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Abstract: In this paper we propose a hybrid physical/simulation environment for 
benchmarking real-time distributed control systems. This environment uses Arena® Real 
Time for simulation and the Java-based TINI platform for real-time control. Experimental 
results show that the characteristics of the physical device can be accounted for through 
the use of this hybrid environment.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Given the difficulty of practical manufacturing 
scheduling and control problems, recent research has 
moved away from traditional, analytical approaches 
that have been the domain of operations research for 
many years and towards new approaches that rely on 
artificial intelligence, holonic and multi-agent 
systems (Shen et al., 2001; McFarlane and Bussman, 
2000). In order to make this research relevant 
however, it is important that realistic and industrially 
relevant test cases are available to address 
specifically the evaluation and stress of the 
performance of scheduling and control systems based 
on these new technological paradigms. As well, it is 
important that these test cases span the realm of 
research in this area from planning and scheduling 
systems to real-time control. 
 
In order to address this need, a special interest group 
on benchmarks of multi-agent systems was 
established under the umbrella of the Network of 
Excellence on Intelligent Manufacturing Systems 
(IMS-NoE, 2004). This paper focuses on one aspect 
of the work being performed at the University of 
Calgary in this area. 
 

In this paper, we describe a hybrid 
physical/simulated environment that is currently 
being developed for manufacturing systems control 
experimentation that incorporates both simulated and 
physical manufacturing devices. The objective of this 
work is to extend benchmarks of multi-agent systems 
to the full manufacturing hierarchy: i.e., from device 
control to planning and scheduling. In order to 
accomplish this, an important aspect of the project 
involves developing an interface between the 
simulation software and the physical devices. In our 
work, we are currently investigation the use a Tiny 
Internet Interface (TINI) board (Loomis, 2001) that 
runs Java programs (allowing us to develop local 
software), and has access various I/O (e.g., 
discrete/analog I/O, Ethernet). The link to the 
discrete-event simulation model will be created using 
Arena® Real Time (Kelton et al., 1998) and Java 
socket-based communication. 
 
We begin the paper with an overview of this hybrid 
simulation/physical environment in Section 2 and 
provide details of its implementation in Arena® and 
Java in Section 3. In Section 4 we describe our 
preliminary experiments with the hybrid environment 
and a benchmark test case. Finally, we conclude the 
paper with comments on the future direction of this 
research. 



 

     

 
2. A HYBRID SIMULATION/PHYSICAL 

ENVIRONMENT 
 
In the manufacturing domain, discrete-event 
simulation is a very powerful tool that can be used to 
evaluate alternative control policies. For example, 
discrete-event simulation has been used to evaluate 
agent-based scheduling approaches by interfacing 
agent-based or object-oriented software with a 
discrete-event simulation model of a plant to be 
controlled as is illustrated in Figure 1 (Brennan and 
O, 2004).  
 

 
 
Fig. 1. Using discrete-event simulation to evaluate 
alternative agent-based control policies. 
 
In this example, each entity in the discrete-event 
simulation model (such as a machine (e.g., M1) or 
robot (e.g., M1)) is represented by a corresponding 
software agent (SA) in the control module. For 
example, the software agents can be thought of as the 
“reasoning” part of the entity that is responsible for 
scheduling etc. 
 
The reason for this direct correspondence between 
SA and entity is that (given recent advances in 
hardware and software) is it possible to have 
intelligent agent software running directly on a 
machine (e.g., computer numerical control (CNC), 
robot, etc.). This software can be thought of as the 
“brains” of the machine that can potentially allow it 
to act autonomously and/or cooperatively. 
 
Much of the work that has been done on 
benchmarking multi-agent systems has followed this 
basic model (Terzi et al., 2004). For example, the 
Remote Factory project (Cavalieri et al., 2000; 
Cavalieri et al., 2002) uses an online emulation of the 
manufacturing plant as part of its Test Bench 
Assistant. 
 
The use of simulation to emulate the plant behaviour 
is the most common approach for planning and 
scheduling problems. However, if one is interested in 

the real-time behaviour of the manufacturing system 
(i.e., at the device level), the next step is to have 
these SA’s run directly on the machines. This will 
allow us to test the real-time capabilities of the 
system (i.e., its ability to meet deadlines), and also 
allow us to incorporate extra functionality concerned 
with “execution”. For example, SA’s (running 
directly on a machine) may be used to perform fault 
diagnosis and preliminary recovery services. SA’s 
may also be capable of reconfiguration (e.g., 
allowing new hardware to be 
added/removed/modified dynamically). This 
arrangement is shown in Figure 2. 
 
