

CONTROL SYNTHESIS FOR RECONFIGURABLE DISTRIBUTED SYSTEMS
WITH APPLICATIONS IN MANUFACTURING

Ardavan Amini
Peng Zhao

Mohsen A. Jafari

Rutgers, The State University Of New Jersey
Department Of Industrial And Systems Engineering

Abstract: We present a framework for control synthesis of reconfigurable distributed
agent systems, where each agent includes its own set of basic functions and local rules.
There are also global rules, which govern the interaction and communication between
these agents. Agents are logically defined by a control synthesizer, communicator, and
executer. The control synthesis is capable of detecting and avoiding single level
deadlocks at execution level. We illustrate the concept through an example. Copyright
© 2005 IFAC

Keywords: Reconfigurable control systems – Intelligent agents – Distributed systems –
Synthesis – Agent communication – Deadlock – IEC 61499.

1. INTRODUCTION

This work is inspired by the fact that many man-
machine systems, manufacturing and business alike,
require fast response to the changes in their
environment. In manufacturing systems, changes in
demands, part designs and machine failures all
require system reconfiguration at various levels of
system control and communication hierarchy. In
business systems, changes and fluctuations in market
dynamics, business relationships and protocols
between partnering organizations require
reconfiguration in some or all levels of business
functions.

In centralized systems, the changes are often dictated
from the top to the units and functions at the lower
levels. Although this may sound efficient and more
practical, the fact of the matter is that more and more
real systems in many application areas are becoming
distributed in nature. In distributed systems, various

units or functions must determine their own way of
responding to the changes in their environment, and
communicate these changes to the other units and
functions. Here we will only focus on logical aspects
of system reconfiguration, that is, at system control
level. To be reconfigurable at system control level, it
is necessary that the control logic is model-based and
furthermore, the underlying processes and rules are
separated from each other. The boundary between
“processes” and “rules” is rather vague. In discrete-
event control theoretic framework, Ramadge and
Wonham (1987a, b) tossed this idea for the first time,
and built an algorithmic solution for controller
synthesis. We will follow their line of thought in
terms of separation of processes and rules, so that
rules are flexible and changeable, and can be
changed while processes are fixed. Therefore,
depending on the level of control, the functions
performed by a machine or tasks performed by a
human agent are part of fixed processes, whereas,
“process plan” describing flow of materials, or the

sequence by which a human agent must do his/her
tasks are rules. It goes without saying that the terms
“flexible,” “changeable” or “fixed” are relative
within a control context.

The control synthesis for centralized systems have
been extensively discussed and analyzed within the
discrete-event system control-theoretic framework.
Classical methods include techniques by Petri Nets
(Zhou and DeCesare, 1993), supervisory control
theory developed by Ramadge and Wonham (1987a,
b), control synthesis via condition/event systems
(Krogh and Kowalewski, 1996, Hanisch and Rausch,
1995) and time transition models (Ostroff, 1989).
These works are model-based, synthesizing the
complete controller from specifications provided as
input. Should the rules or the underlying processes
change, the whole synthesis algorithm must be run
again in order to synthesize the control model again.
This is in contrast to our approach where we
synthesize control actions only when needed. The
system will have a memory of its previously
synthesized control actions, which can be overridden
and changed if necessary. Our main inspiration for
this approach comes from the way humans operate.
As a human, we are never fully pre-programmed for
all the tasks that we do in our lives. We rather carry
with ourselves a set of rules (knowledge) and a set of
basic functions (skills), which of course can be
improved and changed by training and learning.
When we are given a task (which we have not
previously seen), we basically develop our own set
of actions and procedures in order to accomplish this
task. Furthermore, to complete this task, we may
need to establish communication with other human
or machine agents in our work environment. If we
were given a task, which we have seen before, we
may still need to reestablish our control actions, as
the existing environmental conditions can be
significantly different than what we had experienced
in the past.

Our modeling framework encompasses the following
major characteristics: Agents can be providers and/or
requesters. Each agent embeds in it a set of basic
functions and a set of local rules or control
specifications. Agent actions are triggered by internal
or external events (described by flags). Each such
event or flag is associated with a goal, which must be
achieved by the agent. Depending on its current
condition and this goal, the agent internally
synthesizes its set of control actions in order to
accomplish the goal. It is very possible that several
agents (providers) are simultaneously responding to
the same event triggered by a requester agent. In
such a case, the requester would select that provider
which provides the least-cost solution.

