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1. INTRODUCTION

Embedded systems work in a real life environ-
ment, whose behaviour is highly unpredictable.
In many situations, these behaviours are gov-
erned by (partial) differential equations that can
be changed by discrete events (triggers). These
behaviours are difficult to study by classical math-
ematical tools: solutions of partial equations are
partial system evolutions, thus we can not derive
conclusions on the global evolutions. A natural
model of these systems constitutes stochastic hy-
brid systems (SHSs). The uncertainty is modelled
using stochastic analysis and the alternate of con-
tinuous (partial) evolutions by the hybrid system
model. We model hybrid systems as partial orders
(modelling the changes in time) on an abstract set
of behaviours (modelling both deterministic and
stochastic continuous evolutions).

Practical motivations for this work include car-
diac stimulators, encephalogram analysers and
air traffic control systems. A cardiac stimulator
record series of cardiac potentials and reacts when

“dangerous” potentials appear. A encephalogram
analyser has a similar behaviour, except that
neuralgic potentials are involved. In (Bujorianu,
M.C. and Bujorianu, M.L., 2002), all these bi-
ological potentials have characterised as mathe-
matical structures, denoted as basic processes in
Section 3. Air traffic management systems are
inherently distributed and stochastic analysis has
been recently applied in their study (Bujorianu,
M.L., 2004), (Pola, G. et al., 2003), ( Bujori-
anu, M.L. and Lygeros, J., 2004). Distribution (or
concurrency) is modelled following two different
philosophies: interleaving (i.e. simultaneous exe-
cutions are modelled by any arbitrary sequence
of evolutions) and true concurrency (Best E. and
Fernandez, C., 1990) (i.e. simultaneous executions
are modelled by partial orders).

In this paper we present an algebraic framework
for true concurrent Markov processes. The ba-
sic ingredients of this framework are the causal-
ity relation, modeled as partial order relations
(a ≺ b means the event a is the cause of b)
and an algebraic structure (called here extended



processes - see Section 3) that can associated to
Markov process in a standard way (see Example
1). Markov processes are abstracted using tools
specific to stochastic analysis, like excessive func-
tions (Boboc N. et al., 1981) and Dirichlet forms
(Fukushima, M., 1980). Two system evolutions
a, b that are causal independent (i.e. a ≮ b nor
b ≮ a) can take place simultaneously (true con-
currency).

The paper is structured as follows. In the next
section we introduce the main algebraic notations
and concepts. In Section 3 we define and investi-
gate the basic interplay between multiform time
and the abstract trajectories of a Markov process.
Some tools of stochastic analysis, as the energy in-
tegral, are added to the framework in the following
section. In the final section we discuss related and
future work.

2. PRELIMINARIES

This section presents the main concepts regarding
causal orders, i.e. partial order relations modelling
the evolutions of elements of a set (that could be
the support of an abstract mathematical struc-
ture, modelling the nature of real life events - see
next Section) through time.

Let ≺ be an order relation on the set B. We shall
use the notations

i ) 4=≺ ∪id|B ;

ii ) �=≺−1;

iii) l =≺ − ≺2;

Let us define the following notations:

• li =≺ ∪ � ∪id|B

• co = li ∪ id|B

• for any b ∈ B : �b = {a ∈ B; a ≺ b},
b� = {a ∈ B; a � b}

• l ⊆ B is a li-set iff (∀a, b ∈ l) : (a, b) ∈ li

• l ⊆ B is a line iff l is maximal wrt li: (∀a ∈ b− l)
, (∃b ∈ l) : (a, b) ∈ (B × B) − li.

Let L = L(B) be the set of lines of B.

• c ⊆ B is a co-set iff (∀a, b ∈ co) : (a, b) ∈ co

• c ⊆ B is a cut iff c is maximal wrt co : (∀a ∈ B−
c) , (∃b ∈ l) : (a, b) ∈ (B × B) − co.

Let C = C(B) be the set of cuts of B

Remark 1. i ) (x li y) or (x co y);

ii ) (x li y and x co y) ⇔ x = y;

iii) A is a line iff

(a) (∀x, y ∈ A) : x < y or y < x or x = y;

(b) (∀ x ∈ M−A) , (∃y ∈ A) : ¬(x ≺ y or y ≺ x);

iv) A is a cut iff

(a) (∀x, y ∈ A) : ¬(x ≺ y or y ≺ x);

(b) (∀x ∈ M − A) , (∃y ∈ A) : (x ≺ y or y ≺ x).

A Dedekind cut (D-cut for short) is a partition
(A, A) for which (∀a ∈ A∀b ∈ A) : ¬(b ≺ a). For
A ⊂ B , define M(A) = max(A) ∪ min(A) .

