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Abstract: —A predictive functional controller (PFC) for closed-loop control of glucose 
using subcutaneous (SC) tissue and intravenous (IV) glycemia measurement and SC and 
IV infusion of monomeric insulin analogs was developed and evaluated in a simulation 
study. This analysis is implemented on a generalized rigorous model which can simulate 
the interaction between glucose-insulin for Type 1 Diabetes Mellitus (T1DM) or normal 
subjects. According to the simulation results, stable control is achievable for unknown 
or variable time delays as well as for slow time variations of the controlled system. 
Therefore model together with PFC could be an useful tool for developing an extra 
corporeal artificial pancreas prototype and/or as a decision support technique for defining 
the proper insulin dosage for each patient and for education purposes. Several simulation 
results are presented for the sake of comparison with other well known models and 
predictive control strategies. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
An estimate of the global cost of diabetes, based on 
epidemiological studies conducted by the World 
Health Organization, revealed that diabetes may 
account for 23% of the total health care budget in 
every country (Jonsson; 1998). In this context, since 
many years ago, a vigorous research has been 
stimulated on implantable SC sensors, insulin pumps 
with SC access, support the idea of important 
improvements on SC closed-loop control strategies 
for insulin-dependent diabetes therapy (Bellazzi et 
al.; 2001) . 
This work focus on modeling and predictive 
functional control in order to complement earlier 
control approaches and application of computers in 

diabetes care . Up to now the authors of this article 
did not find any PFC application on glucoregulatory 
problems.  
The PFC technique is the third generation of a family 
of Model Algorithmic Control (MAC), developed by 
Richalet and coworkers during the last decades (see 
Richalet, 1993). It resides on representing the process 
with a linear impulse response model, generate the 
control algorithm for one or more coincidence points 
with the reference trajectory, solve it and apply the 
calculated input action through the named base 
functions. The manipulated variable can be 
constrained on its maximum and minimum values 
and its rate of variation. 
In particular, the development of the control strategy 
includes the following steps: 1) implementation of a 



     

mathematical model for the simulation of a patient 
with T1DM; 2) development of system identification 
for obtaining the internal (predictive) model; 3) 
design the PFC by defining the parameters  and 4) 
performing numerical experiments on closed-loop 
control and compare with previous results. The 
system has been assessed by simulation, using both 
SC and IV routes for insulin delivery and  blood 
glucose measurement 
 

2- CASE STUDY: GLUCOSE-INSULIN 
INTERACTION MODEL FOR TYPE I DIABETES 

 
The mathematical model for glucose regulation 
chosen for this study is based on a compartmental 
one analogous to that given by Carson et all. (1983) 
which belongs to the class of theoretically rigorous 
models. However, in order to simulate the dynamic 
effect of exogenous glucose and insulin relating to 
the different typical tests or meal intake, the model is 
implemented combined with transfer functions. In 
this context, the complete model can be considered 
as a hybrid one. Another assumption was consider 
that patients with T1DM endogenous insulin 
secretion was suppressed whereas insulin and 
glucagon kinetics have been assumed to be normal. 
Note that these considerations are valid for patients 
with T1DM without defective glucose counter 
regulation. The model shown in Figure 1 includes a 
single glucose compartment representing the extra 
cellular fluids, three insulin compartments (liver and 
portal plasma insulin, plasma insulin, and insulin in 
the interstitial fluids), and a glucagon compartment. 
The considered unit processes are net hepatic glucose 
balance, renal excretion of glucose, and insulin-
independent glucose utilization. The model equations 
used in the simulations and a list of symbols are 
given in the Appendix. In order to cover with the 
same model a great number of patients’ glucose 
behavior the original equations are modified. The 
differential equation referred to glucose balance (x1) 
is affected by modifying the insulin secretion and the 
“initial condition” for each patient according to its 
basal level of blood glucose early in the morning 
before breakfast.  In Figure 2 are presented several 
curves of blood glucose according to each patient 
characteristics and for a healthy person when the 
same oral glucose tolerance test (OGTT) is 
performed. The computational implementation was 
done in Matlab-Simulink. For simulating the OGTT 
a solution of 75gr of glucose in 375ml of water is 
given orally to an adult patient. For accounting the 
effect on the dynamic behaviour in blood glucose a 
second order transfer function given by:   
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included for modelling the glucose input to the 
endocrine system. This transfer function can be 