The agents have different ways of computing their
control synthesis solutions. In the simplest form, an
agent may just adopt the first feasible solution, which
defines the set of control actions (tasks) that must be
taken to reach the goal from the current state. In a
more complex form, an optimal solution may be
sought, taking into account current state of the agent
(provider), the ongoing tasks, and other tasks, which
must be accomplished. Yet, in another scenario, the
provider agent may face competition from other
provider agents. Finally, solution may be in the face
of uncertainties associated with failures or drop offs
from other agents. Here we will only focus on the
simplest solution where the first feasible solution
obtained is priced and communicated to the
requester. It is of course possible that in some cases,
no feasible solution is obtained due to conditions
such as deadlocks, etc.

2. METHODOLOGY

2.1 Definitions

Agent: An agent is a finite set

),,,,,(InAfRFS=Φ , where: is
the set of states,

},...,,{ 21 msssS =

},...,,{ 21 nfffF = is the set of basic functions,

},...,,{ 21 srrrR = is the set of rules,

},...,,{ 21 rf ϕϕϕ= is the set of flags,
},...,,{ 21 taaaA = is the set of attributes and

},...,,{ 21 wiiiIn = is the set of initiators.
Entity: An entity E is an object that is processed and
manipulated by the agents and can be shown by the
tuple E = (PPi, j, k), where PPi is the processing
sequence id associated with the entity E, j is an
instance id of the entity E and k is the current stage in
the processing sequence.
Processing Sequence: is an ordered set of agents
where PPi = {All the agents which must be
visited in a sequential order by the entity E

iΦ

i}
State: Each agent is associated with a state defined
by an n-tuple, where n is a finite number. State of an
agent changes upon execution of a basic function or
occurrence of an external event.
Basic Functions: The primitive capabilities of an
agent; they are pre-defined by the system and cannot
be changed by the developer. Every function has a
set of inputs and outputs.
Rules: Are the rules defined by the control
developer. These rules are stated as condition-action
rules. There are three types of rules/specifications:
Global Rules: Inter-agent requirements which can be
changed at the system configuration level.

Local Rules: Intra-agent requirements changeable at
the agent configuration level. Local rules are divided
into three categories, namely “Pre-conditions,”
“Post-actions” and “Post-states.” Post-actions are
functions that must be executed by an agent after an
action is taken. Post-state or Transition function δ is
a mapping from S×F to S. Transition functions
change the state of the agent upon execution of a
basic function.
Layout Specifications: Inter-agent requirements
which define the accessibility between agents, that is,
which other agents are accessible (physically or
logically) by an agent.
Flags: A low/high signal triggered by the agent when
the execution of a job is finished.
Attributes: Are the characteristics of the agents.
Initiators: Are flags that initiate a sequence of tasks
to be executed by an agent. Each initiator is
associated with one or more ordered goal functions.
Initiators will be activated by request messages that
the agent receives from its requesters.

2.2 Architecture of an agent

As shown in Fig. 1 an agent is composed of a “core,”
a “communication layer,” a “pre-execution layer,” an
“execution layer” and a “memory “The core has a
component called the synthesizer. The synthesizer is
responsible for finding the task schedule of the agent.
It also triggers algorithms related to fault detection
and recovery. The core is in continual connection
with the communication layer. Due to the distributed
nature of the system, the communication layer is
responsible for setting up the messages that have to
be sent to the other agents, requesters or providers
alike. Receiving information on the state of other
agents is also done through communication unit.
Different outputs of the core have to be transferred to
the pre-execution and communication layers. The
model synthesized by the agent core is executed by
the agent’s execution layer. The collected local and
global information can be stored by the agent in its
memory unit.

Figure 1: Agent architecture

We comply with the specifications in the FIPA

(Foundation for Physical Intelligent Agents). Each
agent has an identifier and this must be registered by
another agent called the bookkeeper agent. In FIPA
this component is called Agent Management System
(AMS). The communication layer in our model is
equivalent to Message Transport Service (MTS) in
FIPA. The difference is that in FIPA each Agent
Platform (AP) has its own individual MTS but in our
model every agent has a separate MTS.

