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1. INTRODUCTION

Consider the 2-D linear discrete time systems
proposed in (Kaczorek, 1988) as a generalization
of the 2-D state-space model given in (Kurek,
1985)

Ex (i+ 1; j + 1) = A0x (i; j)+ (1)
A1x (i+ 1; j) +A2x (i; j + 1) +B0u (i; j)+

+B1u (i+ 1; j) +B2u (i; j + 1)

where i; j are integer-value vertical and horizontal
coordinates, respectively, x (i; j) 2 Rn is the local
state vector at (i; j), u (i; j) 2 Rm is the input
vector, Ak 2 Rn�n; Bk 2 Rn�m; k = 0; 1; 2 and
matrices E;A0 2 Rn�n exists and are not nec-
essarily nonsingular. This model includes similar
generalization of other 2-D state space models
such as the Fornasini and Marchesini (Fornasini
and Marchesini, 1970) and the Roesser 2-D model
(Roesser, 1975). If E 6= I we call these mod-
els implicit 2-D systems. We shall call (1) the
general singular model (GSM) or otherwise the
implicit Fornasini-Marchesini (FM) model. If E
is non-square or det (E) = 0 we call these mod-
els singular 2-D systems. One particular case of
(1) is the implicit Roesser model proposed in
(Kaczorek, 1987) and (Lewis, 1987) as a gen-
eralization of the Roesser 2-D model given in

(Roesser, 1975). It is shown in (Kaczorek, 1989)
that the implicit Roesser and the implicit FM
model are equivalent. Due to the equivalence of
the above models we consider in the rest of the
paper only the GSM model. An example of the
GSM model is providing by discretizing the heat
equation using the method of central di¤erences
(Karamancioglu, 1991), while an example of the
implicit Roesser model is given by the 2-D real-
ization of a nonrecursible mask in digital image
processing (Lewis and Mertzios, 1991). Implicit
FM models are also arising from the discretization
of continuous-time systems that are described by
partial di¤erential equations i.e. the standard dis-
cretization of the elliptic equation that results in
a �ve-point discrete mask or the discretization of
the di¤usion equation that results in a four-point
discrete mask (Karamancioglu, 1991).

According to (Lewis, 1992) there are various ways
to specify the boundary conditions (BCs) and the
region of interest for the FM and Roesser models.
First suppose that the 2-D implicit system has
BCs speci�ed along the i� and j� axes. For the
GSM model this means we know :

x (i; 0) = xi0; i = 0; 1; :::; N

x (0; j) = x0j ; j = 0; 1; :::;M (2)



where xi0 and x0j are known vectors. Then, if the
region of interest is the rectangle [0; N ] � [0;M ]
in the (i; j)�plane, we are concerned with �nding
what could be called a "forward solution ". If the
BCs are speci�ed along the upper and right-hand
sides of the rectangle :

x (i;M) = xiM ; i = 0; 1; :::; N

x (N; j) = xNj ; j = 0; 1; :::;M (3)

then the solution on [0; N ] � [0;M ] could be
called "backward solution ". A general case which
includes both of these situations is where the BCs
are of the split or two-point form :

Cui;0x (i; 0) + C
u
i;Mx (i;M) = c

u
i ; 0 � i � N

Ch0;jx (0; j) + C
h
N;jx (N; j) = c

h
i ; 0 � j �M

(4)

with
�
Cui;0 C

u
i;M

�
and

�
Ch0;j C

h
N;j

�
prescribed

matrices of full row rank and cui ; c
h
i given vectors.

If the BCs are of the split form given above or
otherwise involve the semistate along all bound-
aries of the rectangular region [0; N ]� [0;M ] then
the solution on [0; N ] � [0;M ] could be called
"symmetric solution ".

