

A HYBRID SIMULATION/PHYSICAL ENVIRONMENT FOR BENCHMARKING REAL-TIME
DISTRIBUTED CONTROL SYSTEMS

Robert W. Brennan and Karthik Soundararajan

Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W.,
Calgary, Alberta, CANADA, T2N 1N4

Abstract: In this paper we propose a hybrid physical/simulation environment for
benchmarking real-time distributed control systems. This environment uses Arena® Real
Time for simulation and the Java-based TINI platform for real-time control. Experimental
results show that the characteristics of the physical device can be accounted for through
the use of this hybrid environment. Copyright © 2005 IFAC

Keywords: simulation, real-time control, intelligent control.

1. INTRODUCTION

Given the difficulty of practical manufacturing
scheduling and control problems, recent research has
moved away from traditional, analytical approaches
that have been the domain of operations research for
many years and towards new approaches that rely on
artificial intelligence, holonic and multi-agent
systems (Shen et al., 2001; McFarlane and Bussman,
2000). In order to make this research relevant
however, it is important that realistic and industrially
relevant test cases are available to address
specifically the evaluation and stress of the
performance of scheduling and control systems based
on these new technological paradigms. As well, it is
important that these test cases span the realm of
research in this area from planning and scheduling
systems to real-time control.

In order to address this need, a special interest group
on benchmarks of multi-agent systems was
established under the umbrella of the Network of
Excellence on Intelligent Manufacturing Systems
(IMS-NoE, 2004). This paper focuses on one aspect
of the work being performed at the University of
Calgary in this area.

In this paper, we describe a hybrid
physical/simulated environment that is currently
being developed for manufacturing systems control
experimentation that incorporates both simulated and
physical manufacturing devices. The objective of this
work is to extend benchmarks of multi-agent systems
to the full manufacturing hierarchy: i.e., from device
control to planning and scheduling. In order to
accomplish this, an important aspect of the project
involves developing an interface between the
simulation software and the physical devices. In our
work, we are currently investigation the use a Tiny
Internet Interface (TINI) board (Loomis, 2001) that
runs Java programs (allowing us to develop local
software), and has access various I/O (e.g.,
discrete/analog I/O, Ethernet). The link to the
discrete-event simulation model will be created using
Arena® Real Time (Kelton et al., 1998) and Java
socket-based communication.

We begin the paper with an overview of this hybrid
simulation/physical environment in Section 2 and
provide details of its implementation in Arena® and
Java in Section 3. In Section 4 we describe our
preliminary experiments with the hybrid environment
and a benchmark test case. Finally, we conclude the
paper with comments on the future direction of this
research.

2. A HYBRID SIMULATION/PHYSICAL

ENVIRONMENT

In the manufacturing domain, discrete-event
simulation is a very powerful tool that can be used to
evaluate alternative control policies. For example,
discrete-event simulation has been used to evaluate
agent-based scheduling approaches by interfacing
agent-based or object-oriented software with a
discrete-event simulation model of a plant to be
controlled as is illustrated in Figure 1 (Brennan and
O, 2004).

Fig. 1. Using discrete-event simulation to evaluate
alternative agent-based control policies.

In this example, each entity in the discrete-event
simulation model (such as a machine (e.g., M1) or
robot (e.g., M1)) is represented by a corresponding
software agent (SA) in the control module. For
example, the software agents can be thought of as the
“reasoning” part of the entity that is responsible for
scheduling etc.

The reason for this direct correspondence between
SA and entity is that (given recent advances in
hardware and software) is it possible to have
intelligent agent software running directly on a
machine (e.g., computer numerical control (CNC),
robot, etc.). This software can be thought of as the
“brains” of the machine that can potentially allow it
to act autonomously and/or cooperatively.

Much of the work that has been done on
benchmarking multi-agent systems has followed this
basic model (Terzi et al., 2004). For example, the
Remote Factory project (Cavalieri et al., 2000;
Cavalieri et al., 2002) uses an online emulation of the
manufacturing plant as part of its Test Bench
Assistant.

The use of simulation to emulate the plant behaviour
is the most common approach for planning and
scheduling problems. However, if one is interested in

the real-time behaviour of the manufacturing system
(i.e., at the device level), the next step is to have
these SA’s run directly on the machines. This will
allow us to test the real-time capabilities of the
system (i.e., its ability to meet deadlines), and also
allow us to incorporate extra functionality concerned
with “execution”. For example, SA’s (running
directly on a machine) may be used to perform fault
diagnosis and preliminary recovery services. SA’s
may also be capable of reconfiguration (e.g.,
allowing new hardware to be
added/removed/modified dynamically). This
arrangement is shown in Figure 2.