In this framework the communication between agents
is handled based on a requester/provider protocol.
Agents issue request messages and send them to all
of their existing providers and wait for the best
proposal. The providers compete to get the jobs by
bidding. Whichever agent has the best offer wins the
corresponding job and will be assigned by the
requester as the provider of the job and the other
agents will update their flags thereafter. Fig. 2 shows
part of the sequence diagram of the communication
process. Different scenarios can occur during
communication process, depending on the state of
the plant and agents. Discussion about the details of
the sequence diagram of the communication is
outside of the scope of this paper.

: Requester 1 : Provider 1 : Provider 2: Initiator 1

initiate(entity)
service_request(entity)

service_request(entity)

available() : bool
available() : bool

[available = false] [available = true]

[available = false] [available = true]

search_path() : (path, cost)
search_path() :
(path, cost)

(path, cost) :
(string, double)

min_cost() :
list (double, provider)

There exists:
[min_cost ≠ ∞]

For all:
[min_cost = ∞]

(path, cost) :
(null, -1)

For all:
none is available

min_cost() may generate three different cases:
1. At least one of the providers is available with a finite cost
2. All the providers are not available
3. One or more providers are available with an infinite cost and the rest of the agents are not available

In this diagram we assume that
Requester 1 has two providers

(path, cost) :
(null, -1)

(path, cost) : (string, double)

: Requester 1 : Provider 1 : Provider 2: Initiator 1

initiate(entity)
service_request(entity)

service_request(entity)

available() : bool
available() : bool

[available = false] [available = true]

[available = false] [available = true]

search_path() : (path, cost)
search_path() :
(path, cost)

(path, cost) :
(string, double)

min_cost() :
list (double, provider)

There exists:
[min_cost ≠ ∞]

For all:
[min_cost = ∞]

(path, cost) :
(null, -1)

For all:
none is available

min_cost() may generate three different cases:
1. At least one of the providers is available with a finite cost
2. All the providers are not available
3. One or more providers are available with an infinite cost and the rest of the agents are not available

In this diagram we assume that
Requester 1 has two providers

(path, cost) :
(null, -1)

(path, cost) : (string, double)

Figure 2: Part of the sequence diagram of the
messaging protocol

Agents will initiate their synthesizers upon reception
of a request. Their synthesizers search for a road map
(controlled solution) to execute the requested job in
an appropriate way. This includes not only the
satisfaction of the local and global rules but also a
solution that minimizes the cost of the execution. If
such a path is found by the synthesizer, the provider
agent announces its price to the requester. The
bidding policy in this paper is first-price sealed bid
auction. As soon as a provider agent wins a bid, the
job will be added to the work-to-do list of the agent
(part of its memory unit). The pre-execution layer
will be activated when the agent wants to execute the
job physically. In this layer another synthesis and
scheduling process will be performed, because the
condition of the agent and the environment may have
been changed during the time of bidding and

Communication Layer

Physical Layer

Executio
Layer

Core Commit request

Accept/Reject
Commit request

AGEN

Synthesizer Memor

Communication Layer

Pre-execution

Executio
Layer

Core

AGEN

Synthesizer
Memor

execution. The output of the pre-execution layer will
be fed to the execution layer.

Commit Stage. As soon as the requester agent selects
its provider, a “commit request” is created and sent to
the selected agents. These agents will then set their
state to a “locked” condition.

2.3 Synthesis

In its simplest form, the provider’s synthesizer uses a
search algorithm to obtain a feasible solution path
(using a depth-first search method) from its current
state to the desired goal state based on its local
specifications and basic functions. During the path
generation the algorithm also calculates the cost of
the generated path according to the specified cost
function.

Initiator of an agent defines the goal function(s) that
must be searched from the current state of the agent.
The algorithm initially starts at the root of the search
tree. The number of the total possible branches of the
root is equal to the total number of the basic
functions that the agent possesses. Each branch is
equivalent to the execution of the corresponding
basic function. If all the pre-conditions of a specific
basic function are satisfied, the algorithm generates a
new node and goes to the next level of the tree. If
this is not the case that branch will not be part of the
solution and the tree will have a dead end at that
point and the algorithm will continue with the search
at a previous level of the tree. If a basic function is
considered as executed (new node generated), then
the subsequent steps will be to update the states
(based on the transition functions) and then to
execute all the post-conditions, which means the
generation of a new node. This procedure continues
until a solution has been found or not found. The
reader is referred to (Amini et al., 2005) for more
details. Using this method we can easily reconfigure
agents by changing their rules. No new control
design will be necessary.