A complete analysis of solutions and properties
in the forward, backward and symmetric case for
the 1-D singular systems Ex (i+ 1) = Ax (i) +
Bu (i) was given in (Lewis and Mertzios, 1990)
in terms of the matrices E;A;B and the forward
and backward fundamental matrix of (zE �A)�1.
(Lewis and Mertzios, 1991) and (Kaczorek, 1990)
have proposed, a forward solution to the 2-D
implicit Roesser model and GSM respectively,
in terms of the forward fundamental matrix of
the system. Following similar methods to those
of (Lewis and Mertzios, 1990) , we produce a
closed formula for the backward and symmetric
solution of the GSM (1) in terms of the forward
fundamental matrix Tp;q and backward fundamen-
tal matrix ~Tp;q of (z1z2E �A0 �A1z1 �A2z2)�1.
A generalized Leverrier technique for computing
the forward fundamental matrix sequence is avail-
able (Mertzios and Lewis, 1988), (Karampetakis
et al., 1994), so that we may assume that this
matrix sequence is given. We shall show in Section
2 that the backward fundamental matrix sequence
of z1z2E � A0 � A1z1 � A2z2 is the forward fun-
damental matrix sequence of the dual polynomial
matrix E�A0z1z2�A1z2�A2z1, and thus we may
assume that the backward fundamental matrix
sequence is also given.

2. PRELIMINARY RESULTS

Assuming that the polynomial matrix

G (z1; z2) = z1z2E �A0 �A1z1 �A2z2 (5)

with E 6= 0; is invertible, the Laurent expan-
sion at in�nity of G (z1; z2)

�1 exists, is unique
(Karampetakis et al., 1994), and is given by :

G (z1; z2)
�1
=

1X
p=�n1

1X
q=�n2

Tp;qz
�p
1 z�q2 (6)

(n1 � n; n2 � n) and jz1j > �1 > 0; jz2j > �2 > 0
where the matrix sequence fTp;qg is known as
the forward fundamental matrix. Note that a nec-
essary and su¢ cient condition for the unique-
ness of the fundamental matrix sequence is that
condition degz jG (z; z)j = degz1 jG (z1; z2)j +
degz2 jG (z1; z2)j is satis�ed (Karampetakis et al.,
1994). Let also the Laurent expansion about zero
of G (z1; z2)

�1 exists, is unique and is given by

G (z1; z2)
�1
=

�1X
p=`1

�1X
q=`2

Vp;qz
�p
1 z�q2 (7)

jz1j < �1; jz2j < �2
where the matrix sequence fVp;qg is known as
the backward fundamental matrix. The Laurent
expansion about zero of G (z1; z2)

�1 given in (7)
is related with the Laurent expansion at in�nity
given in (6) of the inverse of the dual matrix
~G (z1; z2) = E �A0z1z2 �A1z2 �A2z1 � (8)

� z1z2G
�
1

z1
;
1

z2

�
as we can see in the following Lemma.

Lemma 1. Let the Laurent expansion at in�nity
of ~G (z1; z2)

�1 be

~G (z1; z2)
�1
=

1X
p=�f1

1X
q=�f2

~Tp;qz
�p
1 z�q2 (9)

and (7) be the Laurent expansion at zero of
G (z1; z2)

�1. Then

fi + 1 = `i and V�i;�j = ~Ti+1;j+1

i = `1; `1 � 1; :::: and j = `2; `2 � 1; :::: (10)

Proof. We have that

G (z1; z2)
�1
= z�11 z�12

~G

�
1

z1
;
1

z2

��1
=

=

1X
p=�f1

1X
q=�f2

~Tp;qz
p�1
1 zq�12 �

�1X
p=`1

�1X
q=`2

Vp;qz
�p
1 z�q2

(11)

Equating the coe¢ cients of the powers of zi; i =
1; 2 we obtain the proof of Lemma.

We conclude from the above Lemma that the
Laurent expansion at zero of G (z1; z2)

�1 exists
and is unique i¤ the Laurent expansion at in�nity
of ~G (z1; z2)

�1 exists and is unique or otherwise
when ~dud = ~du1 +

~du2 ,where

~dui = degzi jE �A0z1z2 �A1z2 �A2z1j ; i = 1; 2
~dud = degz

��E �A0z2 � (A1 +A2) z��



We can easily check that this condition is equiv-
alent to the condition ddd = dd1 + d

d
2 ,where d

d
i is

the less power of zi in det (G (z1; z2)) and ddd is
the less power of z in det (G (z; z)) i.e. d (z1; z2) =

det (G (z1; z2)) =
duiP
i=dd1

du2P
j=dd2

di;jz
i
1z
j
2. A direct re-

sult of Lemma 1 is that the Leverrier algorithm
presented in (Karampetakis et al., 1994) may be
used for the computation of both the forward
and backward fundamental matrix sequence. An
interesting result that connects the solutions of
(1) and the ones of the dual 2-D GSM

