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Abstract: In this paper, a hybrid model of a gasification unit is presented, using linear 
representations and a discrete events (DES) supervisor based on automata. This supervisor 
chooses the best linear description at the occurrence of variations of plant’s operative 
conditions, to assure the best prediction performance. Performances of the proposed hybrid 
model are discussed. Copyright © 2005 IFAC 
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1 INTRODUCTION 
 
In the recent years the need to enhance the efficiency 
level and the profitability of oil refineries as well as 
the commitment to meet precise production standards 
call for an increasing level of system automation 
(Garcia and Ray, 1995; Piovoso, 2000; Seborg, 
1999). Furthermore, the existence of rigorous 
environmental standards together with the need to 
operate in high safety conditions contribute to the 
implementation of automatic systems of rising 
complexity. Recently, these plants commonly 
comprehend also electric energy production system 
using TAR as the primary energy source. This add 
further specifications relatively to safety and quality 
of server. 
 
Different plant sections and different applications 
levels require the implementation of different control 
methodologies. Typically, control applications vary 
from low level process control (ordinary PID or more 
recent non linear or intelligent controllers), to the 
emergency situation management (diagnosis and 
fault controllers), up to the high level control of the 
entire plant (Supervisory controllers, management 
control). Both “time-driven” and “event-driven” 
dynamics are present and this clearly implies that for 
a correct modelization of oil refineries, hybrid 
models will be required (Zhu, 1993). 

In the present paper, the identification problem of a 
refinery unit, namely the gasification process, in 
order to predict reaction’s products has been 
addressed. This work is framed in a more general 
project that aims to assist and, in perspective to by-
pass, a human supervisor in the managing of the low-
level control. In this context, the problem of model 
acquaintance turns out to be essential in the 
development of suitable controllers for the automatic 
set-points generation. 

 
 

2 PLANT’S DESCRIPTION 
 

The IGCC (Integrated Gasification Combined Cycle) 
plant is a combine in the API refinery of Ancona, 
dedicated to the production of electric energy using 
refuses of crude oil refinement (TAR). Combined 
cycle plants like the IGCC, permit the recovery of the 
thermo-power station dump heat, using it for the 
production of steam which can be employed for 
feeding other industrial processes. The main IGCC 
components are a gas-turbine (GT), specially 
designed for synthetic gas combustion which is 
cascaded with a heat recovery steam generator 
(HRSG), for the recycling of the thermo-power 
contained in the GT waste gases; the steam produced 
in this boiler is then sent to other refinery units or 
utilized for electric-power production after an 



 

expansion in a steam-turbine (ST). To recover for 
possible steam lack an auxiliary boiler, the Auxiliary 
Steam Generator (ASG), has been installed. 
 
To minimize the pollution’s emissions, the thermo-
power station GT is not charged with the TAR 
(called also charge oil), but with a refinery gas 
produced by TAR’s combustion, called syngas. The 
transformation from heavy hydrocarbon to syngas is 
called gasification. The efficiency of this 
transformation process depends on the mixture of 
reaction products and their heating values. The 
parameter used as a quality index for the gasification 
plant is the CGE (Cold Gas Efficiency), given by 
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where LHV is the Low Heating Value and w stands 
for weighted flow. Assuming a fixed charge 
composition (LHVCharge Oil), and flows ratio quite 
constant, the efficiency is maximized when 
gasification reaction generates products with high 
LHV, such as H2 (hydrogen) and CO (carbon’s 
monoxide).  Consequently, a quality index of the 
produced syngas can be chosen as the percentage of 
H2 and CO contained in it, with respect to others 
undesired substances, such as CH4, CO2, H2S, COS. 
Variations in the charge oil composition have a direct 
impact in the outcome products composition but, as 
shown in the block diagram in fig. 1, many other 
variables may influence the system. In particular, two 
manipulated variables have direct effect on the  
quality of the output syngas, the oxygen-oil ratio 
(O2/Oil) and the steam-oil ratio (Steam/Oil). Indeed, 
oxygen feeds the reaction, whereas steam moderates 
it and atomizes the TAR. Disturbances of the system 
are the QW (quench water) injection and the SW (soot 
water) emission which indirectly influence the charge 
oil composition.  
 