Deadlock detection and prevention. It is possible that
all providers respond with an infinite cost to a
request from a requester. Two cases are possible: The
requester waits for certain time until one of the
providers becomes available and offers its service.
The second case is when deadlock condition
happens. A deadlock occurs, because two or more
agents require the same resources during a particular
time period in some circular-wait manner. Hence the
providers can never find any solution path to reach to
their desired goals. In these situations we have to
detect the deadlock state and then prevent the system
to enter to this state in the future. Fanti and Zhou

(2004) and Shih and Stankovic (1990) give a
comprehensive description of deadlock
detection/prevention/avoidance in manufacturing
automation and computer science community,
respectively.

In a distributed environment, there cannot be a
centralized control that usually manages deadlocks.
Therefore, there must be a framework through which
agents can communicate and solve the problem of
deadlock amongst themselves. This involves three
steps: (1) Determine those resources that cause the
provider agent not to find any solution path. (2)
Detect deadlocks. (3) Reconfigure the system so that
the future deadlocks of the same type and origin are
avoided. Fig. 3 illustrates the concept.

Deadloc Deadloc

Figure 3: Deadlock detection and avoidance steps

We have developed two algorithms: a resource
detection algorithm to detect unavailable resources,
and a deadlock detection algorithm using Mitchell
and Merritt algorithm (1984) to detect deadlocks.
Should a deadlock be detected, the synthesizer
triggers another algorithm, the deadlock avoidance
algorithm, to avoid the same situation in the future.
For more details, the reader is referred to (Amini et
al., 2005).

3. ILLUSTRATIVE EXAMPLE

Consider the system shown in Fig. 4, which consists
of one input buffer, one output buffer, two robots and
three machines and one part type. Buffer I1, robots R1
and R2, and machines M1, M2, M3 define our agents in
this system. Parts (of single type) are the entities
which follow a process plan (global specification).
Since there is no supervisory control, every single
agent must work according to its own specifications.

In p u t B u ffer

O u tpu t B uffer

M ach ine 1

R ob ot 1

M ach in e 2

In p u t B u ffer

O u tpu t B uffer

M ach ine 1 M ach in e 2

R ob ot 2

M ach in e 3

In p u t B u ffer

O u tpu t B uffer

M ach ine 1

R ob ot 1

M ach in e 2

In p u t B u ffer

O u tpu t B uffer

M ach ine 1 M ach in e 2

R ob ot 2

M ach in e 3

Figure 4: Illustrative Flexible Manufacturing Cell

Due to the lack of space we only present the
specifications of the robots.

Unavailable
Resourc
Detection Detection Avoidance

Robot = RΦ i (i = 1, 2)

Description: R1 and R2 are responsible for moving
parts between different stations. We assume that the
robots can hold at most one part in their hands. In our
notation E is the entity (part) that has to be
processed.

Attributes (Ri.A): Ri.A.a1(capacity) = 1,
R1.A.a2(reachability) = {I1, M1, M2, M3, O1}
R2.A.a3(reachability) = {M2, M3, O1}

States (Ri.S): (s1, s2, s3, s4, s5) = (stage, occupancy,
location, current_part_id_in_process): (idle/busy,
empty/not empty, Ii/Oi/Mi, E)

Basic Functions (Ri.F):
R1.F.f1 = move_to(Y, E), where Y ∈ {M1, M2, M3, I1,
O1}
R1.F.f2 = take(Y, E) where Y ∈ {M1, M2, M3,
I1}R1.F.f3 = put(Y, E) where Y ∈ {M1, M2, M3, O1}
R2.F.f1 = move_to(Y, E), where Y ∈ {M2, M3, O1}
R2.F.f2 = take(Y, E) where Y ∈ {M2, M3}
R2.F.f3 = put(Y, E) where Y ∈ {M1, M2, O1}