From an experimental and research point of view, 
there are some problems with this second approach 
even though it represents the ultimate goal (i.e., 
industrial implementation) of the agent-based system. 
The main problem is that, given financial and space 
resources, most researchers using this approach are 
limited to experimenting with relatively small 
systems. As well, even if a large system is possible, it 
is debatable whether it would be a good time and cost 
investment. For example, we may only need a 
relatively small number of physical devices to test 
and validate the execution capabilities of our agent 
system. However, we would like to have a reasonable 
number of emulated machines to test the scheduling 
capabilities. 
 

 
 
Fig. 2. Physical agents. 
 
The former requirement (execution) is typically hard 
real-time (i.e., deadlines must always be met very 
quickly), while the latter requirement (planning, 
scheduling, and dispatching) is typically soft real-
time (i.e., deadlines must be met on average and 
much more slowly). As a result, we need physical 
hardware to test the execution environment and could 
use a simulated environment to test the “higher 
reasoning” part of the system. Of course, physical 
hardware could also be used to test this latter part of 
the system. 
 
A second problem (from a research perspective) with 
a pure physical system is that we lose many of the 
experimental benefits of discrete-event simulation 
software (e.g., statistical analysis, graphics, the 
ability to easily change the system configuration). 
 
As a result, we suggest that a hybrid 
physical/simulated environment is developed for 
manufacturing systems control experimentation. In 



 

     

order to accomplish this, one aspect of the project 
involves developing an interface between the 
simulation software and the physical devices. One 
approach is to use a Tiny Internet Interface (TINI) 
board. This board runs Java programs (allowing us to 
develop local SA’s), has access to discrete/analogue 
I/O, and has Ethernet capabilities. The general idea is 
illustrated in Figure 3. 
 

 
 
Fig. 3. A hybrid simulation/physical environment for 
experimentation. 
 
In this example, M1, M2, and Pi have software agents 
associated with them (SA1, SA2, and SAi 
respectively). M3 and M4 are also part of the system, 
but they are real physical devices. For example, the 
TINI boards could act as controllers for robots or 
conveyors. Their agents (SA3 and SA 4 respectively) 
communicate with the other parts of the system via a 
UNIX socket. 
 

 
3. IMPLEMENTING THE HYBRID 

ENVIRONMENT WITH ARENA 
 
In this section we begin with a brief overview of the 
simulation software used for the hybrid environment. 
This software is well suited to the needs of this 
research because of its ability to operate in a real-
time mode, allowing the simulation to synchronise 
with the physical parts of the system. Next, we 
describe the mode of communication used between 
this simulation software and our physical devices. 
 
3.1 Arena Real-time. 
 
Arena Real Time (RT) is the real-time version of the 
Arena® suite of discrete-event simulation software 
environments (Kelton et al., 1998). Although the 
Arena RT version of the software is required for full 

real-time support, all of the real-time features are 
provided in the Standard Edition of Arena®. The 
only limitation is that Arena RT only allows 
simulation models to be run for a limited time (10 
minutes).  
 
Arena RT runs the simulation model in execution 
mode. When in this mode, Arena can coordinate 
simulation logic with an external process of a real 
system. The external processes and Arena 
communicate via a messaging system, whereby 
entities in the Arena model send messages to the 
external applications to indicate simulated tasks, and 
the external applications send "message responses" 
back to Arena to indicate the tasks have been 
completed. Unsolicited messages can also be sent to 
Arena to indicate special events (e.g., the arrival of 
raw material or customer orders). The Arena 
simulation clock speed is set to the real-time clock 
speed of the computers operating system. 
 
The Arena RT extension is used in this research to 
coordinate a benchmark simulation model with the 
process of the TINI board described previously. This 
setup allows us to assess the hybrid model and the 
control software running on the TINI Board. 
 
Two alternative programming approaches for 
implementing inter-process communication can be 
used with Arena RT: Visual Basic for Applications 
(VBA) events, or routines provided in SIMAN’s C++ 
user-code library. In each case, the following basic 
functionality can be accessed from within the 
simulation model: 
 

• Initialization – This is called at the 
beginning of the first simulation replication. 
This code initializes the inter-process 
communications (e.g., opening a 
communication socket). 