E~x (i; j) = A0~x (i+ 1; j + 1)+ (12)
+A1~x (i; j + 1) +A2~x (i+ 1; j) +B0~u (i+ 1; j + 1)+

+B1~u (i; j + 1) +B2~u (i+ 1; j)

in the closed interval [0; N ] � [0;M ] is given by
the following Lemma.

Lemma 2. (a) If ~x (i; j) is a solution of (12) for
the non-zero input ~u (i; j), then the sequence
x (i; j) = ~x (N � i;M � j) is a solution of the
dual equation (1) for the nonzero input u (i; j) =
~u (N � i;M � j). (b) If x (i; j) is a solution of (1)
for the non-zero input u (i; j), then the sequence
~x (i; j) = x (N � i;M � j) is a solution of the
dual equation (12) for the nonzero input ~u (i; j) =
u (N � i;M � j).

Proof. (a) Let ~x (i; j) be a solution of (12)
for the non-zero input ~u (i; j). This implies that
(12) is satis�ed. Now consider equation (1). If
we set x (i; j) = ~x (N � i;M � j), u (i; j) =
~u (N � i;M � j) we have

Ex (i+ 1; j + 1) = E~x (N � (i+ 1) ;M � (j + 1)) =
(12)
= A0~x (N � (i+ 1) + 1;M � (j + 1) + 1)+
+A1~x (N � (i+ 1) ;M � (j + 1) + 1)+
+A2~x (N � (i+ 1) + 1;M � (j + 1))+

+B0~u (N � (i+ 1) + 1;M � (j + 1) + 1)+
+B1~u (N � (i+ 1) ;M � (j + 1) + 1)+
+B2~u (N � (i+ 1) + 1;M � (j + 1)) =

(x(i;j)=~x(N�i;M�j))
=

u(i;j)=~u(N�i;M�j)
A0x (i; j) +A1x (i+ 1; j)+

+A2x (i; j + 1) +B0u (i; j)+

+B1u (i+ 1; j) +B2u (i; j + 1)

(b) In the same way we can prove the second part
of the Theorem.

A direct result of Lemma 2 is that the backward
solution of the GSM (1) comes directly from the
forward solution of the dual GSM (12).

3. SOLUTIONS OF GSMS

In the next three subsections we give the forward,
backward and symmetric solution of the GSM
(1) in terms of the matrix coe¢ cients Ai; Bi; i =
0; 1; 2 and the forward/backward fundamental
matrix sequence fTp;qg = fVp;qg of G (z1; z2)�1.

3.1 The forward solution of general singular models

Consider the GSM (1) and the Laurent matrix
expansion at in�nity of G (z1; z2)

�1 given in (6).
Then the unique forward solution to (1) with
admissible (2) is given according to (Kaczorek,
1990) by :

x (i; j) =

i+n1X
p=0

j+n2X
q=0

Ti�p;j�qB0u (p; q)+

+

i+n1+1X
p=0

j+n2X
q=0

Ti�p+1;j�qB1u (p; q)+

+

i+n1X
p=0

j+n2+1X
q=0

Ti�p;j�q+1B2u (p; q)�

�
i+n1X
p=0

Ti�p;j+1
�
A2 B2

� � x (p; 0)
u (p; 0)

�
�

�
i+n2X
q=0

Ti+1;j�q
�
A1 B1

� � x (0; q)
u (0; q)

�
+

+Ti+1;j+1Ex (0; 0)+ (13)

+

i+n1+1X
p=1

Ti�p+1;j+1Ex (p; 0)+

+

j+n2+1X
q=1

Ti+1;j�q+1Ex (p; 0)

It is important to note that (1) does not always
have a solution. A necessary and su¢ cient condi-
tion for (1) to have a solution is that the initial
conditions (2) satisfy the relation (13) for (i =
0&j = 0; 1; 2; :::;M) and (j = 0&i = 0; 1; :::; N).

