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1. INTRODUCTION

The problem of estimating the internal states of
a dynamical system based on the knowledge of
some measurable output data is of importance
to many areas of engineering. Such problems can
be formulated in various ways; namely, minimum
variance, maximum likelihood, maximum a pos-
teriori, conditional expected value, etc. It is well
known that, in the case of a linear system and
Gaussian noise, the optimal solution to all the
above problems is provided by the Kalman filter.
One of the desirable properties of the Kalman
filter is that it can be pre-computed in closed
form and then used online in very simple schemes.
However, as one steers away from the ideal setup
of conditions for the Kalman filter, the situation
changes substantially and closed form solutions
are no longer available. For example, most vari-
ables in real systems are bound to be limited to
certain ranges (either due to physical constraints

or due to safety requirements). If one wishes to
take these constraints into account in the formu-
lation of the problem, then the Kalman filter does
not provide the optimal estimates.

Several approaches have been proposed for the
estimation problem in the case of linear systems
in the presence of constraints. Of particular rele-
vance to the present paper is a strategy that for-
mulates the problem as a quadratic program; i.e.,
as the minimization of a quadratic objective func-
tion subject to linear constraints. For example, it
has been shown (see, e.g., Goodwin et al., 2004)
that such formulation yields the estimate that
maximizes the joint a posteriori probability distri-
bution. However, the presence of inequality con-
straints precludes general recursive solutions and
makes these problems computationally intractable
as the problem size grows with new incoming data.
Hence, a standard approach is to consider a fixed
horizon problem of length N at each time and to



implement it in a moving horizon fashion; see, e.g.,
Muske et al. (1993), Rao et al. (2001), Robertson
et al. (1996) and Rao et al. (2003).

One problem that needs to be addressed in
the implementation of moving horizon estima-
tors [MHE], in the presence of constraints, is the
computational time required to solve online the
underlying quadratic program since the computa-
tions required can limit applicability to relatively
slow processes. Hence, it would be of interest to
count with closed form solutions that can be pre-
computed offline so as to speed up online compu-
tations. To the best of our knowledge, this issue
has not been addressed in the literature. Here, we
derive a closed form solution to the fixed horizon
estimation problem that needs to be solved at
each sampling time in a moving horizon imple-
mentation. The case considered is that of linear
systems with constrained process noise and the
solution is obtained using dynamic programming
(see Bellman, 1957; Cox, 1964). The employed
methodology is analogous to the one used in Mare
and De Doná (2004) by the authors of this pa-
per to derive a closed form solution to the input
constrained LQR problem. The optimal solution
to the estimation problem is given by a piece-
wise affine function of the data for this particular
problem (i.e., the mean value of the initial state
and the sequence of measurement data). The data
space is partitioned into a number of polyhedral
regions defined by linear inequalities such that,
inside each region, a unique affine function is valid.
Thus, the online implementation problem reduces
to: given the data, find the corresponding region
and, via a simple affine function evaluation, obtain
the optimal estimate. The main online compu-
tational requirement is that of determining the
region to which the data vector belongs to (this
requires the evaluation of a potentially large num-
ber of linear inequalities). Although not explored
in this paper, we mention that there exist algo-
rithms, e.g., binary tree search algorithms, that
can be employed to perform this task in a very
efficient way; see, e.g., Tondel et al. (2003).

2. LINEAR STATE ESTIMATION WITH
CONSTRAINTS

Consider the discrete-time linear state-space model

xk+1 = Axk + Bwk, (1)

yk = Cxk + vk, (2)

where xk ∈ IRn, wk ∈ IRm, yk ∈ IRr and
vk ∈ IRr. Suppose that x0, {wk}, {vk} are i.i.d.
sequences with truncated Gaussian distributions.
That is, for Q > 0, R > 0, P0 > 0, βw ,
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for x0 ∈ Ω3 and 0 otherwise. Consider the follow-
ing vector definitions

yN =
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1 . . . yT

N

]T
, (6)
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]T
. (9)