modified in order to adjust properly for each 
particular patient.  
In addition the model is useful for simulating the 
effect when intravenous glucose tolerance test 
IVGTT is done.  In Figure 3 is shown the model 
prediction and the real data of a normal subject of 70 
Kg of weight  under an IVGTT consisted on 
receiving 30,4 mmol/l of a glucose solution during 2 
minutes  at time  = 500 min  and sampling blood 
glucose during 182 min. taken from  Cobelli, C. and 
Bergman (1981). 
Besides, the model can estimate the blood glucose 
time evolution for a well known equivalent 
carbohydrates consumption during specific gut. This 
information was taken from Hejlesen et al. (1998), 
for testing the Diabetes Advisory System (DIAS) 
predictions (Andreassen et al.; 1994).  In Figure 4a  
is shown the quantity of carbohydrates present in the 
gut and the moments when they are fed to the healthy 
volunteer. In Figure 4b is shown the blood glucose 
concentration varying, indirectly dependent of meal 
intake given above.   
 

 
Fig. 1 Mathematical model adopted from the 

literature and adjusted to diabetic state used in the 
numerical experiments. 

 

 
Fig. 2: dynamic behaviour of blood glucose for 

different patients (Pj) and healthy volunteer (HE) 
after an OGTT. 

 



     

Intravenous (IV) and subcutaneous (SC) routes for 
monomeric insulin analogs delivery can be simulated 
as well. Determination of transfer rates between 
plasma and SC compartment is adjusted as a linear, 
first-order system with the transfer function in the 
frequency domain (Laplace transform of the impulse 
response) . 
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where: 9,0=scK , min5=sct , min10=mt , is 
the time delay due to the tubing in an ex vivo 
monitoring system, it can be ranged between 0-20 
minutes (Trajanoski and Wach , 1998).  
 

 
Fig. 3: glycemia time evolution for a healthy person 

after an IVGTT 
 

 

 
 Fig. 4: a) daily carbohydrate diet b) model 

predictions of the effect on blood glucose 
concentration for a normal subject. 

 
In the next sections several simulation results of 
applying PFC for decision supporting on insulin IV 
and SC dosages are shown.  Therefore, because of 
the overall aspects included in the model it is named 
“generalized”.   
 
3. MATHEMATICAL CALCULATIONS FOR PFC 

DESIGN 
 

PFC is applied to enhance insulin delivery at normal 
glucose levels and to attenuate insulin delivery when 
glucose falls even at hyperglycaemic levels.  

For PFC the structure of the model and its parameters 
are estimated by any identification algorithm 
available which exploits the data collected during 
specific step test experiments. The model is used to 
predict the future process output and to compute the 
control action in order to satisfy a given target (C) for 
the process variable (PV). 
PFC basically consists of the same elements as can 
be seen in Figure 5: the dynamic model; a reference 
trajectory yr(n) which describes the smooth transition 
of the target variable from its current value to the 
future set point profile within a prediction horizon  
that corresponds to the end of the coincidence 
horizon. This trajectory can be interpreted as the 
desired behavior of the closed loop system. The 
future error between the reference trajectory and the 
predicted output over the coincidence horizon [H1, 
H2] is estimated. A self compensation is done 
accounting the actual mismatch between real data 
and model output. For estimating the future error at 
coincidence horizon by specific kind of extrapolation 
allows to improve the model prediction For the 
application study analyzed here only one coincidence 
point and a constant set point C is assumed. It will be 
developed the control law for first order with time 
delay on both “process” (Gmi) and perturbation 
model (Gdi). In this case the “process” refers to the 
relationship between insulin infusion (manipulated 
variable) and blood glucose (controlled variable). 
Meanwhile, the glucose entering to the system in any 
standard way such as OGTT, IVGTT or meal intake 
are considered as typical disturbances. Therefore, 
Gdi represents the transfer function between glucose 
as independent variable and blood glucose. 
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Applying the Z-transform results 
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In the canonic form, 
 