The aim of this work is to achieve a mathematical 
model of the gasification process, in order to predict 
reaction products (i.e. H2 and CO) from variables 
trajectories measurements that primarily influence it. 
This is the first necessary step for the development of 
controller to suitably regulate the set points for 
oxygen-oil ratio and steam-oil ratio, in order to 
maximize the CGE. Currently, O2/Oil and Steam/Oil 
flows are regulated by low-level controllers 
supervised by operators of a DCS console. The final 
purpose of the whole project is then to assist the 
operator and, in perspective, to free him from 
supervision tasks by means of a supervisor for these 
low-level controllers. 
 

 

Fig. 1. Gasification Plant. 

3 ASYM IDENTIFICATION OF THE MIMO 
INDUSTRIAL PROCESS 

 
Many different approaches to the identification of the 
plant are possible. The choice made is to use a black 
box approach. This is motivated by the complexity of 
the outcoming model in terms of number of 
equations and parameters involved. Furthermore in 
the API refinery previous experience with simulators 
based on chemistry, kinetics and thermodynamics 
description of the plant, did not provide with 
satisfactory performances. 
 
As usual for complex plant, the main problem to 
solve was the impossibility of making an 
identification experiment on the plant, such as a 
staircase experiment, a white noise or PRBS (Pseudo 
Random Binary Sequence) experiment (Zhu, 1993), 
on account of economic and safety reasons. The 
presence of an on-line analyzer of the outcome of the 
gasification plant, allowed to achieve historical series 
of the quality parameters that had to be predicted (H2, 
CO that is, ultimately, CGE). Available data were the 
historical series of the plant (sampling time TS = 5 
minutes), with low signal to noise ratio, with limited 
spectrum and with a lot of spikes due to on-line 
analyzer calibrations.  Hence, it was necessary to 
consider data taken over very long test time lag, 
while, in order to handle for the spikes presence, a 
supervised logical filtering function was 
implemented. 
 
A linear dynamical model has been adopted  to 
describe the system according to the fact that the 
process is regulated at given setpoints during the 
epochs of data collections for the identifications.  
A ASYM (Zhu, 1993, Zhu, 1995, Zhu, 2001), 
identification method has been developed, which is 
an extension of ARX, ARMAX, Box Jenkins, 
traditional identification techniques. ASYM (or two 
steps), founded on Ljung asymptotic theory (Ljung, 
1987) for MIMO processes, resulted particularly 
suitable for our purposes since it’s focused on 
processes in refinery and oil industries, which can be 
characterized as continuous processes, with large 
scale and complexity, dominant slow dynamics, high 
and slow varying disturbances and local 
nonlinearities (Zhu, 1995). The advantages of this 
method if compared to others traditional 
identification methods is that it offers a procedural 
way to solve the problems of input design, model 
structure and order selection, numeric convergence 
and quantification of model errors, both in time’s and 
in frequency’s domains (Zhu, 1993). 
 
Distributed parameter systems or, equivalently, 
infinite dimensional systems, are often required to 
mathematically describe many industrial processes. 
According to the asymptotic theory of Ljung it can be 
stated that it is natural to let the model order n 
depend on the number of observed data samples, 

( )Nnn = . Typically, in order to have a model set 
large enough to contain the “true transfer function” 
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of an industrial process (or, equivalently, to give an 
approximation of the true dynamics), it will be 
allowed the order n to increase with the number of 
data samples N provided it is kept small compared to 
N. For the identifiability of increasingly higher order 
models, the process input is required to be 
persistently exciting with sufficient high order 
(Ljung, 1987, Zhu, 1993). 
 