Given the observations yd
N = [yd

1
T

. . . yd
N

T
]T and

the “unconstrained” mean value of x0, denoted
by µ0, the aim is to obtain the joint a posteriori

most probable (JAPMP) state estimates x̂N =
[x̂T

0 . . . x̂T
N ]T. That is, based on the knowledge

of the a posteriori distribution of xN given yN ,
denoted pxN |yN

, and on the observations yd
N , we

want to determine the vector x̂N that solves the
following optimization problem

x̂OPT
N , arg max

x̂N

pxN |yN
(x̂N |yd

N ) (10)

In the sequel we will formulate this problem as a
quadratic program. First, we present an expres-
sion for the joint probability density function for
yN and xN , which can be obtained using Bayes’
rule and the Markovian structure of the model
(for the details, see Goodwin et al., 2004). In the
following, c denotes a generic constant. The joint
pdf can be expressed as
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whenever

ŵk ∈ Ω1 for k = 0, . . . , N − 1,

v̂k ∈ Ω2 for k = 1, . . . , N,

x̂0 ∈ Ω3,

where

x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1,

v̂k = yd
k − Cx̂k for k = 1, . . . , N.



From the joint probability density function above,
the a posteriori distribution of xN given yN can
be expressed as

pxN |yN
(x̂N |yd

N ) =
pyN ,xN

(yd
N , x̂N )

pyN
(yd

N )
. (12)

As pyN
(yd

N ) is independent of xN , the solution
of the estimation problem (10) is obtained by
maximising the numerator in (12), that is,

x̂OPT
N = arg max

x̂N

pyN ,xN
(yd

N , x̂N )

= arg min
x̂N

− ln pyN ,xN
(yd

N , x̂N ), (13)

(since ln(·) is a monotonically increasing func-
tion). Substituting (11) into (13), the estimation
problem can be stated as the following optimisa-
tion problem:

Given the data Y ,

[

µT
0 , yd

1
T
, . . . , yd

N

T
]T

, solve

Pe : V OPT
N (Y) , min VN ({x̂k}, {v̂k}, {ŵk}),

(14)

subject to:

x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (15)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (16)

ŵk ∈ Ω1 for k = 0, . . . , N − 1, (17)

v̂k ∈ Ω2 for k = 1, . . . , N, (18)

x̂0 ∈ Ω3, (19)

where
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1

2
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ŵT
k Q−1ŵk
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(20)

Note that, in the case when the sets Ω1, Ω2 and
Ω3 are defined by linear inequalities (i.e., they are
polyhedral sets) the optimization problem (14)–
(20) is a quadratic program.

3. DYNAMIC PROGRAMMING

To solve problem Pe defined in (14)–(20), dynamic
programming (see Bellman, 1957) can be used.
In the case of estimation problems it is more
convenient to use forward dynamic programming
(see Cox, 1964).

Assuming that A is nonsingular, the sequence
{x̂k} can be expressed in terms of x̂N and {ŵk},
since

x̂k = A−1(x̂k+1 − Bŵk) for k = 0, . . . , N − 1,

(21)

In addition, the sequence {v̂k} can be expressed in
terms of yd

1 , . . . , yd
N , x̂N and {ŵk}, since v̂k = yd

k−
Cx̂k for k = 1, . . . , N.

From the above discussion, it follows that
VN ({x̂k}, {v̂k}, {ŵk}) in (20) can be written as
VN (x̂N , {ŵk}), and then Pe can be stated as

V OPT
N (Y) = minVN (x̂N , {ŵk}). (22)

We next define, for x̂0 ∈ Ω3, the partial value
function at time 0 as

V OPT
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and the partial value function at time k as

V OPT
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d
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j Q−1ŵj (24)

+
1

2

k
∑

j=1

(yd
j − Cx̂j)
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}

,

subject to:

x̂j = A−1(x̂j+1 − Bŵj) for j = 0, . . . , k − 1,

(25)

ŵj ∈ Ω1 for j = 0, . . . , k − 1, (26)

yd
j − Cx̂j ∈ Ω2 for j = 1, . . . , k, (27)

x̂0 ∈ Ω3. (28)

By the Principle of Optimality, for k ≥ 0, and
x̂k+1 ∈ IRn such that yd

k+1 − Cx̂k+1 ∈ Ω2, we
have that

V OPT
k+1 (x̂k+1, µ0, y

d
1 , . . . , yd
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ŵk

{
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2
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(29)

subject to:

ŵk ∈ Ω1, (30)

yd
k − C(A−1x̂k+1 − A−1Bŵk) ∈ Ω2. (31)

In the absence of constraints (i.e., when Ω1 =
IRm, Ω2 = IRr, Ω3 = IRn) the above dynamic
programming algorithm leads to the Kalman filter
(for details, see §9.6 in Goodwin et al., 2004).