If (A, A) is a D-cut then define

• Obmax(A) =: { a ∈ Max(A) ; ∀A
′

∈ D(B)
∀l ∈ L : a ∈ Max(A

′

∩ l) ⇒ a ∈ Max(A
′

)};

• Obmin(A) =: { a ∈ Min(A) ; ∀A
′

∈ D(B)
∀l ∈ L : a ∈ Min(A

′

∩ l) ⇒ a ∈ Min(A
′

)};

• c(A) = Obmax(A) ∪ Ob min(A).

Proposition 1. Let A ∈ D(B) and a ∈ Max(A) ,
b ∈ Min(A)

• a /∈ Ob max(A) ⇔ ∃c ∈ B ∃l ∈ L : a ≺ c and
l ∩ [a, c] = {a};

• b /∈ Ob min(A) ⇔ ∃c ∈ B ∃l ∈ L : c ≺ b and
l ∩ [c, b] = {b}.

A complete lattice is a partially ordered set in
which every subset has a least upper bound and
a greatest lower bound. A conditionally complete
lattice is a lattice which have the property that
every non-void bounded subset has a least upper
bound and a greatest lower bound.

3. EXTENDED PROCESSES

In this section we present the mathematical model
of true concurrent stochastic processes, namely
the extended processes. We define first real spaces,
the mathematical model of dynamics of the envi-
ronment recorded by an embedded system. The
elements of a real space are then decorated with
elements of a basic space, a mathematical frame in
which many biological potentials and dynamical
systems can be defined.

Definition 1. A real space is defined as being a
structure < M,≺> such that

(M1) < M,≺> is a lower complete semi-lattice.
The order ≺ will be called the causal order. We
shall note by f (resp. g) the infimum (resp.
supremum if exists) of this semi-lattice and



(M2) if (αi)i∈I is increasing and dominated in M
by α, α ∈ M, then there exists g

i∈I
αi .

Definition 2. Let D ⊆ M.We call D

• dense in order from below (in M) if for any
α ∈ M we have α = g{γ ∈ D; γ 4 α};

• increasingly dense if the set {γ ∈ D; γ 4 α }
is increasing to α for any α ∈ M ;

Definition 3. A basic space is defined as being a
structure < S,≤,⊥,>,� > where:

(S1) < S,≤,⊥,> > is a lattice for which:

• ⊥ the minimal element and > the greatest
element ;

• the lattice (S\{>},≤|S\{>},⊥) is lower complete
and upper conditionally complete ;

• ≤ will be called the essential order;

we shall note by ∨ resp. ∧ the supremum resp.
infimum of this lattice;

•⊥ will be called the nil action; > will be called
deadlock ;

(S2) (S,�,⊥) is a monoid;

(S3) s = ⊥ if s � s = ⊥ (∀s ∈ S);

(S4) s �> = > (∀s ∈ S);

(S5) s � (a ∨ b) = (s � a) ∨ (s � b) (∀a, b, s ∈ S);

(S6) a � b = (a ∧ b) � (a ∨ b) (∀a, b ∈ S);

Definition 4. Two elements a, b ∈ S are called
strongly dual if a ∧ b = ⊥.

We note a ∈ b⊥ if a and b are orthogonal and
a⊥ =: {s ∈ S; a⊥s}.

Let S be an basic space. The specific order ≤� is
defined by a ≤� b iff (∃c ∈ S) : b = a � c.

We shall note by
∨

� resp.
∧

� the supremum resp.
infimum in this order (if they exists).

Definition 5. a : b is called the residuu of a by
b and it is the greatest element (if exists) which
holds b � (a : b) ≤ a.

Definition 6. A basic space S has the decompo-
sition property if for any s, s1, s2 ∈ S such that
s ≤ s1�s2 there exists t1, t2 ∈ S such that t1 ≤ s1

, t2 ≤ s2 , s = t1 � t2 .

Proposition 2. Every basic space has the decom-
position property.

Lemma 3. Let S be an basic space and s, a, b ∈ S
.Then

i) a � b ≥ a ∨ b

ii) if a ≤ b then s � a ≤ s � b

iii) (a
∧

� b) � (a
∨

� b) = a � b

iv) if a, b ≤ s and a⊥b then a � b ≤ s

Proposition 4. ≤�⊆≤ .

Proposition 5. Any basic space is a distributive
lattice.

A subset A of a basic space is called linearisable
if

Definition 7. (L) s � a ≤ s � b implies a ≤ b

(∀a, b ∈ A).

