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Abstract: In this paper, an Artificial Neural Network (ANN) is designed to model an 
extraction process that uses a supercritical fluid as solvent. Two approaches are used in 
the ANN training. They differ in the strategy used to complement the experimental data 
collected during extraction procedures of useful compositions for the pharmaceutical 
industry. While the first method involves fitting of data obtained during an operation of 
extraction, the second one uses pseudo experiments generated from real data and 
incorporating process qualitative characteristics. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The extraction processes that use supercritical fluids 
as solvent stand out among the techniques of 
extraction of active components of natural 
substratum due to their capacity to produce products 
free of solvent. The modeling of such a process used 
in the extraction of natural products of a great variety 
of plants has been receiving a lot of attention from 
researchers. Most of the time, simple numerical 
models of mass transfer are proposed and used in the 
project of supercritical extraction installations and in 
the identification of their best operation conditions. 
These types of models are based on 
phenomenological and simplified description of the 
process, using rigid restrictions (Reverchon, 1997). 
In Fonseca et al. (1999), the results of a hybrid neural 
model of the curves of the supercritical extraction of 
two Brazilian vegetal matrices were presented. In 
this approach, an artificial neural net is used to 
identify parameters for a phenomenological model, 
minimizing some restrictions of neural nets. Fonseca, 

et al. (2000) had also used neural nets to derive the 
mass transfer coefficients of a supercritical 
extraction. To avoid the difficulties associated with a 
reduced amount of experimental supercritical 
extraction system data, they used a particular 
technique to generate new semi-empiric data. This 
technique combines the experimental coefficients of 
mass transfer with those obtained from the available 
correlation in the literature, producing an amount of 
data enough for efficient neural identification. 
 
The models considered in the present paper can 
predict the extraction curves in relation to the profile 
of solvent mass used for an operation point. The 
models are based on the application of Artificial 
Neural Networks (ANN) and inexperimental data 
collected in laboratory during extraction procedures 
of useful compositions for the pharmaceutical 
industry using residues (RAN–Residue Black 
Agglomerate) originating from cork as raw material. 
To correlate solvent mass of and raw material with 
the extracted mass of product, we used multiplayer 

     



feedforward ANN designs. The training of ANN was 
achieved using MATLAB with the optimization 
algorithm of Levenberg-Marquardt and Bayesian 
regularization, where the values of weights and bias 
of the ANN are updated to minimize a linear 
combination of the square of the sum of the 
deviations between the output training pattern and 
the output of the ANN in training.  
Due to the small amount of experimental data and 
the high cost involved in the execution of 
experiments, two different strategies were tested in 
order to create a larger set of data enabling an 
efficient ANN training. The first strategy consisted in 
fitting a curve to the data sampled from each 
extraction operation to generate a larger number of 
samples. It was assumed that even though the 
information had not been registered due to the 
characteristics of the extraction process, it existed in 
fact and, therefore, it could be estimated using a 
curve fitting method.  
 
The second strategy consisted of adding pseudo 
experiments to the set of training, which had been 
generated from the real experiments using qualitative 
characteristics of the process. Its use, besides 
generating enough data for the training, also allows a 
priori knowledge inclusion in the ANN through the 
qualitative information of the process incorporated in 
the training patterns (Thompson et al., 1994; Niyogi 
et al., 1998). 
 

 
2. PROCESS DESCRIPTION 

 
The supercritical extraction processes have the 
capacity to produce products free from solvents and 
to extract or to fraction mixtures in soft conditions. 
In a general way, they are constituted by stages of: 

• compression; 
• heating or condensation; 
• extraction; 
• separation; 
• and regeneration of the solvent used . 

 
In a typical operation of supercritical extraction, the 
raw material is initially placed inside the extractor, 
being continuously in contact with the supercritical 
fluid. This fluid can dissolve chemical substances 
similarly to a liquid and penetrate in porous matrices 
similarly to a gas. Figure 1 and Table 1, show the 
main components of a typical pilot installation of 
extraction supercritical.  
 