4. ANALYTICAL SOLUTION

In this section, the case of a scalar process noise
constrained to be in the interval Ω1 = [∆1, ∆2]



is considered (i.e., constraints on the states and
on the measurement noise are not considered
and will be the subject of future work). As ex-
plained in Section 2, the estimation problem (10)
can be equivalently formulated as problem Pe in
(14)–(20). Moreover, the latter problem can be
solved by the dynamic programming technique,
explained in Section 3. The partial value function
at time 0 is considered first, which was defined in
(23) as

V OPT
0 (x̂0, µ0) ,

1

2
(x̂0 − µ0)

TP−1
0 (x̂0 − µ0).

Then, the partial value function at time 1 is
expressed, using the Principle of Optimality (29),
as
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Substituting V OPT
0 into V OPT

1 , taking derivatives
respect to ŵ0 and setting to zero, the expression
of the unconstrained ŵunc

0 minimising V OPT
1 is

obtained:

ŵunc
0 =

[

(A−1B)TP−1
0 (A−1B) + Q−1

]−1
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(A−1B)TP−1
0 (A−1x̂1 − µ0)

In the following, I denotes the identity matrix
with the same number of columns and rows as
A, and we define x̂∗

0 , µ0. Notice that the ob-
jective function in (32) is a quadratic function of
ŵ0 whose unconstrained minimum is achieved at
ŵunc

0 computed above. From the convexity of the
objective function it follows that the constrained

optimum, ŵOPT
0 , is given by the point in the

allowed interval [∆1, ∆2] that is closest in dis-
tance to the unconstrained optimum ŵunc

0 . Hence,
three different cases arise, depending on whether
ŵunc

0 < ∆1, ∆1 ≤ ŵunc
0 ≤ ∆2, or ŵunc

0 > ∆2. It
follows that the optimal constrained solution can
be written as

ŵOPT
0 = Z1 [L1 K1]

[

x̂1

x̂∗
0

]

+ h1, (33)

where

Z1 =
[

(A−1B)TP−1

0
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]
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0
,

L1 = A−1 if ∆1 ≤ Z1(A
−1x̂1 − µ0) ≤ ∆2,

and 0 otherwise,

K1 = −I if ∆1 ≤ Z1(A−1x̂1 − µ0) ≤ ∆2,

and 0 otherwise, and

h1 =















0 if ∆1 ≤ Z1(A
−1x̂1 − µ0) ≤ ∆2,

∆1 if Z1(A
−1x̂1 − µ0) < ∆1

∆2 if Z1(A
−1x̂1 − µ0) > ∆2.

Substituting (33) into (32) and completing
squares, the minimum attained in (32) can be
written as

V OPT
1 (x̂1, x̂

∗
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1
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(x̂1 − x̂∗

1)
TP−1

1 (x̂1 − x̂∗
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(34)
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Motivated by the previous expressions, we now
introduce the induction hypothesis that V OPT

k−1 has
the form

V OPT
k−1 (x̂k−1, x̂

∗
k−1) =

1

2
(x̂k−1 − x̂∗

k−1)
TP−1

k−1(x̂k−1 − x̂∗
k−1) + c, (36)

Now, using the Principle of Optimality,

V OPT
k (x̂k, µ0, y

d
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2
ŵT
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−1ŵk−1
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}
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and substituting (36) into (37) and taking deriva-
tives as before, the expression for the uncon-

strained ŵunc
k−1 minimising V OPT

k is obtained

ŵunc
k−1 =

[

(A−1B)TP−1
k−1(A

−1B) + Q−1
]−1

×

(A−1B)TP−1
k−1(A

−1x̂k − x̂∗
k−1).