• Message Transmission – This is called when 
a simulation entity tries to send a message to 
the external process. Code that sends the 
message to the inter-process communication 
(IPC) queue is placed here. 

• Message Receipt - Code that retrieves 
messages from the IPC queue and passes 
them to Arena is placed here. 

• Termination – This is called at the end of 
the last simulation replication. Code that 
terminates the inter-process communications 
is placed here (e.g., closing a 
communication socket). 

 
In order to implement inter-process communication 
in Arena RT, the appropriate VBA code or C++ code 
(in the form of a DLL) must be linked to the Arena 
model. Typically, the Arena model acts as a server 
and the external processes act as clients.  
 
3.2 Client-server communication. 
 
In this section we provides an overview of the client-
side communication program that was developed in 



 

     

Java to allow communication between the Arena 
simulation model and the physical devices illustrated 
in Figure 3.  
 
The TCP/IP protocol suite is used in this case to 
implement the basic network communication. As 
well, as noted previously, the mode of 
communication between the distributed applications 
used is the client/server mode. In this mode of 
communication, a client program initiates 
communication while the server program waits 
passively for and then responds to clients that contact 
it. As a result, the client program needs to know the 
server’s address and port initially, but not visa versa. 
For this application, Arena uses a C++ program to 
establish Arena as a TCP/IP server. The server’s job 
is to set up a communication endpoint and passively 
wait for connections from clients. In this case, the 
TCP server first constructs a socket instance at a 
specified port (this socket listens for incoming 
connections to the specified port). Next, the server 
repeatedly calls “accept” methods to get the next 
incoming client connection. When a client 
connection is made, an instance of the socket for the 
new connection is created and returned by an 
“accept” method. The server can then communicate 
with the client using the returned socket’s input 
stream and output stream. 
 
The client-side program can be implemented in any 
programming language that allows TCP/IP sockets to 
be created (Java is used here to allow the TINI 
boards to be implemented). The TCP client first 
constructs a socket instance to establish a TCP 
connection to a specified remote host and port. It 
then communicates using the socket’s I/O streams as 
in the case of the server. 
 
In order to test the hybrid environment proposed 
previously, an initial test was performed using a 
benchmark simulation model (described in the next 
section) and a single TINI board as shown in Figure 
4.  
 
In this case, the Java client program is running on the 
TINI board (m197.enme.ucalgary.ca). Once the TINI 
client connects, the Arena server responds with a 
“hello” message and part arrival information. For 
example, the Arena server informs the TINI board 
that a Type 3 part has arrived at time = 0 (TNOW = 
0) with a part ID of 4.  
 
The TINI board then “processes” the part. For our 
initial experiments, the TINI board generates a 
random delay time (using a triangular distribution in 
this example). In future versions, the TINI board’s 
I/O will be used to allow real physical control. 
 
As can be seen in Figure 4, Part #4 is delayed by 
4.73 seconds. The TINI board then responds with a 
“part processed” message. In this case, the message 
“0 4 0” is sent to the Arena server indicating that a 
“response to task” (i.e., the first “0”) message is 
being sent concerning Part #4 (i.e., the “4”) and the 

return code is “0” (i.e., the second “0”). The Arena 
server responds by indicating that this part is being 
sent to the next machine. 
 

 
4. EXPERIMENTS WITH A MANUFACTURING 

BENCHMARK 
 
In this section, we report on our initial experiments 
with this approach implemented with a benchmark 
simulation model. We begin with a brief description 
of the benchmark test case then report on our 
preliminary results with the hybrid environment. 
 
4.1 The manufacturing benchmark. 
 
The experiments reported in this section are based 
upon the benchmark system proposed by Cavalieri et 
al. (2000). This test environment contains four types 
of resources, each having non-overlapping 
capabilities, with the third resource type as the 
bottleneck. The benchmark demands two of each 
type of resource, or eight in total. Transportation 
between resources is accomplished though 
autonomous ground vehicles (AGV’s), which for 
simplicity, are assumed to be always available and 
require zero transportation time. It should be noted 
that this transportation assumption, though included 
in the benchmark, is not strictly necessary. Any 
transportation activities can themselves be 
considered resources, and included accordingly in the 
approach presented in this paper. As noted 
previously, one of the resources is represented by a 
physical device (i.e., a TINI board) as is illustrated in 
Figure 4.  
 