The asymptotic theory results guarantee the 
consistence of model estimates and transfer functions 
error with Gaussian distribution at each frequency. 
The result is independent from the model structure as 
the order is allowed to increase with the number of 
data points (experiment duration time), (Zhu, 1993). 
Assuming the cross spectrum ( )uξ ωΦ  between u(t) 
and ξ(t) to be null (i.e. open-loop assumption), the 
asymptotic variance of the process model can be 
approximated as follows: 
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Equation (1) states that the variance of the model 
transfer function at a given frequency is proportional 
to the (output) noise-to-signal ratio, and to ratio of 
the model order to the number of data samples.  
 

 
3.1 The Identification Method  

 
The adopted approach consisted in starting with a 
high order model estimation followed by a suitable 
model reduction so to arrive at more compact and 
fruitful models avoiding numerical problems. As 
asymptotic properties of the transfer function 
estimates are independent of the model structures 
(Zhu, 1993), a model structure simple as possible for 
the high order model (equation error models, such as 
ARX) has been adopted. This ensured analytical 
solution, a global minimum for all n and N and 
consistent and efficient estimates, if residuals could 
be proven to be Gaussian, zero mean white noise 
(Ljung, 1987).  
 
The main steps of the identification procedures in a 
SISO case can summarized as follow:  
 

STEP 1. High order model estimation 

Estimate a high order (n ≈ 30) equation error model; 
 
STEP 2. Model reduction 

The model that results from Step 1 is often over-
parameterized. Since the variance is proportional to 
the order n, model reduction can reduce the variance, 
if it is properly performed. The asymptotic theory 
shows that, in the frequency domain, the high order 
model follows approximately a Gaussian distribution 
with the variance given by (1). Regarding the 
frequency response of the high order estimates as the 
noisy observations of the true transfer function, then 
the maximum likelihood principle can be applied. 
Since the high order  model  (observation)  follows  a 

Gaussian distribution, the reduced model is 
consequently assumed to be an asymptotic maximum 
likelihood estimate; this will lead to an 
asymptotically efficient (minimum variance) estimate 
of the frequency response. Solving this problem calls 
for a non-linear minimization algorithm, such as an 
output error identification method.  
 
The first step is to collect the external inputs that 
have been used in the identification experiment, and 
filter them by the inverse of the disturbance model. 
Then, simulation of the high order model using a 
filtered input is necessary to finally obtain the new 
input/output data. The parameters of the reduced 
model are calculated by using an output error method 
(Ljung, 1987; Zhu, 1993). Similarly it can be 
operated on the estimate of the disturbance model of 
the high order. Thus, the reduced process model and 
the reduced disturbance model are easily computed.  
The final model has a Box-Jenkins structure. 
 
STEP 3. Deriving an upper bound modelling errors 

Errors of the high order model follow asymptotically 
a normal distribution with variance given by (1). 
Therefore a 3⋅σ upper bound of the errors of the high 
order model can be defined and used for the reduced 
model Gl, since model reduction will reduce the 
model error (Zhu, 1993). Thus the following can be 
stated: 
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where ( )ωvΦ̂  can be estimated by step 1 calculations 
and ( )ωuΦ  can be calculated from the measurement. 
 
 
3.2 The MIMO Identification Method 
 
In order to be applied to the problem of interest in the 
actual work, a suitable extension of the identification 
technique described in the previous so to pertain to 
MIMO systems is needed.  Further details of the 
identification method for MIMO processes, not 
reported here for sake of simplicity, can be found in 
(Zhu, 1993). 
 
 
3.3 Validation  

 
Although a non-linear minimization algorithm is 
necessary for the computation of the reduced model, 
the adopted solution has to be preferred to the use of  
a minimum prediction error method. First, the 
influence of the disturbance is reduced greatly when 
using the data from the simulation of the high order 
model, instead of the original data. Secondly, poor 
local minima are detected. In facts, if the 
minimization algorithm converges to the global 
minimum, the frequency response of the reduced 
model should lie in the middle of the fluctuating 
frequency response of the high order model due to 
the smoothing effect of model reduction. If this is not 



 

the case, a local minimum is detected and in order to 
avoid the problem, a different initial estimate is 
assigned and the minimization algorithm restarted. 
 