Again, the optimal constrained solution of (37),
ŵOPT

k−1 , can be written as:

ŵOPT
k−1 = Zk [Lk Kk]

[

x̂k

x̂∗
k−1

]

+ hk, (38)

where

Zk =
[

(A−1B)TP−1

k−1
(A−1B) + Q−1

]

−1

(A−1B)TP−1

k−1
,

Lk = A−1 if ∆1 ≤ Zk(A−1x̂k − x̂∗

k−1
) ≤ ∆2,

and 0 otherwise,

Kk = −I if ∆1 ≤ Zk(A−1x̂k − x̂∗

k−1
) ≤ ∆2,

and 0 otherwise, and



hk =















0 if ∆1 ≤ Zk(A−1x̂k − x̂∗

k−1
) ≤ ∆2,

∆1 if Zk(A−1x̂k − x̂∗

k−1
) < ∆1

∆2 if Zk(A−1x̂k − x̂∗

k−1
) > ∆2.

Substituting (38) into (37) and completing
squares, the minimum attained in (37) can be
written as

V OPT
k (x̂k, x̂∗

k) =
1

2
(x̂k − x̂∗

k)TP−1
k (x̂k − x̂∗

k) + c,

(39)
where

x̂∗
k = Pk [Sk T ]

[

x̂∗
k−1

yd
k

]

+ PkUkhk, (40)

P−1

k
= (A−1 − A−1BZkLk)TP−1

k−1
(A−1 − A−1BZkLk)

+ (ZkLk)TQ−1(ZkLk) + CTR−1C

Sk = (A−1 − A−1BZkLk)TP−1

k−1
(A−1BZkKk + I)

− (ZkLk)TQ−1(ZkKk)

T = CTR−1

Uk = (A−1
− A−1BZkLk)TP−1

k−1
(A−1B) − (ZkLk)TQ−1

We can see that (39) is of the same form of the
induction hypothesis, and hence, by induction the
expressions are valid for k = 1, · · · , N . Therefore,
the procedure can be repeated recursively until
time N , at which point, upon minimizing the right
hand side of (39) (for the case k = N) it is
straightforward to see that the optimal estimate
for x̂N is given by x̂∗

N . It follows that substituting
recursively x̂∗

k−1 in (40) for k = N, N − 1, . . . , 1,
then the optimal estimate for x̂N can be written
as x̂OPT

N = x̂∗
N = αNY + βN , where

αN =
[

N
∏

i=1

PN−i+1SN−i+1,

(

N−1
∏

i=1

PN−i+1SN−i+1

)

P1T ,

(

N−2
∏

i=1

PN−i+1SN−i+1

)

P2T , · · · ,

PNSNPN−1T, PNT
]

(41)

and

βN =
N

∑

i=1





N
∏

j=1

PN−j+1SN−j+1



PiUihi (42)

The previous results are summarized in the fol-
lowing theorem.

Theorem 1. Consider the linear system (1)–(2)
where {wk} is an i.i.d. process noise sequence hav-
ing a truncated Gaussian distribution given by (3)
with Ω1 = [∆1 ∆2], {vk} is an i.i.d. measurement
noise sequence with normal distribution N(0, R)

and x0 is a normal random vector with distribu-
tion N(µ0, P0), independent of {wk} and {vk}.
Consider the joint a posteriori most probable state
estimation problem stated in (10). Denote the
optimal state estimated sequence by

x̂OPT
N =

{

x̂OPT
0 , . . . , x̂OPT

N

}

. (43)

Then, given the data Y ,

[

µT
0 , yd

1
T
, . . . , yd

N

T
]T

,

the last element of the optimal state estimated
sequence is given by:

x̂OPT
N = αNY + βN (44)

with αN and βN defined as in (41) and (42)
respectively.

Remark 2. Notice that, as each triplet
{Lk, Kk, hk} for k = 1, . . . , N used in the
calculations can take 3 different sets of values
corresponding to ŵk−1 saturating or not, there
are 3N possible values for αN and βN . The
methodology we are presenting consists on
calculating the 3N possibilities, and determining
in which region each of these possibilities is valid
(see Mare and De Doná, 2004).