The solvent most commonly used is CO2. In the 
extraction equipment, it is submitted to a high 
pressure, under the action of a compressor that leads 
it to operate in supercritical phase. In the extractor, 
when the carbon dioxide passes through the raw 
material, substances are dissolved and extracted until 
a level of balance solubility. The gaseous solution, 
when leaving the extractor, passes through an 
expansion valve and is submitted to a lower pressure, 
causing the precipitation of the components in the 
separator. In this way, the extracted substances of the 
raw material are separated from the carbon dioxide, 

which is recycled by the compressor. Such recurrent 
process is repeated until all components are extracted 
and collected in the separator.  The characteristics of 
the recycling such as: temperature, flow, pressure 
and duration are calculated and adjusted in a way to 
maximize the extraction. These adjustments, in 
general, depend on the product and the components 
desired to be extracted. 

 
Fig. 1. Supercritical extraction installation scheme. 

 
 

Table 1. Basic Components of the Pilot Installation 

 
 

 
3. NEURAL NETWORK MODELS 

 
Typically, ANN are constituted by artificial neurons 
connected so that the information along the network 
may be processed in a simultaneous and parallel way. 
A diagram that represents the model for an artificial 
neuron is shown in the Figure 2, where: X1, X2. . . , 
Xn represent the inputs of the neurons; w1, w2. . . , wn 
represent the weights for each input and b represents 
the bias for each neuron. In a static neuron the output 
S is given by the linear combination of its inputs as 
shown in (1). The weighted sum S is an input to f (.), 
denominated activation function.  
 

bxxxS nn ++++= ... 2211 ωωω L               (1) 
 

 
Fig. 2. Artificial Neuron 

     



Multilayer Feedforward Neural Networks are well 
known since the early 90’s to be successful in 
identification and control systems applications (Hunt, 
1992). Their architecture is typically composed of a 
set of input patterns, one or more hidden layers and 
one output layer.  
 
In our work, we used nets with one or two hidden 
layers. We have confirmed that a model of a 
supercritical extraction plant can be represented by a 
ANN if a correct training is accomplished. The 
algorithm used by us for ANN training is based on 
the method of Levenberg-Marquardt (Hagan, 
Menhaj, 1994), with Bayesian regularization (Dan, 
Hagan, 1997), whose main characteristics are the 
reduced computational effort during the training and 
producing ANN with good generalization qualities. 
In the ANN training, a typical fitting function is 
obtained by the average of the quadratic sum of the 
ANN errors, according to Equation 2. 
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The Levenberg-Marquardt algorithm was created to 
obtain a solution that minimizes the function F 
without the need of calculating the Hessian matrix. 
In particular, when the fitting function has the form 
of the Equation 2, the Hessian matrix can be 
approximate to: 

JJH T .=                            (3) 

and the gradient can be calculated for: 
 

eJg T .=                             (4) 
 
where  

J − Jacobian matrix that contains the first 
derivative of the errors of the ANN in relation to 
the weights and bias, and 
e  − error vector of the ANN output 

 
The Jacobian Matrix can be calculated using the 
error backpropagation method, which initially 
calculates the errors derived (delta vector) for the 
output layer, which are then backpropagated through 
the ANN until a delta vector for all the layers of the 
net has been calculated . The variables (weights and 
bias) are continuously updated by the following 
equation: 
 

eJIJJXX TT
KK .]...[1 µ+−=+           (5) 

 
To improve the generalization capacity of the ANN, 
a procedure denominated regularization is used. Such 
procedure involves the modification of the fitting 
function, according to the equation 6. 
 

mswmsemsereg ).1(. γγ −+=         (6) 
 
where γ is the fitting rate and msw is given by: 
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The difficulty in regularization is to determine the 
optimal value of γ. However, using Bayesian 
Regularization (Dan and Hagan, 1997), it is possible 
to determine this parameter automatically using 
statistical techniques. 
 