We define the order topology τ≤ on < S,≤> by
putting (ai)i∈I →

τ≤

a iff ( (ai)i∈I is increasing

and dominated and
∨
i∈I

ai = a ) or ( (ai)i∈I

is decreasing and
∧
i∈I

ai = a ). Analogously can

be defined the specific order topology τ≤�
on <

S,≤�>

Proposition 6. The superposition is continuous in
the order topology.

Proof. We prove that the followings relations
holds in any basic space:

(ID1) for any increasing and dominated net
(si)i∈I ⊂ S and any s ∈ S we have

∨
i∈I

(s �

si) = s � (
∨

i∈I
si)

(ID2) for any net (si)i∈I ⊂ S and any s ∈ S we
have

∧
i∈I

(s � si) = s � (
∧

i∈I
si)

We prove first (ID2). We set a =:
∧

i∈I
si and

b =:
∧

i∈I
(s � si). Observe that s � a ≤ b. From

b ≤ s� si we obtain b : s ≤ si (∀i ∈ I). Therefore

b : s ≤ a ⇔ b ≤ s � a ⇔
∧

i∈I
(s � si) = s �

(
∧

i∈I
si).

We prove now (ID1). We set a =:
∨

i∈I
si and

b =:
∨

i∈I
(s � si). Observe that s � a ≥ b. From

b ≥ s� si we obtain b : s ≥ si (∀i ∈ I). Therefore

b : s ≥ a ⇔ b ≥ s � a ⇔
∨

i∈I
(s � si) = s �

(
∨

i∈I
si).2

Remark 2. The laticial operations ∨ and ∧ are
continuous in the order topology.

Lemma 7. The followings relations holds in any
basic space:



(GD1) for any increasing and dominated net
(si)i∈I ⊂ S and any s ∈ S we have

∨
i∈I

(s
∧

si) =

s
∧

(
∨

i∈I
si);

(GD2) f or any net (si)i∈I ⊂ S and any s ∈ S we
have

∧
i∈I

(s
∨

si) = s
∨

(
∧

i∈I
si).

Proof. We prove first (GD2). We set a =:
∧

i∈I
si

and ai =: si : a , (∀i ∈ I). Obviously
∧

i∈I
ai =⊥ .

We have s∧ a ≤ (s� ai) ∨ (a� ai) = (s ∨ a)� ai.
Thus

∧
i∈I

(s ∨ si) ≤
∧

i∈I
((s ∨ a) � ai) = s ∨ a.

The converse inequality is immediate.

We prove now (GD1). We set a =:
∨

i∈I
si and

ai =: a : si , (∀i ∈ I). Obviously
∧

i∈I
ai =⊥ .

We have s ∨ si ≤ (s � ai) ∧ (si � ai) = (s ∧ si) �
ai ≤

∨
i∈I

((s∧ si)�ai). Thus s∧a ≤
∨

i∈I
(s∧ si).

The converse inequality is immediate.2

Definition 8. An extended process is a three-tuple
< M, S, ` > , where < M,≺> is a real space,
< S,≤,⊥,>,� > is a basic space and ` : M → S
is an injective isotone labelling function such that,
if B = `(M) then:

(P1) `(α g β) ≥� `(α) ∨ `(β) if α g β exists

(P2) if `(αgβ) = ᵀ and γ � α gβ then `(γ) = >

(P3) ⊥∈ B

(P4) < B,≤|B,∧ > is a lower complete semi-
lattice of < S,≤>

(P5) B is linearisable ;

(P6) (B,�,⊥) is a monoid;

(P7) The superposition is continuous in the order
topology on B ;

(P8) B has the decomposition property.

Remark 3. The elements of an extended process
will be called basic occurences and will be
denoted by greek letters: α, β,etc. Their labels
`(α), `(β) will be called elementary processes. In
the next we shall identify these concepts.

Definition 9. An extended process is called

•dense iff l = ∅ ⇐⇒ ∀α, β ∈ B : α ≺ β ⇒ ∃γ ∈
B : α ≺ γ ≺ β;

•combinatorial iff 4= (l)+;

•K-dense iff (∀l ∈ L) (∀c ∈ C) l ∩ c 6= ∅;

•N-dense iff (∀α, β, γ, δ ∈ B) : (γ co β & β co α
& α co δ & α li γ & γ li δ & δ li β) ⇒

(∃e ∈ B : e co α & e co β & e li γ & e li δ).;

•of finite degree iff ∀β ∈ B : |�β| < ∞ and |
β�| < ∞;

•with finite intervals iff (∀α, β ∈ B) : |[α, β]| <
∞;

•boundedly discrete iff (∀α, β ∈ B) (∃n ∈ ω)
(∀l ∈ L) : |[α, β] ∩ l| < n.