From an experimental and research point of view,
there are some problems with this second approach
even though it represents the ultimate goal (i.e.,
industrial implementation) of the agent-based system.
The main problem is that, given financial and space
resources, most researchers using this approach are
limited to experimenting with relatively small
systems. As well, even if a large system is possible, it
is debatable whether it would be a good time and cost
investment. For example, we may only need a
relatively small number of physical devices to test
and validate the execution capabilities of our agent
system. However, we would like to have a reasonable
number of emulated machines to test the scheduling
capabilities.

Fig. 2. Physical agents.

The former requirement (execution) is typically hard
real-time (i.e., deadlines must always be met very
quickly), while the latter requirement (planning,
scheduling, and dispatching) is typically soft real-
time (i.e., deadlines must be met on average and
much more slowly). As a result, we need physical
hardware to test the execution environment and could
use a simulated environment to test the “higher
reasoning” part of the system. Of course, physical
hardware could also be used to test this latter part of
the system.

A second problem (from a research perspective) with
a pure physical system is that we lose many of the
experimental benefits of discrete-event simulation
software (e.g., statistical analysis, graphics, the
ability to easily change the system configuration).

As a result, we suggest that a hybrid
physical/simulated environment is developed for
manufacturing systems control experimentation. In

order to accomplish this, one aspect of the project
involves developing an interface between the
simulation software and the physical devices. One
approach is to use a Tiny Internet Interface (TINI)
board. This board runs Java programs (allowing us to
develop local SA’s), has access to discrete/analogue
I/O, and has Ethernet capabilities. The general idea is
illustrated in Figure 3.

Fig. 3. A hybrid simulation/physical environment for
experimentation.

In this example, M1, M2, and Pi have software agents
associated with them (SA1, SA2, and SAi
respectively). M3 and M4 are also part of the system,
but they are real physical devices. For example, the
TINI boards could act as controllers for robots or
conveyors. Their agents (SA3 and SA 4 respectively)
communicate with the other parts of the system via a
UNIX socket.

3. IMPLEMENTING THE HYBRID

ENVIRONMENT WITH ARENA

In this section we begin with a brief overview of the
simulation software used for the hybrid environment.
This software is well suited to the needs of this
research because of its ability to operate in a real-
time mode, allowing the simulation to synchronise
with the physical parts of the system. Next, we
describe the mode of communication used between
this simulation software and our physical devices.

3.1 Arena Real-time.

Arena Real Time (RT) is the real-time version of the
Arena® suite of discrete-event simulation software
environments (Kelton et al., 1998). Although the
Arena RT version of the software is required for full

real-time support, all of the real-time features are
provided in the Standard Edition of Arena®. The
only limitation is that Arena RT only allows
simulation models to be run for a limited time (10
minutes).

Arena RT runs the simulation model in execution
mode. When in this mode, Arena can coordinate
simulation logic with an external process of a real
system. The external processes and Arena
communicate via a messaging system, whereby
entities in the Arena model send messages to the
external applications to indicate simulated tasks, and
the external applications send "message responses"
back to Arena to indicate the tasks have been
completed. Unsolicited messages can also be sent to
Arena to indicate special events (e.g., the arrival of
raw material or customer orders). The Arena
simulation clock speed is set to the real-time clock
speed of the computers operating system.

The Arena RT extension is used in this research to
coordinate a benchmark simulation model with the
process of the TINI board described previously. This
setup allows us to assess the hybrid model and the
control software running on the TINI Board.

Two alternative programming approaches for
implementing inter-process communication can be
used with Arena RT: Visual Basic for Applications
(VBA) events, or routines provided in SIMAN’s C++
user-code library. In each case, the following basic
functionality can be accessed from within the
simulation model:

• Initialization – This is called at the
beginning of the first simulation replication.
This code initializes the inter-process
communications (e.g., opening a
communication socket).

• Message Transmission – This is called when
a simulation entity tries to send a message to
the external process. Code that sends the
message to the inter-process communication
(IPC) queue is placed here.

• Message Receipt - Code that retrieves
messages from the IPC queue and passes
them to Arena is placed here.

• Termination – This is called at the end of
the last simulation replication. Code that
terminates the inter-process communications
is placed here (e.g., closing a
communication socket).

In order to implement inter-process communication
in Arena RT, the appropriate VBA code or C++ code
(in the form of a DLL) must be linked to the Arena
model. Typically, the Arena model acts as a server
and the external processes act as clients.

3.2 Client-server communication.

In this section we provides an overview of the client-
side communication program that was developed in

Java to allow communication between the Arena
simulation model and the physical devices illustrated
in Figure 3.