Remark 3. In many applications, the filtered es-
timate x̂OPT

N is of interest (that is, the last el-
ement of the optimal sequence x̂OPT

N which is
based on data up to time N). In such case, the
optimal value is given directly in Theorem 1 by
the affine function of the data (44). However, if
smoothed estimates x̂OPT

N =
{

x̂OPT
0 , . . . , x̂OPT

N

}

are of interest, these can be easily computed by
using the inverse dynamics (21) and the optimal
estimated process noise sequence (a by product of
Theorem 1) given by equations (33),(38).

Corollary 4. The region of the data-space where
the estimated state x̂OPT

N = αNY + βN is optimal
is given by the set of inequalities whose elements
are, for each k = 1, . . . , N , the inequalities corre-
sponding to one of the following cases

∆1 ≤ Zk(A−1x̂k − x̂∗
k−1) ≤ ∆2, or (45)

Zk(A−1x̂k − x̂∗
k−1) < ∆1, or (46)

Zk(A−1x̂k − x̂∗
k−1) > ∆2. (47)

As both x̂∗
k−1 (given by (40) recursively) and

x̂k (given by the inverse dynamic (21)) depend
linearly on the data Y, these inequalities can be
posed as linear inequalities defining polyhedral
regions in the data-space. Indeed, the regions
defined constitute a polyhedral partition of the
data-space.

5. EXAMPLE

The model considered and the parameters in the
cost function for this example are taken from Rao



et al. (2003). Consider a discrete time system
given by (1)–(2), with matrices

A =

[

0.99 0.2
−0.1 0.3

]

, B =

[

0
1

]

, C =
[

1 −3
]

.

The constrained estimation problem is formulated
assuming that {vk} is a sequence of independent,
zero mean, normally distributed random variables
with covariance 0.01 and {wk} is a sequence of
independent random variables, having a truncated
Gaussian distribution in the interval [−1, 1], with
zero mean and unit covariance. The initial state
is also assumed to have a normal distribution,
with mean equal to µ0 and covariance equal to
the identity. For the fixed horizon cost function,
the values N = 2, Q = 1, R = 0.01 and P0 = I2×2

are taken. The process noise {wk} is constrained
to lie in the interval [−1, 1].

Figure 1 shows a projection of the data-space
partition obtained, and the values for the affine
function corresponding to each region are given
on Table 1.
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Fig. 1. Projection of the data-space partition onto
the plane µ0 = (µ1

0, µ
2
0) (cut corresponding to

yd
1 = yd

2 = 0).

6. CONCLUSIONS

An analytical solution for a constrained estima-
tion problem for linear systems was derived using
dynamic programming. The optimal solution is
given by a piece-wise affine function of the data of
this particular problem (the mean value of the ini-
tial state and the sequence of measurement data),
and consists of a partition of the data space into
a number of polyhedral regions where a unique
affine function is valid. An example was provided
to illustrate the structure of the optimal piece-
wise affine solution.
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namic programming for the analytical solu-
tion of input-constrained LQR problems. 5th

Asian Control Conference pp. 441–447.
Muske, K.R., J.B. Rawlings and J.H. Lee (1993).

Receding horizon recursive state estimation.
American Control Conference pp. 900–904.

Rao, C.V., J.B. Rawlings and D.Q. Mayne (2003).
Constrained state estimation for nonlinear
discrete-time systems: Stability and moving
horizon approximations. IEEE Transactions

on Automatic Control 48, 246–258.
Rao, C.V., J.B. Rawlings and J.H. Lee (2001).

Constrained linear estimation - a moving
horizon approach. Automatica 37, 1619–1628.

Robertson, D.G., J.H. Lee and J.B. Rawlings
(1996). Moving horizon-based approach for
least squares estimation. AIChE Journal

42(8), 2209–2224.
Tondel, P., T.A. Johansen and A. Bemporad

(2003). Evaluation of piecewise affine control
via binary search tree. Automatica 39, 945–
950.