=
−

+−++=+

)()(
)().1.(                 

)().1.()(.)(.      )1(

kxky
kdGdi

kuGmikxkxkx

mm

d

mmddmimm

α
ααα (7) 

 
Accounting the inputs of manipulated variable u(k) 
and a perturbation d(k), the system response at (n+H) 
point becomes 
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The model output can be expressed as a sum of free 
(L) and forced (F) terms 
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Therefore the control equation is obtained by the 
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The control algorithm is given by 
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Finally, if it is assumed that d(n) = ymd(n) = 0 
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As can be seen from (19) the controller transfer 
function has an implicit integrator which guarantees 
zero tracking error for step inputs. 
The forced response is calculated by assuming the 
input to the system is related to base functions as are 
shown in Fig. 6. Typically these functions are steps 
B1(i) = 1; ramps B2(i) =i or parabolas B3(i)= i2 .  The 
choice of the basis functions defines the input profile 
and can assure a predetermined behavior.  
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For system with delay it must be estimated the error 
between real data system and model estimations at 
instant (n-Tdm) as is shown in Figure 7. There, Tdm 
is the time delay.  
Hence the predicted output of the plant is given by  
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Fig. 5. PFC principles for design for one coincidence 

point.  

 
Fig. 6. base function for input and forced output 

calculations  
 

                             

 
Fig. 7 prediction of the delayed response 
 
Accounting considerations (21) to (23)  the control 
algorithm for the system with delay is given by 
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The parameters to be tuned for these controllers are: 
coincidence point (H) [sec]. Closed loop time 
response [TRBF, sec] of the reference trajectory. If 
control zone is applied low and high TRBF must be 
defined. The high value is applied when controlled 



     

variable is exactly at the set point. If it is going far 
from the set point but it is inside the allowed zone 
TRBF decreases linearly up to the limit of the zone. 
There it reaches the lowest value in order to drive the 
controlled variable inside the zone as quickly as 
possible. By using a control zone the parameter 
TRBF is moving linearly between those two 
extremes (low and high values).  
Transition zone [%] set the allowed zone for the 
controlled variable expressed as ± n% with respect to 
set point value, constraints to manipulated variable 
are also included fixing maximum, minimum and 
variations for it. 
 

4. APPLICATION RESULTS 
 
The dynamic interaction between plasma insulin and 
blood glucose concentration in an T1DM  during an 
OGTT for both SC and IV glycemia measurements 
are presented in this section. The objective is that 
PFC be capable of regulating the blood glucose at 
5mmol/l without violating the allowable band for the 
patient.  
 The large number of tuning parameters adds 
flexibility to the tuning procedure, but 
simultaneously, it makes proper tuning more 
difficult. However it is considered that PFC strategy 
is very intuitive for selecting the parameters and the 
same criteria used for industry applications can give 
reasonable results.  
 In Table 1 are summarized the chosen parameters 
for 75gr-OGTT using vein-to-vein route where PFC 
simulates a Biostator algorithm. In Table 2 the same 
test is performed but implementing subcutis-to 
subcutis route.  In both cases one coincidence point 
was adopted,   the starting point for coincidence 
horizon  is 120 and the end point is 1000 and the 
sampling time was 0,1. 
 