Flags (Ri.f): None
Initiator (R1.In):
R1.In. 1. 11 =ϕI or R1.In. 1. 2 =ϕiM : take(Xi, E) →
put(E.PPi(k+1), E), where Xi∈{M1, M2, M3, I1},
(R2.In):R2.In. :take(X1. 2 =ϕiM i,E) → put(E.PPi(k+1),
E), where Xi∈{M2, M3}

Rules (Ri.R):
• R1.R.r1: rules for move_to(Y, E):

Pre-conditions:
Y∈ R1.A.a2
R1.S.s3 ≠ Y

Post-actions: None
Post-states:

R1.S.s3 = Y
R1.S.s4= E

• R1.R.r2: rules for take(Y, E):
Pre-conditions:

Y∈ R1.A.a2
R1.S.s1 = -
R1.S.s2 = empty
R1.S.s3 = Y
Y.out = true

Post-actions:
move_to(W, E) where W is the next station in
the processing sequence after Y and E = (PPi,
j, k + 1)

Post-states:
R1.S.s2 = not empty
R1.S.s3 = Y
R1.S.s4 = E

• R1.R.r3: rules for put(Y, E):
Pre-conditions:

Y∈ R1.A.a2

Ri.S.s1 = idle
Ri.S.s2 = not empty
Ri.S.s3 = Y
Ri.S.s4 ≠ Null
Y.in = true

Post-actions: None
Post-states:

R1.S.s2 = empty
R1.S.s3 = Y
R1.S.s4 = E

Similar specifications hold for R2 and other agents.

Agent R1 is accessible by I1, M1, M2, M3, O1 and R2 by
M2, M3 and O1. The state of the robot is determined
by a 5-tuple: The first value can be either idle (when
there is no part in its hand and does not move) or
busy (if it has a part in its hand or is moving towards
a machine or buffer). The second value defines robot
occupancy. It will be either empty or not empty. The
next value is the robot’s location. Since the robot is
moving around in the cell, this value has to be
tracked. The state of the part currently held by the
robot is the next element in the tuple (this value will
be NULL if there is no part carried by the robot).

R1 has three basic functions available. Using
move_to(Y, E) function it will move from its current
location towards location Y, to perform a task related
to entity E. Function take(Y, E) will be responsible
for taking part E form agent Y. And put(Y, E)
function is responsible for putting part E into agent
Y.

The process plan is defined by PP1={I1, M1, M2, M3,
O1}. Consider the state of R1 to be R1.S.(idle, empty,
M1, NULL), and the state of the M1 to be M1.S.(idle,
0, NULL) (0 is number of parts currently being
processed in the machine). Now suppose that part
E(PP1, 1, 1) arrives in input buffer I1. PP1 means that
the arriving part is of type 1. The first “1” in the tuple
means that this part is the first instance of this entity
type arriving into the cell. The second “1” means that
the part is currently in its first station (I1). At this
time

11 .. ϕfI becomes equal to one. I1 then sends a
request message to R1, since R1 is the only provider
of I1. R1 will receive the request message that part E
is ready to be picked up. From its list of
specifications, R1 will find the required target(s).
According to the specifications (R .In1 . 1. 11 =ϕI), the
objective of R1 will be to take(I1, E)→put(E.PP1(2),
E). Which means, to take the part from the input
buffer and put it in M1 (The second station in PP1 is
M1). At this point the robot will start to construct its
search tree in the synthesis process. Since the
location of R1 is currently M1, it cannot take the part
from the input buffer (a pre-condition for the basic
function take(I1, E) is R1.S.s3 = I1, which is currently
not true). The only possible action that the robot can