Definition 10. A discrete observer is a function
dob : B → ω : α ≺ β ⇒ dob(α) ≺ dob(β)

Definition 11. An extended process is called dis-
crete observable if admits a discrete observer.

Definition 12. An extended process is injectively
observable iff there exists an injective discrete
observer.

Definition 13. A continuous observer is a func-
tion cob : B → R+ with the following properties:

(CO1) α ≺ β ⇒ cob(α) ≤ cob(β) , (∀α, β ∈ B);

(CO2) cob(β) = supi∈I(cob(βi)) if (βi)i∈I ↑ β ;

(CO3) (∀β ∈ B) (∃(βi)i∈I ↑ β) : cob(βi) < ∞.

Definition 14. A continuous observer cob is
called nondeterministic iff cob(α � β) =
max(cob(α), cob(β))

Definition 15. An extended process is called con-
tinuous observable if admits a continuous observer

We shall state without proof the followings con-
nections between observability and discreteness

Proposition 8. If an extended process is discrete
observable then it is boundedly discrete. If the
extended process is countable then the converse
also holds.

Proposition 9. An extended process is injectively
observable iff the extended process has finite in-
tervals and it is countable.

Definition 16. An extended process B is called
continuous if for any Dedekind-cut (A, A) of B
and any line l : |M(A) ∩ l| = 1 .

Proposition 10. If the extended process B is con-
tinuous then B is dense.

Definition 17. An extended process B is called

•gap-free iff ∀A ∈ D(B) ∀l ∈ L : |c(A) ∩ l| 6= 0;

•jump-free iff ∀A ∈ D(B) ∀l ∈ L : |c(A) ∩ l| 6= 2.

Definition 18. An extended process is called D-
continuous if for any Dedekind-cut (A, A) of B
and any line l : |c(A) ∩ l| = 1



Remark 4. If the extended process B is combina-
torial then

•Obmax(A) = {α ∈ Max(A)/|α�| ≤ 1};

•Obmin(A) = {α ∈ Min(A)/|�α| ≤ 1}.

Proposition 11. Let A ⊂ B be specifically decreas-
ing. Then we have

∧
� A =

∧
A.

Proposition 12. Let A ⊂ B be specifically increas-
ing and dominated. Then we have

∨
� A =

∨
A.

Corollary 13. The order topology τ≤ is finer than
the specific order topology τ≤�

.

4. ENERGY

In mathematical physics, the energy integral plays
a very important role. In this section we formalise
this approach as energetic spaces.

Definition 19. The mutual energy E [a, b] of two
elements a,b is a map E : S × S → R with the
following properties:

(EN1) E [a � b, s] = E [a, s] + E [b, s] (the superpo-
sition principle)

(EN2) E [a, b] = E [b, a] (the symmetry condition)

(EN3) E [s] = E [s, s] (the energy of the element
s)

(EN4) E [s] > 0 if s 6=⊥ ( E is positive definite)

(EN5) |E [a, b]|2 ≤ E [a, b] · E [a, b] (the weak sector
condition)

Remark 5. We can extend the energy to [S] × [S]
by

E [a : b, c : d] = E [a, c] + E [b, d] − E [a, d] − E [b, c].

Definition 20. The elements a, b ∈ S are called
dual in energy (noted a ∈ b⊥E )if E [a, b] = 0

Lemma 14. For any a, b ∈ [S]

i) E [⊥] = 0; ii) E [a,⊥] = 0;iii) E [a] > 0 if a 6=⊥ ;

iv) E [a∗] = E [a]; v) E
1

2 [a � b] ≤ E
1

2 [a] + E
1

2 [b];

vi) E [a � b] + E [a : b] = 2(E [a] + E [b]);

Definition 21. An energetic space is a structure
< [S], E > such that [S] is an extended space,
E : S × S → R is an energy and

(ES1) [S] = [S];

(ES2) a ∈ b⊥ ⇒ a ∈ b⊥E , (∀a, b ∈ [S]).

Remark 6. The terms energy and energetic space
have been inspired by their use in the mathemat-
ical modelling world.

Example 1. Let [S] be the class of all the spaces
of excessive functions ξV of all sub-Markovian
resolvents V which are in duality (with respect to a
finite measure µ) and for which the initial kernels
are proper. For any ξV , ξW ⊆ [S] and a ∈ ξV ,
b ∈ ξW define the mutual energy E [a, b] of a and
b by

E [a, b] = : sup{

∫
f Wg dµ ; a, b ∈ F, V f ≤ s,(1)

Wg ≤ t}

where V is the initial kernel for V , W is the
initial kernel for W and F denotes the set of all
B-measurable positive numerical functions on X,
(X, B, µ) being the measurable space.