3.2 The backward solution of general singular
models

Let ~X (z1; z2) ; ~U (z1; z2) be respectively the 2�D
Z-transform of the functions ~x (i; j) and ~u (i; j).
Then by applying the 2�D Z-transform (Kaczorek,
1985) in the dual GSM (12) of (1) we obtain

~X (z1; z2) =

0@ 1X
p=�f1

1X
q=�f2

~Tp;qz
�p
1 z�q2

1A
| {z }

~G(z1;z2)
�1

�

�f(B0z1z2 +B1z2 +B2z1) ~U (z1; z2)�
�B0z1z2 ~U (z1; 0)�B1z2 ~U (z1; 0)�



�B0z1z2 ~U (0; z2)�B2z1 ~U (0; z2) +B0z1z2~u (0; 0)
+A0z1z2~x (0; 0)�A1z2 ~X (z1; 0)�A0z1z2 ~X (z1; 0)�

�A2z1 ~X (0; z2)�A0z1z2 ~X (0; z2)g (14)

Using the inverse 2-D transformation (Kaczorek,
1985) for (14) and taking into account that ~Tp;q =
0 for p < �f1 or q < �f2, we obtain

~x (i; j) =

i+f1+1X
p=0

j+f2+1X
q=0

~Ti�p+1;j�q+1B0~u (p; q)+

+

i+f1X
p=0

j+f2+1X
q=0

~Ti�p;j�q+1B1~u (p; q)+

+

i+f1+1X
p=0

j+f2X
q=0

~Ti�p+1;j�qB2~u (p; q)+

�
i+f1X
p=0

~Ti�p;j+1
�
A1 B1

� � ~x (p; 0)
~u (p; 0)

�
�

�
j+f2X
q=0

~Ti+1;j�q
�
A2 B2

� � ~x (0; q)
~u (0; q)

�
�

�
i+f1+1X
p=1

~Ti�p+1;j+1
�
A0 B0

� � ~x (p; 0)
~u (p; 0)

�
�

�
j+f2+1X
q=1

~Ti+1;j�q+1
�
A0 B0

� � ~x (0; q)
~u (0; q)

�
+ ~Ti+1;j+1

�
A0 B0

� � ~x (0; 0)
~u (0; 0)

�
(15)

Now by using the part (a) of Lemma 2 and the
solution of the dual GSM (15) we can easily prove
the following Theorem.

Theorem 3. If det [G (z1; z2)] 6= 0, then the unique
backward solution to (1) with admissible bound-
ary conditions (3) is given by

x (i; j) =

N�i+`1X
p=0

M�j+`2X
q=0

Vp�i�N;q�j�MB0u (N � p;M � q)+

+

N�i+`1�1X
p=0

M�j+`2X
q=0

V1+p+i�N;q+j�MB1u (N � p;M � q)+

+

N�i+`1X
p=0

M�j+`2�1X
q=0

Vp+i�N;1+q+j�MB2u (N � p;M � q)�

�
N�i+`1�1X

p=0

V1+p+i�N;j�M
�
A1 B1

� � x (N � p;M)
u (N � p;M)

�
�

�
M�j+`2�1X

q=0

Vi�N;1+q+j�M
�
A2 B2

� � x (N;M � q)
u (N;M � q)

�
�

�
N�i+`1X
p=1

Vp+i�N;j�M
�
A0 B0

� � x (N � p;M)
u (N � p;M)

�
�

�
M�j+`2X
q=1

Vi�N;q+j�M
�
A0 B0

� � x (N;M � q)
u (N;M � q)

�
+

+Vi�N;j�M
�
A0 B0

� � x (N;M)
u (N;M)

�
(16)

where Vi;j is the backward fundamental matrix
sequence of G(z1; z2)�1 given in (7).

Proof. Let ~x (i; j) be the solution of (12) for
the non-zero input ~u (i; j) presented in (15). Then
by using (11) and the fact that the sequence
x (i; j) = ~x (N � i;M � j) is a solution of the
dual equation (1) for the nonzero input u (i; j) =
~u (N � i;M � j) from Lemma 2 we get the result.