For model validation many criteria based on different 
index such as FPE, AIC, MDL, the variance of the 
error, or whiteness test of residuals, can be found in 
literature. Nevertheless, these criteria not perfectly 
apply to the ASYM method which is not based on the 
research of the true order of the process but instead, it 
searches for an order so that the best frequency 
response estimate can be obtained. 
 
The idea is to build an Asymptotic Criterion (ASYC) 
index as follows: if the reduced model is allowed to 
deviate from the high order model the same amount 
as the error of high order model (measured by  its 
variance), there are reasonable chances that the 
reduced model is most close to the true frequency 
response. Based on this observation, the ASYM 
method of validation (Zhu, 1995; Zhu, 2001) 
suggests to choose the order such that the difference 
between the high order model and the reduced model 
(in the frequency domain) approximately equals the 
variance of the high order model. The same idea can 
be applied for determining the order of the 
disturbance model. It is important to remark that, in 
this method, the selected order is usefully related to 
the noise-to-signal ratio, and so to the experiment 
time. For a given process, if the noise level is high 
and the experiment time is short, the selected order of 
the reduced model will be low. For the same process, 
the selected order will increase if the power of the 
test signal and/or the experiment time increases. 

Error Bound Matrices 

A method of grading the models (Zhu, 1995) has 
been implemented: this is done by comparing the 
relative size of the bound with the model over the 
low and middle frequencies.  

Some Problems 

The introduction of the ASYC index and the use of 
the error bound matrices were not sufficient to solve 
the problems at the validation stage. In particular, all 
the criteria above were more or less satisfied with 
different order models, made with different training 
data, and there was not significant differences in the 
one-step predictions. Nevertheless, if the prediction 
horizon was increased, the differences between two 
different order models (and also between different 
training epochs) became important. This produced 
two main problems, that is the difficulties to detect 
the best model and the difficulties to establish if the 
performance deterioration in different epoch derived 
from an incorrect choice of the model, or from 
external causes, such as an alteration in charge oil 
composition (that is in changed operative condition). 
Statistical tests for the hypothesis verification were 
thus adopted, in particular Analysis Of Variance tests 
(ANOVA). ANOVA test had fixed the best model for 
each training epoch, and the models found had not 

the same order. Thus it was concluded that in the 
various epochs dynamics had really changed, as a 
result of variations of charge-oil composition. 
 

With the historical series at disposal, three regions 
have been singled out, with three different 
compositions of TAR, in terms of sulphur’s 
percentage and carbon-hydrogen ratio. Three optimal 
models, with three different orders represent the 
system were built. 
 
 

4 HYBRID MODEL 
 
In order to assure the best prediction performance a 
supervisor system that enforce a switching behavior 
between the estimated models at the occurrence of 
variations of plant’s operative conditions has been 
developed. The adopted approach involve the theory 
of discrete event systems (DES) oriented to the 
generation of a hybrid model. 
 
In recent years, a variety of models have been 
introduced for hybrid systems (Koutsoukos, et al. 
1998; Lemmon et al., 1999; Stiver, et al., 1996). 
These models generally describe the continuous part 
of the system by a set of ordinary differential 
equations and represent the discrete part of the 
system by a discrete-event system. The discrete-event 
model which has been most widely used in the past is 
the finite automaton. Finite automata provide a 
particularly convenient method for hybrid system 
modeling. In spite of this success, however, there are 
some significant limitations in using finite automata 
in the modeling, analysis and synthesis of hybrid 
control systems. The main limitation concerns the 
complexity of such automata when used to design 
control supervisors, and particularly when used to 
model concurrent processes. Concurrent systems are 
systems in which several subsystems are operating at 
the same time. The problem here is that the state 
space for a finite automaton representing the various 
discrete operational states that a network of 
concurrent systems can generate will grow non 
linearly with the number of processes. This means 
that automata based methods for hybrid modeling 
have an intrinsic limitation when dealing with highly 
concurrent processes. 
 