 
4. NEURAL MODELS FOR THE EXTRACTION 

CURVE  
 
4.1 General Considerations 
 
This section presents two methodologies to build 
neural models that may predict extraction curves, for 
a supercritical extraction process operation condition, 
in relation to the solvent mass profile used.  
 
The models have been obtained with experimental 
data collected during experiments performed in a 
pilot installation at the Institute of Experimental and 
Technological Biology - IBET -located in Oeiras 
(Lisbon, Portugal), with the extraction of useful 
substances for pharmaceutical industry from residues 
originating from cork production (RAN - Residue 
Black Agglomerate). However, because the 
experimental data collected were scarce, due to the 
nature of the process, the protocol involved and the 
high cost involved in experiments execution, there 
was an insufficient amount of data for ANN training. 
Therefore, two strategies for data complementation 
have been tested. 
 
The general operation conditions of the pilot 
installation, for the extraction of the pharmaceutical 
product whose composition cannot be disclosed for 
confidentiality reasons, had been previously 
identified in research accomplished at IBET and the 
results of those research efforts suggested the use of 
an extraction autoclave of 2,0 liters, initial mass of 
RAN around 400g, and temperature and pressure 
references of 40oC and 250bar. Analyzing the pilot 
installation operation during the extraction, it was 
observed that the CO2 temperature that is controlled 
along the process did not present significant 
variations during the experiments. The ON-OFF 
action of the expansion valve, combined with the 
compressor action, controlled the pressure in the 
supercritical cycle. However, the CO2 solvent mass 
during the extraction process depends strongly on the 
heating of CO2 reservoirs (especially if they are 
subject to solar radiation) and on the amount of CO2 
accumulated in them, influencing the amount of 
product extracted. Trusting the experience of IBET 
researchers, we opted to neglect the perturbations 
caused by temperature and pressure and to use the 
structure of the model shown in the Figure 3. 
 

 
Fig. 3. Model Structure 

     



4.2 Fitting Data 
 
The strategy of fitting data consists of fitting a curve 
to the information collected during each extraction 
operation, with the purpose of having a larger 
number of samples. Samples were registered in the 
instants when the product was collected in the output 
of the separator (in intervals of approximately 60 
minutes). From curve fitting, new points were 
derived for 10-minute intervals. Therefore, from 
experiments with just 3 samples we built a set of 18 
samples. To fit the data we used the interp1 function 
of MATLAB. With the interpolated data, the best 
training results were obtained with an ANN 
architecture of 3 hidden layers, with 11, 50 and 03 
neurons, and sigmoid activation functions. In the 
output layer we used the linear activation function 
usual in Neural Identification applications. The 
training patterns were linearly normalized in the 
interval [0,1] and the internal structure of the 
supercritical extraction model shown in Figure 4 was 
adopted to characterize the inputs and outputs of the 
ANN model. 
 

 
Fig. 4. Structure of the Supercritical Extraction 

Model 
 
4.3 Building Pseudo Data 
 
The pseudo data strategy consisted of generating 
additional data that could incorporate in the training 
patterns some qualitative information of the process. 
This was made taking in account an intrinsic 
characteristic of the process of extracting product; in 
fact, some product may be retained in the extraction 
ducts, during a partial extraction operation, and be 
collected in a subsequent stage together with the 
mass accumulated in the corresponding period. So, 
thinking about a training model for the ANN that 
could also take in consideration that characteristic, 
pseudo experiments were added to the training set. 
The approach adopted to generate the new patterns 
was based on fictitious measures of extracted mass 
obtained from the real measures with increments of 
±DM%. For each experiment a random value DM 
was used, in the band suggested by the operator of 
the installation (from 5 to 15). 
 
The pseudo experiments associated with each real 
experiment were generated maintaining the inputs 
and combining the new measures of extracted mass 

to compose new experiments. For instance, for an 
experiment, we could obtain 27 (33) possible 
combinations that corresponded to 26 pseudo 
experiments and 1 real experiment. For a total of 37 
real experiments, 999 experiments  were obtained 
(27x37) where 962 were pseudo experiments and 37 
real experiments. Some possible combinations are 
shown in the Table 2. 
 