A necessary and su¢ cient condition for (1) to
have a solution is that the �nal conditions (3)
satisfy (16) for (i = N&j = 0; 1; :::;M) and
(i = 0; 1; ::::; N&j =M).

3.3 The symmetric solution of general singular
models

Consider the Laurent expansion at in�nity of
G (z1; z2) given in (6). Then the following relations

Tp;qE � Tp�1;q�1A0 � Tp;q�1A1 � Tp�1;qA2 = �p�1;q�1In
Tp;qE = 0n;n (17)

(for p < �n1 and/or q < �n2)

are following from comparison of coe¢ cient ma-
trices at like powers of z1 and z2 of the equality 1X

p=�n1

1X
q=�n2

Tp;qz
�p
1 z�q2

!
| {z }

G(z1;z2)
�1

�

�(z1z2E �A0 �A1z1 �A2z2)| {z }
G(z1;z2)

= In

De�ne now the matrices

A0 = blockdiag
��
�A1 �A0

�
; ::;
�
�A1 �A0

��
A1 = blockdiag

��
E �A2

�
; ::;
�
E �A2

��
B0 = blockdiag

��
B1 B0

�
; ::;
�
B1 B0

��
B1 = blockdiag

��
B2 0

�
; ::;
�
B2 0

��
whereA0 2 RnN�n(N+1);A1 2 RnN�n(N+1);B0 2
RnN�m(N+1);B1 2 RnN�m(N+1) and the vectors

yi =

0BBBBB@
xN;i
xN�1;i
...
x1;i
x0;i

1CCCCCA ; ui =
0BBBBB@

uN;i
uN�1;i
...
u1;i
u0;i

1CCCCCA
i = 0; 1; :::;M

where yi 2 R(N+1)n; ui 2 R(N+1)m. Then (1) may
be rewritten in the form



0BBBBB@
A1 A0 � � � 0 0 0
0 A1 � � � 0 0 0
...

...
. . .

...
...

...
0 0 � � � A1 A0 0
0 0 � � � 0 A1 A0

1CCCCCA
| {z }

~AN

0BBBBB@
yM
yM�1
...
y1
y0

1CCCCCA
| {z }

y0;M

= (18)

=

0BBBBB@
B1 B0 � � � 0 0 0
0 B1 � � � 0 0 0
...

...
. . .

...
...

...
0 0 � � � B1 B0 0
0 0 � � � 0 B1 B0

1CCCCCA
| {z }

~BN

0BBBBB@
uM
uM�1
...
u1
u0

1CCCCCA
| {z }

v0;M

Let also

Hi =

0BBBBB@
T1;i T2;i � � � TN�1;i TN;i
T0;i T1;i � � � TN�2;i TN�1;i
...

...
. . .

...
...

T�N+1;i T�N+2;i � � � T0;i T1;i
T�N;i T�N+1;i � � � T�1;i T0;i

1CCCCCA

Si =

0BBBBB@
F1;i 0 � � � 0 QN;i
F0;i �i�1I � � � 0 QN�1;i
...

...
. . .

...
...

F�N+2;i 0 � � � �i�1I Q2;i
F�N+1;i 0 � � � 0 Q1;i

1CCCCCA
Fk;i = Tk;iE � Tk;i�1A1
Qk;i = �Tk;iA2 � Tk;i�1A0

Then we can check that

HiA1 +Hi�1A0 = Si
Premultiplying (18) by the matrix

~ALN =

0BBBBB@
H1 H2 H3 � � � HM

H0 H1 H2 � � � HM�1
H�1 H0 H1 � � � HM�2
...

...
...

. . .
...

H�M+1 H�M+2 H�M+3 � � � H0

1CCCCCA
we obtain that

~ALN ~ANy0;M = ~ALN ~BNv0;M ,0BBBBB@
H1A1 S2 � � � SM HMA0
H0A1 S1 � � � SM�1 HM�1A0
H�1A1 S0 � � � SM�2 HM�2A0
...

...
. . .

...
...

H�M+1A1 S�M+2 � � � S0 H0A0

1CCCCCA y0;M =

=

0BBBBB@
H1B1 W1 � � � HMB0
H0B1 W0 � � � HM�1B0
H�1B1 W�1 � � � HM�2B0
...

...
. . .