In this paper, a representation of a DES in terms of 
rectangular hybrid automata is adopted. In order to 
solve problems related to the realization of a 
supervisor containing many concurrent processes an 
innovative approach developed by the authors, has 
been followed. The method, not presented in this 
contest, consisted in considering the model in term of 
a particular class of Petri nets (Reisig, 1985), finite 
state machine, thus allowing to limit the dimension 
explosion of the state-space representation. In fact, 
the  capability  of  obtaining  composition rules  in   a 
closed form, typical of automata, is joined to the high 
efficiency, in dimensional terms, of Petri nets 
(Barboni, 2002) 



 

 
Fig. 2. Operative conditions acting in the process  
 

5 SUPERVISOR’S MODEL WITH 
AUTOMATA 

 
From the validation process described in the 
previous, it has been concluded that one single model 
was not sufficient to assure good predictions, 
especially in the case of large prediction horizons. 
Three elementary operative conditions, or  
specifications were identified, charge charge-oil 
composition been obviously one (see fig. 2). The 
other operative conditions which could affect the 
choice of the best model for the plant were 
discovered during validation. In particular, since 
linear models were used, it was important to take into 
account the working points (inpust and ouputs) 
around which these models were identified.  
 
For each elementary specification, an automaton was 
built to determine the more suitable model 
responding to events generated by variations of the 
variables related to the considered specification. In 
particular, to every state of each automata was 
associated, as output, a model, and switching 
between the various states (models) was performed at 
the occurrence of events springing by variations of 
the considered operative condition. In this way, 
partial descriptions of the entire system are obtained, 
represented by each single hybrid automata 
generated. Then, the single automaton were 
combined by parallel composition to obtain the 
whole supervisor (Cassandras and. Lafortune, 1999).  
 
 
5.1 The Hybrid automata construction  
 
The construction of a single automaton which models 
the system behavior with respect to charge-oil’s data 
is described in the following. To build a hybrid 
automaton (Lemmon, et al. 1999; Kopke, 1996; 
Henzinger, 1997) its graph, invariants, initial 
conditions, activity rectangles, guard equations and 
events must be defined. The continuous state space 
must be quantized in order to generate the discrete 
state: this procedure is equivalent to realize that part 
of the interface which is usually called generator (or 
quantizer) (Lunze, et al.2001). From the analysis of  
charge-oil’s composition, three working regions were 
recognized, corresponding to three different C/H 
ratios and sulphur percentages, and a suitable model 
was built for each region. Every state will have the 
corresponding model as invariant; initial conditions 
will be given by the vector (of the same length of the 
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memory of the system) of the last values assumed by 
the continuous state in the discrete state preceding 
the actual state. The activity rectangles correspond to 
the intervals in table 1: note that activity rectangles of 
the three states overlap. Guard equations are reported 
in table 2.  

 

Table 1 Invariants definition 
 

Invariants Model 
3.8 ≤  S ≤  4.5 

8.54 ≤  C/H ≤  9.35 M1 
3.8 ≤  S ≤  4.5 

8.88 ≤  C/H ≤  10.20 M2 
4.5 < S ≤ 5.2 

8.88 ≤  C/H ≤  10.20 M3 
 

Table 2 Guard Equations 
 

Guard Equations event 
(8.54 < C/H ≤ 8.88)∧ (4.6 < S ≤ 5.2)  e1 

(8.88 < C/H ≤ 10.2)∧ (4.6 < S ≤ 5.2)  e2 

(8.54 < C/H ≤ 8.88)∧ (3.8 < S ≤ 4.6)  e3 

(8.88 < C/H ≤ 9.35)∧ (4.4 < S ≤ 4.6 e4 

(9.35 < C/H ≤ 10.2)∧ (4.4 < S ≤ 4.6) e5 

(8.88 < C/H ≤ 9.35)∧ (3.8 < S ≤ 4.4 e6 

(9.35 < C/H ≤ 10.2)∧ (3.8 < S ≤ 4.4) e7 

 
What is obtained from the previous process is a non-
deterministic automaton which is depicted in fig. 3.   
 