With the pseudo data, the best training results were 
obtained with 3 hidden layers, with 7, 15 and 5 
neurons, and sigmoid activation functions. In the 
output layer we used linear activation. The training 
patterns were linearly normalized in the interval of 
[0,1] and the internal structure of the supercritical 
extraction neural model, shown in the Figure 5, was 
adopted to characterize the inputs and outputs of  the 
ANN. 
 
 

Table 2. Combinations for Composition of Pseudo 
experiments 

 
 
 

 
Fig. 5. Structure of the Supercritical Extraction 

Model 
 

 
5. RESULTS 

 
The raw data were obtained form 37 real experiments 
at IBET lab facility. In general, the results reached 
with the two strategies presented outputs with non-
significant errors between the output of the ANN and 
the experimental data, namely in the experiments that 
were not part of the training set and that formed the 
test set. However, different problems were identified 
in each of the models, which will be mentioned in the 
following sections.  

     



5.1 Neural Model with Fitted Data. 
 
For this model, coherence loss was observed in some 
experiments, because the accumulated extracted 
mass estimated by the ANN assumed smaller values 
than the previous sample. Also, the first samples of 
the experiment also in some cases were very 
different from the real data − this is certainly due to 
tail effects of the fitting curve. However, the main 
advantage in using this strategy is to obtain a not too 
sensitive resulting model to deviations of the mass 
solvent profile during an extraction. The results of 
the simulations made with the neural model obtained 
from the interpolated data are shown in Figures 6-8. 
 

 
 
Fig. 6. Training Experiment Type 
 

 
 
Fig. 7. Validation Experiment Type 
 

 
 
Fig. 8. Test Experiment Type 

5.2 Neural Model with Pseudo Data. 
 
For this model, the largest errors were around 2g to 
3g. These errors were found in only a small number 
of experiments and in only one of the measurements 
taken. In spite of having presented better precision 
than the previous neural model, it showed as  
disadvantage a high sensitivity to deviations of the 
mass solvent profile during an extraction. Table 3 
presents the numeric results of the simulations 
performed with the neural model obtained from the 
pseudo data. 

 
Table3. Numeric Results 

 
 

 
6. CONCLUSIONS 

 
The application of ANN in the identification of a 
supercritical extraction process is suggested as an 
efficient alternative considering that the 
phenomenological model and the industrial operative 
process are complex. The work was only possible 
because we had access to the installation pilot of 
IBET, which allowed us to get and register 
experimental data for ANN training.  
 
The difficulty of ANN training with small amount of 
available experimental data, which is common in 
supercritical extraction processes, was minimized 
through two different data complementation 
strategies. Although the data curve fitting during 
each experiment has produced satisfactory results for 
ANN training and in the simulation of the process, its 
use does not have a formal justification and, 
therefore, it is not possible to conclude about its 
success in other situations or operation conditions.  
 
The pseudo experiments were essential in the ANN 
training making available a larger number of data 
points, besides allowing to consider the 
characteristics of the product collection process in 
the data.  If the imprecision in collecting product is 
not taken in account, this may cause error in the 
measuring of the extracted mass. The high degree of 
non linearity of the process and the limited spectrum 
of the collected data restricted the efficiency of the 
model obtained with the pseudo experiments turning 
it too sensitive to large deviations from the profile of 
mass solvent during an extraction. However, in the 
band of operation considered in this study, it 
presented good characteristics of precision and 
generalization capacity, becoming very important in 
the identification of strategies of manipulation of the 
CO2 mass in the supercritical cycle to maximize the 
product to be extracted. 

     



The work reported cannot be considered completed 
but the results so far obtained are promising and 
serve as inspiration to the development of more 
accurate ANN models. 
 
An ANN model of a supercritical extraction plant 
will have both an academic interest, because it will 
serve to validate analytical models, and an industrial 
interest, because it may serve to help operator in 
predicting the outcome of operations. In further 
studies, ANN such as these will help in building up 
optimized control strategies and processes for 
industrial supercritical extraction plants. 
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