4.2 Preliminary experiments. 
 
For the experiments reported in this paper, the 
Scenario 1 (deterministic processing times) and 
Scenario 2 (stochastic processing times) experiments 
suggested by Cavalieri et al. (2000) were run. 
However, our main interest for these initial 
experiments is to evaluate the latencies associated 
with a physical device rather than the performance of 
the manufacturing system itself. As a result, only the 
deterministic processing time results (Scenario 1) are 
reported here. Further details on our implementation 
of the agent-based scheduling system for this test 
case can be found in (Brennan and O, 2004). 
 
In order to evaluate the latencies associated with the 
physical device, the client application was first run 
on the local PC with the Arena server and then on a 
remote device (i.e., a TINI board). The results for a 
type 1 part (processing time = 8 seconds) are shown 
in Figures 5 and 6. 
 
Each figure shows the results of 10 simulation runs. 
The error bars provide an indication of the latencies 
associated with processing the part outside of the 
simulation environment.  
 
 



 

     

 
 
 
 
 
 

 

 
 
Fig. 4. Java client connection from the TINI board. 
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Fig. 5. Processing time results for a type 1 part on the local PC. 
 



 

     

For example, the maximum latency on the PC is 0.11 
seconds (trials 1 and 8), while it is 0.32 seconds on 
the TINI (trials 2, 4 and 8). 
 
As well, the maximum latency for the PC falls below 
0.10 seconds for 8 out of 10 simulation trials with the 
PC, while it is above 0.30 seconds for 9 out of 10 
trials with the TINI board. 
 
It is interesting to note that processing time falls 
below the deterministic value of 8 seconds in all 
cases on the PC (i.e., the minimum processing time is 
7.91 seconds for trials 4 and 5). This result provides 
an indication of the resolution that is possible using 
Arena’s statistics collection facilities for this type of 
timing test. Despite this small source of error, the 
results in Figure 6 clearly show that the latencies 
associated with the TINI platform are higher than 
those associated with a local client application (e.g., 
the TINI board’s minimum processing times never 
fall below 8.10 seconds). 

 
5. CONCLUSIONS 

 
The latency results described in the previous section 
are very promising in the sense that they clearly 
show that characteristics of the physical device can 
be accounted for in the hybrid simulation. In other 
words, by incorporating actual physical devices in 
the simulation environment, effects that are often 
difficult to quantify such as communication latency 
and processor latency can be observed.  

This is particularly useful given that real-time 
embedded platforms such as the TINI board are 
typically resource constrained. For example, the 
main drawbacks of the TINI board implementation 
are its limited memory and its execution speed. Java 
class files are stored in non-volatile SRAM, which 
supports a maximum of 1 MB on current versions of 
the TINI platform. Both tasks and threads are 
scheduled in a round-robin fashion on by the TINI 
operating system: the task scheduler is launched 
every 8 milliseconds and the thread scheduler is 
launched every 2 milliseconds (Loomis, 2001). 

This relatively slow execution speed is the most 
likely cause of the latencies observed in the Figure 5 
TINI board results. Some of the delay may be a 
result of communication network latencies, however 
given that the PC results show virtually no delay, the 
effect is very negligible. 

However, given that many the new technological 
paradigms for manufacturing scheduling and control 
rely heavily on distributed artificial intelligence it 
follows that communication latencies have the 
potential to become a very important consideration in 
many cases. As more physical devices are connected 
and the network becomes more heavily loaded, this 
will be an issue. As a result, one of the main 
motivations for this hybrid approach is to be able to 
observe these physical characteristics of the system 
without resorting to a full-blown physical testbed. 

As noted previously, a second objective of this 
research is to be able to extend the work on 
benchmarks to the lower, real-time control level. Our 

current work on the hybrid environment is concerned 
with this aspect of the research. In particular, we are 
currently implementing physical agents or “holons” 
(McFarlane and Bussman, 2000) on the TINI 
platform that will interact with the hybrid 
environment in order to provide intelligence at the 
physical device level. These physical agents will be 
implemented using IEC 61499 function blocks (IEC, 
2000) as described in (Olsen et al., 2004). This will 
allow our work on manufacturing scheduling and 
control (Brennan and O, 2004) to be extended to 
include real-time aspects. 
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