Operating in a similar manner, the automaton that 
consider the working points of the two inputs (O2/Oil 
and Steam/Oil) have been constructed. To define the 
activity rectangles, a function of mean value and 
standard deviation of the signal used for 
identification has been adopted. Finally, two more 
automata were constructed to account for the 
specification of the output working points (here not 
reported). 
 
Since, as it can be easily verified in fig. 3, the 
computed automata were not deterministic, before 
proceeding further standard procedure for the 
construction of the observer has been applied (see for 
ex. Cassandras and Lafortune, 1999).  
 
 
5.2 Automata composition 
 
The final composition of the observer automata, 
resulted in a “shuffle” this implying the final state 
space dimension to be given exactly by the 
dimension of the Cartesian product of the state 
spaces of each single component.  To overcome to 
this significant growth of state space dimension, a 
particular  class  of  Petri  nets  (finite  state machine) 



 

 
Fig. 4. Output of the model selector supervisor 
 
was used and a representation of a DES alternative to 
finite state automata is provided.  This  allow the 
realization of a supervisor containing many 
concurrent processes, without letting the dimension 
of the state-space representation grow up excessively. 
In this approach, the capability to obtain composition 
rules in a closed form, typical of automata, is joined 
to the high efficiency, in terms of dimension, of Petri 
nets. 
 
 
5.3 Supervisor for model selection. 
 
In each single developed automaton, outputs values 
were in a bi-univocal dependence with the automaton 
states: each state was, de facto representing a single 
model. As a result of the observer computation and 
the final automata composition, the output function 
was not anymore always univocally defined. In most 
states, a simple heuristic based on the assignment of 
probabilistic weights to each model could be applied 
which assured the output of the supervisor (i.e. the 
best model) to be univocally defined. In few other 
cases, two or three model could fit in the same 
manner. In order to solve this problem, a more 
complex heuristics was determined which assigned 
weights to the output function of each automaton, 
according to an empirical hierarchy of “importance” 
of the phenomena they represent.  
 

Finally, a further improvement of the system was 
made in order to avoid chattering phenomena 
observed in the first experimental tests. More 
specifically, the generation of the events of the 
automaton was no longer based on punctual values of 
the inputs and the outputs of the plant, but it has been 
modified by the introduction of a sort of “memory”. 
 
This outputs of the model supervisor are depicted in 
fig. 4, where values 1, 2, 3 on the vertical axis refer 
to the choice of the respective model as 
representative of the system in the current operative 
conditions.  
 

 

6 CONCLUSION 
 
The aim of this paper was to achieve a mathematical 
model of the gasification plant of API refinery’s 
IGCC station. Processes identification was required 
in order to perform prediction on system 
performances and, as final future goal, to design a 
suitable controller to optimize cold gas efficiency.  

For the identification and the validation processes 
data over sufficiently large epoch were avialable.  
The computed models have been tested on data 
different than the ones used for the identification but 
relative to the same epoch. These models have shown 
to be capable to predict the characteristics of the 
considered reaction products in a satisfactory way 
keeping the average prediction error lower than 2% 
in the case of 50 minutes prediction (10 step ahead), 
and lower than 7 % in the case of about 6 six hours 
predictions.    
 
From an operative point of view, results in terms of 
prediction capability are very positive, also with 
large prediction horizon, validating the black-box 
identification approach as a valuable tool in the 
modelization of multivariable industrial processes. 
The actual validation of the adopted approach 
requires to test the system in condition different from 
that of the identification phase. This will be the next 
necessary step of the present research.  
 
From a methodological point of view it can be stated 
that the need of a hybrid model is confirmed, since 
best performances are guaranteed using more than 
one model. Once the validation phase will be 
completed, the result achieved in term of plant 
identification should finally be applied for a synthesis 
of a controller to optimize the CGE of the plant. 
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