The TCP/IP protocol suite is used in this case to
implement the basic network communication. As
well, as noted previously, the mode of
communication between the distributed applications
used is the client/server mode. In this mode of
communication, a client program initiates
communication while the server program waits
passively for and then responds to clients that contact
it. As a result, the client program needs to know the
server’s address and port initially, but not visa versa.
For this application, Arena uses a C++ program to
establish Arena as a TCP/IP server. The server’s job
is to set up a communication endpoint and passively
wait for connections from clients. In this case, the
TCP server first constructs a socket instance at a
specified port (this socket listens for incoming
connections to the specified port). Next, the server
repeatedly calls “accept” methods to get the next
incoming client connection. When a client
connection is made, an instance of the socket for the
new connection is created and returned by an
“accept” method. The server can then communicate
with the client using the returned socket’s input
stream and output stream.

The client-side program can be implemented in any
programming language that allows TCP/IP sockets to
be created (Java is used here to allow the TINI
boards to be implemented). The TCP client first
constructs a socket instance to establish a TCP
connection to a specified remote host and port. It
then communicates using the socket’s I/O streams as
in the case of the server.

In order to test the hybrid environment proposed
previously, an initial test was performed using a
benchmark simulation model (described in the next
section) and a single TINI board as shown in Figure
4.

In this case, the Java client program is running on the
TINI board (m197.enme.ucalgary.ca). Once the TINI
client connects, the Arena server responds with a
“hello” message and part arrival information. For
example, the Arena server informs the TINI board
that a Type 3 part has arrived at time = 0 (TNOW =
0) with a part ID of 4.

The TINI board then “processes” the part. For our
initial experiments, the TINI board generates a
random delay time (using a triangular distribution in
this example). In future versions, the TINI board’s
I/O will be used to allow real physical control.

As can be seen in Figure 4, Part #4 is delayed by
4.73 seconds. The TINI board then responds with a
“part processed” message. In this case, the message
“0 4 0” is sent to the Arena server indicating that a
“response to task” (i.e., the first “0”) message is
being sent concerning Part #4 (i.e., the “4”) and the

return code is “0” (i.e., the second “0”). The Arena
server responds by indicating that this part is being
sent to the next machine.

4. EXPERIMENTS WITH A MANUFACTURING

BENCHMARK

In this section, we report on our initial experiments
with this approach implemented with a benchmark
simulation model. We begin with a brief description
of the benchmark test case then report on our
preliminary results with the hybrid environment.

4.1 The manufacturing benchmark.

The experiments reported in this section are based
upon the benchmark system proposed by Cavalieri et
al. (2000). This test environment contains four types
of resources, each having non-overlapping
capabilities, with the third resource type as the
bottleneck. The benchmark demands two of each
type of resource, or eight in total. Transportation
between resources is accomplished though
autonomous ground vehicles (AGV’s), which for
simplicity, are assumed to be always available and
require zero transportation time. It should be noted
that this transportation assumption, though included
in the benchmark, is not strictly necessary. Any
transportation activities can themselves be
considered resources, and included accordingly in the
approach presented in this paper. As noted
previously, one of the resources is represented by a
physical device (i.e., a TINI board) as is illustrated in
Figure 4.

4.2 Preliminary experiments.

For the experiments reported in this paper, the
Scenario 1 (deterministic processing times) and
Scenario 2 (stochastic processing times) experiments
suggested by Cavalieri et al. (2000) were run.
However, our main interest for these initial
experiments is to evaluate the latencies associated
with a physical device rather than the performance of
the manufacturing system itself. As a result, only the
deterministic processing time results (Scenario 1) are
reported here. Further details on our implementation
of the agent-based scheduling system for this test
case can be found in (Brennan and O, 2004).

In order to evaluate the latencies associated with the
physical device, the client application was first run
on the local PC with the Arena server and then on a
remote device (i.e., a TINI board). The results for a
type 1 part (processing time = 8 seconds) are shown
in Figures 5 and 6.

Each figure shows the results of 10 simulation runs.
The error bars provide an indication of the latencies
associated with processing the part outside of the
simulation environment.

Fig. 4. Java client connection from the TINI board.

 (a) Processing Times of JobType1 on the PC

7.8
7.85

7.9
7.95

8
8.05

8.1
8.15

1 2 3 4 5 6 7 8 9 10

Real-time Simulation Trials

(b) Processing Times of JobType1 on the TINI

8
8.05

8.1
8.15

8.2
8.25

8.3
8.35

1 2 3 4 5 6 7 8 9 10

Real-time Simulation Trials

Fig. 5. Processing time results for a type 1 part on the local PC.

For example, the maximum latency on the PC is 0.11
seconds (trials 1 and 8), while it is 0.32 seconds on
the TINI (trials 2, 4 and 8).

As well, the maximum latency for the PC falls below
0.10 seconds for 8 out of 10 simulation trials with the
PC, while it is above 0.30 seconds for 9 out of 10
trials with the TINI board.