Table 1: PFC parameters for an OGTT and vein-to-

vein route 
 

Zone control  Constrains to the manipulated                      
               variable  
Trbf_L = 10               Umin = 0   
Trbf_H = 15               Umáx = 50 
Delta = 20               ∆U/∆t = 0,5 
    
Model                      Model exog. glucose-glycemia 
Insulin-glycemia 
Gmi = -0,6                 Gdi = 5 
τmi = 150                  τdi = 110 
τmmi = 3                    τmdi = 20  
 
 
The main difference in transfer functions is done on 
the important time delay involved for the second 
case. In Figure 8 are presented both glucose dynamic 
behavior for SC and IV routes showing 
normoglycemia at every time after the 75gr-OGTT. 
The vein-to-vein route out performs the subcutis-to-
subcutis route. These results demonstrate a clear 
advantage with respect to those presented by 

Trajanoski Z and Wach (1998) applying a neural 
predictive control. 
Additionally, a specific meal intake, shown in Figure 
4a, is tested and PFC acts like a decision support 
technique for solving the problem of determining the 
insulin dosage analogously to AIDA (Lehmann et 
al.; 1994) or DIAS models. The PFC parameters are 
the same given in Table 2 and in Figure 9 are 
presented the application results. From Figure 9a can 
be seen that the insulin dosage provided by the 
controller guarantees all the day the patient with 
normoglycemia. These results represent a  
demonstration that PFC suggests reasonable SC 
insulin dosage for the specific  T1DM patient. 
 

Table 2: PFC parameters for an OGTT subcutis-to 
subcutis route 

  
Zone control  Constrains to the manipulated                      
               variable 
Trbf_L = 10               Umin = 0   
Trbf_H = 15               Umáx = 50 
Delta = 20               ∆U/∆t = 0,5 
    
Model                      Model exog. glucose-glycemia 
Insulin-glycemia 
Gmi = -0,32              Gdi = 4.25 
τmi = 140                  τdi = 125 
τmmi = 30                  τmdi = 25  
 
 

 

 
Fig. 8 a) comparison of glucose dynamic for an 

OGTT at 4 and 10 hours via the SC and IV routes 
b) comparison of SC. and IV insulin infusion and  
intravenous insulin infusion 

 
 
 
 



     

5. CONCLUSIONS 
 

The simulation results of the present study 
demonstrate that the developed generalized model 
gives good predictions working in an open-loop way. 
In addition, closed-loop PFC offers a new alternative 
option for helping on computer diabetes care. PFC 
potentiality resides on the benefits of MPC 
philosophy adding a more intuitive tuning parameters 
rules. Comparisons with other well known strategies 
give confidence  on the technique used here and 
imply greater acceptability and practicability for 
patients and health care staff. 
 

 

 
Fig. 9: a) SC blood glucose dynamic for 

carbohydrates intake shown in Figure 4a b) SC 
insulin infusion suggested to the patient. 
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APPENDIX 

 
Mathematical Model for the Glucose Dynamics   
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System output 

1

1
1 V

xy =
:plasma glucose conc. (mmol/l) (A8)      

11

11
2 V

uy = : plasma insuline conc. (µU/ml) (A9)      

2

2
5 V

uy =
: blood glucagon conc. (mg/ml) (A10)      

NHGB Net hepatic glucose balance 
x1: glucose in plasma and extracelular fluids(mmol) 
u1p: pancreatic stored insulin (µU /kg) 
u2p: Glucagon, (µU /kg) 
u11: Plasma insulin, (µU/kg) 
u12: Liver insulin, (µU /kg) 
u13: Interstitial insulin, (µU /kg) 
w and F1 to F7 : are nonlinear monotonic functions 
with sigmoidal characteristics dependent on the 
control variables 
Ix e Iu: Test inputs, (mg/kg min) and (µU/kg) 
respectively. 
mij, Concentration of monomeric insulin U ml 
hij y kij: constants  
k02 depent of  x1 
V1, V11  and V2  are distribution volumes of the various 
compartments (percentage of bodyweight in 
appropriate dimensions, i.e., dl /kg , l /kg , and ml/kg. 
The measurable (plasma) variables are y1 (mmol/ l ), 
y2 (mU/ l ), and y3(mg /ml). 
 
 