...
H�M+1B1 W�M+1 � � � H0B0

1CCCCCA v0;M
(19)

where Wi = HiB0 + Hi+1B1. From the �rst and
last block equation we get boundary conditions
that must be satis�ed in order (1) have a solution:

H1A1yM + S2yM�1 + � � �+ SMy1 +HMA0y0 =
= (H1B1)uM + (H1B0 +H2B1)uM�1 + � � �+
+(HM�1B0 +HMB1)u1 + (HMB0)u0 (20)

and

H�M+1A1yM + S�M+2yM�1 + � � �+ S0y1 +H0A0y0 =
= (H�M+1B1)uM + (H�M+1B0 +H�M+2B1)uM�1+

+ � � �+ (H0B0 +H1B1)u1 + (H0B0)u0 (21)

Note that the matrices Si; i = 0; 2; 3; :::;M in (20)
and (21) have all their block columns, except of
the �rst and the last one, �lled with zero entries
and therefore the above equations gives rise only
to boundary conditions of the form (4). Now
consider the rest equations that are coming from
(19)

(H�qA1) yM + S�q+1yM�1 + � � �+ (22)
+S�q+M�1y1 + (H�q+M�1A0) y0 =

= (H�qB1)uM + (H�qB0 +H�q+1B1)uM�1+

+::+ (H�q+M�1B0 +H�q+M�1B1)u1 + (H�q+M�1B0)u0

where q = 0; 1; :::;M � 2; by taking the i�th row
of the above equations i.e. for q = 0; 1; :::;M � 2
and i = 0; 1; :::; N�2 and by substituting N�1+i
with p, and M � 1 � q with q, we can easily get
the following Theorem.

Theorem 4. If det [G (z1; z2)] 6= 0, and degz jG (z; z)j =
degz1 jG (z1; z2)j + degz2 jG (z1; z2)j is satis�ed,
then the unique symmetric solution to (1) with
admissible boundary conditions (2) is given by

xp;q = �TN�1�p;1+q�MExN;M+
+T2(N�1)�p;1+q�MA2x0;M+

+

N�2X
k=0

fTN�1�p+k;1+q�MA2�

�TN�p+k;1+q�MEgxN�1�k;M+

+

q+1X
j=q+2�M

ff�TN�1�p;jE+

+TN�1�p;j�1A1gxN;q+2�j + f�T2(N�1)�p;jA2�
�T2(N�1)�p;j�1A0x0;q+2�jgg+ TN�1�p;qA1xN;0+

+
N�2X
k=0

fTN�1�p+k;qA0 + TN�p+k;qA1gxN�1�k;0+

+T2(N�1)�p;qA0x0;0+

+
N�1X
k=0

TN�1�p+k;q+1�MB2uN�k;M+

+

q�1X
j=q+1�M

N�2X
k=0

fTN�1�p+k;jB0 + TN�p+k;jB1+

+TN�p+k;j+1B2guN�k�1;M�1�j+

+

q�1X
j=q+1�M

f(TN�1�p;jB1 + TN�1�p;j+1B2)uN;M�1�j+

+
�
T2(N�1)�p;jB0 + T2(N�1)�p;j+1B2

�
u0;M�1�jg+



+(TN�1�p;qB1)uN;0 +
�
T2(N�1)�p;qB0

�
u0;0+

+

N�2X
k=0

fTN�1+p+k;qB0 + TN�p+k;qB1guN�1�k;0

Using now the �rst and last block row equations
of (22) we get the following extra boundary con-
ditions for (i = �1; N � 1 & q = 0; 1; :::;M � 2),
or (q = �1;M � 1 & i = �1; 0; :::; N � 2; N � 1)