It is interesting to note that processing time falls
below the deterministic value of 8 seconds in all
cases on the PC (i.e., the minimum processing time is
7.91 seconds for trials 4 and 5). This result provides
an indication of the resolution that is possible using
Arena’s statistics collection facilities for this type of
timing test. Despite this small source of error, the
results in Figure 6 clearly show that the latencies
associated with the TINI platform are higher than
those associated with a local client application (e.g.,
the TINI board’s minimum processing times never
fall below 8.10 seconds).

5. CONCLUSIONS

The latency results described in the previous section
are very promising in the sense that they clearly
show that characteristics of the physical device can
be accounted for in the hybrid simulation. In other
words, by incorporating actual physical devices in
the simulation environment, effects that are often
difficult to quantify such as communication latency
and processor latency can be observed.

This is particularly useful given that real-time
embedded platforms such as the TINI board are
typically resource constrained. For example, the
main drawbacks of the TINI board implementation
are its limited memory and its execution speed. Java
class files are stored in non-volatile SRAM, which
supports a maximum of 1 MB on current versions of
the TINI platform. Both tasks and threads are
scheduled in a round-robin fashion on by the TINI
operating system: the task scheduler is launched
every 8 milliseconds and the thread scheduler is
launched every 2 milliseconds (Loomis, 2001).

This relatively slow execution speed is the most
likely cause of the latencies observed in the Figure 5
TINI board results. Some of the delay may be a
result of communication network latencies, however
given that the PC results show virtually no delay, the
effect is very negligible.

However, given that many the new technological
paradigms for manufacturing scheduling and control
rely heavily on distributed artificial intelligence it
follows that communication latencies have the
potential to become a very important consideration in
many cases. As more physical devices are connected
and the network becomes more heavily loaded, this
will be an issue. As a result, one of the main
motivations for this hybrid approach is to be able to
observe these physical characteristics of the system
without resorting to a full-blown physical testbed.

As noted previously, a second objective of this
research is to be able to extend the work on
benchmarks to the lower, real-time control level. Our

current work on the hybrid environment is concerned
with this aspect of the research. In particular, we are
currently implementing physical agents or “holons”
(McFarlane and Bussman, 2000) on the TINI
platform that will interact with the hybrid
environment in order to provide intelligence at the
physical device level. These physical agents will be
implemented using IEC 61499 function blocks (IEC,
2000) as described in (Olsen et al., 2004). This will
allow our work on manufacturing scheduling and
control (Brennan and O, 2004) to be extended to
include real-time aspects.

REFERENCES

Brennan, R.W., and W. O (2004) Performance

analysis of a multi-agent scheduling and control
system for manufacturing, Production Planning
and Control, 15(2), pp. 225-235.

Cavalieri, S., M. Macchi, S. Terzi (2002)
Benchmarking manufacturing control systems:
development issues for the performance
measurement system, Proceedings of the IFIP
Performance Measurement Workshop,
Hannover, Germany.

Cavalieri, S., M. Garetti, M. Macchi, and M. Taisch
(2000) An experimental benchmarking of two
multi-agent architectures for production
scheduling and control, Computers in Industry,
43(2), pp. 139-152.

Dilts, D.M., N.P. Boyd and H.H. Whorms (1991)
The evolution of control architectures for
automated manufacturing systems, Journal of
Manufacturing Systems, 10(1), pp. 79-93.

IEC TC65/WG6 (2000) Voting Draft – Publicly
Available Specification - Function Blocks for
Industrial Process-measurement and Control
Systems, Part 1-Architecture, International
Electrotechnical Commission.

Intelligent Manufacturing Systems (2004) Network of
Excellence in Intelligent Manufacturing,
http://www.ims.org/projects/outline/noe.html.

Kelton, W., R. Sadowski, and D. Sadowski (1998)
Simulation with Arena, McGraw-Hill.

Loomis, D. (2001) The TINI Specification and
Developer’s Guide, Pearson.

McFarlane, D.C., and S. Bussmann, (2000)
Developments in holonic production planning
and control, Production Planning and Control,
11(6), pp. 522-536.

Olsen, S., J. Scarlett, R.W. Brennan, and D.H. Norrie
(2004) Contingencies-based reconfiguration of
holonic control devices, 6th BASYS, Vienna,
Austria.

Terzi, S., S. Cavalieri, R. Bandinelli, and M. Tucci
(2004) Experiences in distributed simulation for
bechmarking production scheduling systems,
Proceedings of the IMS International Forum,
Cernobbio, Italy, pp. 1017-1026.

Shen, W., D.H. Norrie, and J-P. Barthes (2001).
Multi-agent Systems for Concurrent Intelligent
Design and Manufacturing, Taylor & Francis.