take is move_to(I1, E), since all the pre-conditions
for this action are satisfied. If the robot performs it,
its next state will become R1.S.(busy, empty, I1,
NULL) based on the transfer functions (post-states).
Since the pre-conditions for take(I1, E) are satisfied
now, the agent can perform this function next and
therefore the resulting state of the agent will become
R1.S.(busy, not empty, I1, E(PP1, 1, 1)). Given that
take function has a post-action, the robot will do the
post-action first. This action is going to be
move_to(M1, E(PP1, 1, 2)). Since all the pre-
conditions are satisfied, it will perform this step and
therefore the next state of R1 will become R1.S.(busy,
not empty, M1, E(PP1, 1, 2)). Now the only basic
function that can be executed by the robot is put. One
of the pre-conditions of put function is Y.in = true,
where Y is M1. in and out functions are related to the
communication and are used to get the state of the
other agents in this distributed environment. The
state of M1 is currently M1.S.(idle, 0, NULL). The
robot calls the public function (in) of the machine. If
all the pre-conditions of M1 for this function are
satisfied (i.e. if the machine can accept a new part as
input), it will return “true” and therefore the robot
can put the part into the machine and by doing this,
the request can be executed. At the execution stage
R1 will “lock” all the necessary resources (I1 and M1)
and will commit this job henceforth.

After M1 finishes its job on the part it will announce
this event to its providers (only R1). Since R1 is at idle
state, it will be able to take the part from M1 and put
it into M2. M2 finishes its job and sends a request to
both of its providers, namely R1 and R2 with current
states of them being R1.S.(idle, empty, M2, NULL)
and R2.S.(idle, empty, M3, NULL), respectively. The
two robots receive a message from M2 to move the
outstanding part to M3, and both are able to find a
solution. But since R1 is closer to the M2, its cost is
estimated at a lower value and therefore it will offer a
better price. Hence M2 will select R1 as its provider.
The last step from M3 to O1 will be executed by R2
since it is the only robot connected to O1.

4. IMPLEMENTATION

We have used IEC 61499 standard for the
implementation of the above distributed control
systems. This standard is based on “function blocks”
and it provides an easily distributable methodology
combined with an event-driven data exchange. For
more details the reader can refer to (Amini et al.,
2005).

5. CONCLUSION

We have developed a framework for control
synthesis of distributed agent system. Each agent has
its own controller, which can be reconfigured by
changing its local specifications and/or the global
specifications. The synthesizer is capable of
detecting and avoiding single level deadlocks at
execution level.

REFERENCES

Amini, A., P. Zhao, and M.A. Jafari (2005). Control
synthesis for distributed multi agent systems.
Manuscript under revision.

Fanti, M.P. and M. Zhou (2004). Deadlock Control
Methods in Automated Manufacturing Systems.
IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans, vol.
34, no. 1.

Hanisch, H-M. and M. Rausch (1995). Synthesis of
Supervisory Controllers based on Novel
Representation of Condition/Event Systems.
Proceedings of IEEE International Conference
on Systems, Man and Cybernetics, vol. 4., pp.
3069-3074.

Krogh, B.H. and S. Kowalewski (1996). State
Feedback Control of Condition/Event Systems.
Mathematical and Computer Modelling, vol. 23,
no. 11/12, pp. 161-173.

Mitchell, D.P. and M.J. Merritt (1984). A Distributed
Algorithm for Deadlock Detection and
Resolution. Proceedings of the Third Annual
ACM Symposium on Principles of Distributed
Computing, ACM SIGACT SIGOPS, pp. 282-284.

Ostroff, J.S. (1989). Synthesis of controllers for real-
time discrete event systems. IEEE Proceedings of
the 28th Conference on Decision and Control,
Tampa, Florida, pp. 138-144.

Ramadge, P.J. and W.M. Wonham (1987a).
Supervisory Control of a Class of Discrete Event
Processes. SIAM Journal on Control and
Optimization, vol. 25, no.1, pp. 206-230.

Ramadge, P.J. and W.M. Wonham (1987b). On the
Supremal Controllable Sublanguage of a Given
Language. SIAM Journal on Control and
Optimization, vol. 25, no. 3, pp. 637-659.

Shih, C.-S. and J. Stankovic (1990). Survey of
Deadlock Detection in Distributed Concurrent
Programming Environments and Its Application
to Real-Time Systems and Ada. Technical Report
UM-CS-1990-069, University of Massachusetts,
Amherst, MA.

Zhou, M.C. and F. DiCesare (1993). Petri Net
Synthesis for Discrete Event Control of
Manufacturing Systems. Kluwer Academic
Publishers, Netherlands.

	INTRODUCTION
	METHODOLOGY
	2.1 Definitions
	2.2 Architecture of an agent
	2.3 Synthesis

	ILLUSTRATIVE EXAMPLE
	IMPLEMENTATION
	CONCLUSION