T�i;�qExN;M � T�i+N�1;�qA2x0;M+

+
N�2X
k=0

(�T�i+k;�qA2 + T�i+k+1;�qE)xN�1�k;M+

+

M�qX
j=1�q

f(T�i;jE � T�i;j�1A1)xN;M�q+1�j+

+(�T�i+N�1;jA2 � T�i+N�1;j�1A0)x0;M�q+1�jg�
�T�i;M�1�qA1xN;0�

�
N�2X
k=0

�
T�i+k;M�1�qA0+
+T�i+k+1;M�1�qA1

�
xN�1�k;0�

�T�i+N�1;M�1�qA0x0;0 =

N�1X
k=0

T�i+k;�qB2uN�k;M+

+

M�2�qX
j=�q

N�2X
k=0

fT�i+k;jB0 + T�i+k+1;jB1+

+T�i+k+1;j+1B2guN�k�1;M�1�j+

+

M�2�qX
j=�q

f(T�i;jB1 + T�i;j+1B2)uN;M�1�j+

+(T�i+N�1;jB0 + T�i+N�1;j+1B2)u0;M�1�jg
+(T�i;M�1�qB1)uN;0 + (T�i+N�1;M�1�qB0)u0;0+

(23)

+
N�2X
k=0

�
T�i+k;M�1�qB0+
+T�i+k+1;M�1�qB1

�
uN�1�k;0

Therefore, a necessary and su¢ cient condition
so that (1) has a solution is that the initial
conditions, �nal conditions and input sequences
satisfy the relations (4), (20), (21) and (23).

4. CONCLUSIONS

In the case of general discrete time singular mod-
els, exact solutions where proposed in two di¤er-
ent forms : a) backward solutions, and b) sym-
metric solutions. All the closed formula solutions
were represented in terms of the forward and
backward fundamental matrix of the GSM. It is
easily seen that the proposed solutions : a) are
extensions of the ones proposed in (Lewis and
Mertzios, 1990) for 1-D discrete time singular
systems, and b) accomplish the work that have
been done by (Kaczorek, 1990) and (Lewis and
Mertzios, 1991) for the forward solution of the
GSM and the implicit Roesser model respectively.

Certain controllability and observability criteria
based on the proposed solutions are being studied
and will be discussed in a future work.

REFERENCES

Fornasini, E. and G. Marchesini (1970). Dou-
bly indexed dynamical systems : State space
models and structural properties. Math. Sys-
tems Theory 12, 59�72.

Kaczorek, T. (1985). Two-Dimensional Linear
Systems. Springer Verlag, Berlin.

Kaczorek, T. (1987). Singular roesser model and
reduction to its canonical form. Bulletin Pol-
ish Academy of Sciences, Technical Sciences
35, 645�652.

Kaczorek, T. (1988). The singular general model
of 2-d systems and its solution. IEEE Trans-
action on Automatic Control 33, 1060�1061.

Kaczorek, T. (1989). Equivalence of singular 2-
d linear models. Bull. Polish Academy of
Sciences.

Kaczorek, T. (1990). General response formula
and minimum energy control for the general
singular model of 2-d systems. IEEE Trans.
on Automatic Control 35(4), 433�436.

Karamancioglu, A. (1991). Two-Dimensional Im-
plicit Linear Systems. PhD thesis. Dept. of
Electrical Engineering, University of Texas at
Arlington.

Karampetakis, N.P., B.G. Mertzios and A.I.G.
Vardulakis (1994). Computation of the trans-
fer function matrix and its laurent expansion
of generalized two-dimensional systems. In-
ternational Journal of Control 60(4), 521�
541.

Kurek, J. (1985). The general state-space model
for a two-dimensional linear digital system.
IEEE Trans. on Automatic Control 30, 600�
602.

Lewis, F. L. and B.G. Mertzios (1991). On the
analysis of two-dimensional discrete singular
systems. Circuit Systems and Signal Proc.

Lewis, F.L. (1987). Recent work in singular sys-
tems. In: Proc. Int. Symp. Singular Systems.
Atlanta, GA. pp. 20�24.

Lewis, F.L. (1992). A review of 2-d implicit sys-
tems. Automatica 28(2), 345�354.

Lewis, F.L. and B.G. Mertzios (1990). On the
analysis of discrete linear time-invariant sin-
gular systems. IEEE Trans. on Automatic
Control 35(4), 506�511.

Mertzios, B.G. and F.L. Lewis (1988). An al-
gorithm for the computation of the transfer
function matrix of generalized 2-d systems.
Circuit Systems and Signal Process 7, 459�
466.

Roesser, R.P. (1975). A discrete state-space model
for linear image processing. IEEE Trans. on
Automatic Control 25, 1�10.