Theorem 15. The structure < [S], E > is an ener-
getic space iff [S] is closed in the energy topology
and the energy E is a laticial valuation.

Definition 22. An extended process B is called
W-like process if there exists a map k : B → Im B
such that :

(W1) k[α � β] = k[α] + k[β] , and

α ≤ β ⇔ k[α] ≤ k[β] , (∀α, β ∈ B);

(W2) k[B] is solid and increasingly dense in ImB
;

(W3) k[R(α)] = R̃(k[α]) , (∀α ∈ B);

(W4) for any two sweepings S and T on B such
that S ∨ T = idB we have S ◦ T = T ◦ S.

A basic intuition behind a W-like process is that
its labels could be interpreted as the weak so-
lutions (i.e. solutions in the sense distributions
theory) of a very general classes of stochastic
differential operators.
In the remaining of this section we show that
one can associate an energetic space to a W-like
process. In this way, many important properties of
physical events (like cardiac potentials or weather
turbulence) can be formulated algebraically.

Let C : B × B → R+ defined by C[α, β] = k[β](α)
, (∀α, β ∈ B). For any W-like process B define
Bf =: {β ∈ B; C[β, β] < ∞}

Lemma 16. The couple of observers C has the
followings properties:

* )For any β ∈ B : α ≤ β ⇒ C[σ, α] ≤ C[σ, β]

** ) If (αi)i∈I ↑ α then
∨
i∈I

C[σ, αi] = C[σ, α].



***) For any cob ∈ Im B there exists β ∈ B :
cob(α) = C[β, α] , (∀α ∈ B).

Corollary 17. The axioms W1) W2) are logical
equivalent with the properties *), **), ***). The
axiom W3) is logical equivalent with the following
property for any sweeping S on B : C[Sα, β] =
C[α, Sβ] , (∀α, β ∈ B).

For any β ∈ B define

Bβ= : {α ∈ Bf ; ∃m, n ∈ N, α(m) ≤ β(n)}

Remark 7. Bf =
⋃

β∈Bf

Bβ .

Proposition 18. Bf is solid and increasingly dense
in B.

Lemma 19. Bf is a basic space if C[βf , βf ] ≥ 0 for
any βf ∈ [Bf

α] and α ∈ Bf .

Corollary 20. For any α, β ∈ B

C[α, β] + C[β, α] ≤ C[α, α] + C[β, β]

and C[α, α] = 0 ⇒ α = ⊥.

Lemma 21. Let β ∈ [B
′

], B
′

⊆ B be solid in B
with respect to the specific order and such that
C[β] < ∞, β = α : α

′

, α : α
′

∈ B and (βn)n∈N be
the sequence defined by β1 = β, βn+1 = βn : βn.

Then C[β] =
∞∑

n=1
C[βn].

Lemma 22. Let A ⊂ B a inferior semilattice, solid
with respect the specific order and C[α] < +∞,
(∀α ∈ A). If the couple of observers C is regular,
then

C[Sασ, σ
′

] = C[σ, Sασ
′

] , (∀α ∈ [A]↑ , ∀σ, σ
′

∈ A).

Proposition 23. Let B be a W-like process. Then
< [Bf

α], EC > is an energetic space, (∀α ∈ [B]).

The map EC : [S] × [S] → R defined by

EC [α, β] =:
C[α, β]+C[β, α]

2
is an energy which

will be called the energy associated to the W-like
process B.

5. FINAL REMARKS

Many detailed examples, the omitted (because of
space limit) proofs and bibliographic discussions
are presented in (Bujorianu, M.C. and Bujorianu,
M.L., 2002). In particular, it is presented the ori-
gin of mathematical concepts investigated in this
paper, like extended processes, energetic spaces

and observers and basic space. Also it is proved
that mathematical models of cardiac potentials
(and, by extension, of most of biological poten-
tials) satisfy the axioms of basic spaces.

A different model of Markov processes with mul-
tiform time is presented in (Benveniste A. et
al., 1995). Computer networks inspire the model
and therefore it is developed based on different
guiding principles. The main difference relies on
the system/environment emphasis. The system-
oriented approach in (Benveniste A. et al., 1995)
considers a richer concurrency structure, for e.g.
conflict relations. The classes of reactive systems
we consider have behaviour driven by the environ-
ment and therefore axiomatic modelling of real life
environments plays a dominant role.

In a future work, we will investigate more concrete
temporal structures, like those arising from event
structures (Best E. and Fernandez, C., 1990).
A case study from air traffic control is under
development.
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