of the bias, the linear, and
the nonlinear diagonal kernels.

(3) The second- and third-order off-diagonal terms
are estimated as in Algorithm 1.

Algorithm 3 (Cross-correlation)

(1) The estimation of bias, linear, and nonlinear di-
agonal kernels is carried out using a 600 point
random quaternary sequence (RQS).

(2) The second-order off-diagonal kernel is esti-
mated as in Algorithm 1. Pre-whitening is used
to eliminate the contributions of the bias and the
linear kernel.

(3) For the 380 unique third-order sub-diagonal
kernels a 3800 point RQS is employed. Pre-
whitening is used to eliminate the contributions
of the bias, linear, and second-order kernels.

(4) The third-order off-diagonal terms are estimated
as in Algorithm 1. Pre-whitening is used to elim-
inate the contributions of the bias, linear, and
second-order kernels.

5. CASE STUDY AND RESULTS

5.1 Polymerization Reactor Model

In order to test identification algorithm performance,
the isothermal free-radical polymerization of methyl-
methacrylate using azo-bis-isobutyronitrile as an ini-
tiator and toluene as a solvent (Congalidiset al., 1989)
was treated as the “real” system. The system equations
are given as:

ẋ1 = 60−10x1−2.45684x1
√

x2

ẋ2 = 80u−10.1022x2

ẋ3 = 0.0024121x1
√

x2 +0.112184x2−10x3 (10)

ẋ4 = 245.979x1
√

x2−10x4

y=
x4

x3

In this system the outputy is the number average
molecular weight (NAMW) of the polymer whereas

Table 1. SSE values for the nominal study

Kernel Algorithm 1 Algorithm 2 Algorithm 3
Linear 3.45×10−6 3.45×10−6 6.67×10−3

2nd Diag. 9.20×10−8 9.20×10−8 7.74×10−6

2nd Off-diag. 9.14×10−8 9.14×10−8 1.55×10−7

3rd Diag. 1.27×10−10 1.27×10−10 1.02×10−7

3rd Sub-diag. 1.01×10−9 6.89×10−10 3.89×10−8

3rd Off-diag. 7.93×10−11 7.90×10−11 3.47×10−10

Table 2. Data Reduction and Kernel Estimate
% Improvement versus Algorithm 3

Kernel Algorithm 1 Algorithm 2 Data Redn.
Linear 99 99 7×
2nd Diag. 98 98 7×
2nd Off-diag. 41 41 −
3rd Diag. 99 99 7×
3rd Sub-diag. 97 98 3.3(4.75)×
3rd Off-diag. 77 77 −

the input u is the initiator flow-rate. The nominal
operating point was selected as the mid-point of the
operation range of the reactor and is the same as
used in (Soni and Parker, 2004). The system was
converted to deviation form, and the input and out-
put were scaled according to (Parkeret al., 2001).
Carlemann linearization of the nonlinear system was
performed (Rugh, 1981), and truncation to third-order
terms yielded a bilinear system in state-space form.
Finally, the bilinear state-space system was discretized
using the fourth-order Runge-Kutta algorithm. A sam-
pling time (∆t) of 0.06 hr and model-memoryM of
20, were selected to allow comparison with (Parkeret
al., 2001). From the discretized equations, the Volterra
kernels for the system were calculated analytically
(Rugh, 1981). A third-order Volterra model was thus
obtained which allows for a comparison with the Al-
gorithms presented in the previous section.

5.2 Volterra Identification Results
5.2.1. Nominal (noise-free) results Table 1 shows
the sum squared errors (SSE) between the kernel es-
timates, identified from the Algorithms in Section 4,
and the analytically derived kernels. It is observed
in Table 2 that both Algorithm 1 and Algorithm 2
outperform Algorithm 3, while requiring markedly
less data. The key advance of the current work versus
that accomplished previously (Soni and Parker, 2004)
is the improved estimates for the third-order sub-
diagonal kernel. These estimates yield more accurate
off-diagonal kernels for Algorithm 2 due to a reduc-
tion in error propagation during pre-whitening.

5.2.2. Results in the presence of noiseIn order to
test the performance of the identification algorithm
in the presence of noise, additive, uncorrelated, white
noise with a variance equal to 5% of the output vari-
ance, for a signal-to-noise ratio of 5 decibels, was
added to the output. Akin to the nominal study, the
results are reported as SSE values in Table 3. Once
again, it is observed that the tailored identification
algorithms outperform the cross-correlation approach.



Table 3. SSE values in the presence of noise

Kernel Algorithm 1 Algorithm 2 Algorithm 3
Linear 1.76×10−4 1.76×10−4 7.18×10−3

2nd Diag. 9.24×10−8 9.24×10−8 6.12×10−6

2nd Off-diag. 9.25×10−8 9.25×10−8 1.89×10−7

3rd Diag. 1.84×10−10 1.84×10−10 1.14×10−7

3rd Sub-diag. 2.59×10−9 2.33×10−9 4.31×10−8

3rd Off-diag. 8.27×10−11 8.22×10−11 3.68×10−10

Five repeat-units of the linear and nonlinear diago-
nal identification sequence were used to improve the
noise sensitivity of the coefficient estimates. An im-
provement of 77, 16, and 20% was observed for lin-
ear, second- and third-order diagonal kernels, respec-
tively, compared to the case when just one unit of
this sequence was used for identification. Even with
five repeat-units, the resulting sequence was still 30%
shorter than the cross-correlation sequence used in
Algorithm 3.

6. SUMMARY

In this work, a tailored reduced-length input sequence
design was presented to identify the third-order sub-
diagonal kernel of a third-order Volterra model. This
design was based on the PEV expression and also
exploited the Volterra model structure. Random bi-
nary signals were used to estimate the off-diagonal
kernels using a cross-correlation technique. The iden-
tification of the linear, nonlinear diagonal, and third-
order sub-diagonal kernels was carried out using 80%
less data than the cross-correlation approach. For the
third-order sub-diagonal kernel, the reduced-length
sequence was 30% shorter than the full sequence and
showed a 47% improvement in the SSE value. Finally,
improvement in other kernels improved the quality of
the off-diagonal kernels. It is interesting to note that
tailored algorithms 1 and 2 provide both superior co-
efficient estimatesanda substantial reduction in data
requirements. This work thus presents an efficient and
plant-friendly algorithm for the estimation of third-
order Volterra models.
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