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Abstract: The problem of optimal switching of a multi-mode time delay system is
considered. The class of multi-mode systems consists of systems where the control
variables are the switching times in a sequence of fixed vector fields. We assume
that the systems considered all have a refractory period, in the sense that once an
action is taken, it takes a non-infinitesimal amount of time before a subsequent
action can be taken. Necessary conditions for a stationary solution are derived for
systems with a single or commensurate delays, and shown to extend those of the
delay free case in (Egerstedt et al. 2003). Copyright c©2005 IFAC
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1. INTRODUCTION

The switching control problem for a finite di-
mensional multi-mode system involves control ac-
tions at discrete instants. We assume that at
the switching times, the state is carried over
from one mode to the other in a continuous
fashion. The control variables are the switching
times between the fixed systems ẋ = fi(x, t),
where i ∈ {1, . . . ,m} = Ξ, assuming continu-
ity of the state at the switching times, and the
particular sequence of modes. Switched systems
belong to a general class of hybrid systems, dis-
cussed in (Branicky et al. 1998, Sussmann 1999).
Such a control is parameterized by the number
of switches, N − 1, a “word” of length N with
alphabet, Ξ, and a sequence of switching times
{T1, . . . , TN−1}. We show first that without re-
strictions on the duration of modes, the optimal
sequencing problem with N−1 switches follows
from the solution for optimal timing given a fixed
sequence. However, we shall assume that the sys-
tems considered all have a refractory period, in the

sense that once an action is taken, it takes a non-
infinitesimal amount of time before a subsequent
action can be taken. Consequently, the optimal
sequencing no longer follows from the solution of
the fixed sequence problem, except by compari-
son of the Nm possible time optimized strategies.
Refractory periods are ubiquitous in physiological
systems, and many technological systems, (e.g.,
time required to recharge a capacitor). A refrac-
tory time provides a safeguard towards unwanted
high frequency switching. Other instances of such
systems appear in chemical process technology,
automotive systems, electromechanical and man-
ufacturing systems. The paper extends the results
of (Egerstedt et al. 2003) to systems with delays,
but derives the optimality conditions via a clas-
sical variational approach (Bryson and Ho 1975).
We believe its derivation to be somewhat more
straightforward. The presence of delays adds a
nontrivial twist to the original problem posed in
(Xu et al. 2002). We point out that the optimal
switching problem bears some relation to the op-



timal impulsive control problem in (Verriest et
al. 2004). Necessary conditions for the optimal
switching policy are determined in Section 2.

2. VARIATIONAL APPROACH TO OPTIMAL
SWITCHING

Consider a system with a delay, τ . We follow
standard notation (Hale and Verduyn Lunel 1993)
and denote by xt the data {x(t + θ) | − τ ≤
θ ≤ 0 }. Let a finite set of autonomous vector
fields, {f (a)(xt)}, be given. The dynamical system
discussed in this paper is a switched delay system
with a fixed sequence of vector fields: fi(xt); i =
1, . . . , N , and the instants of switching are the
sole control variables. We take therefore the space
C([−τ, 0], IRn) as the state space for this multi-
mode delay system. The vector x(t) ∈ IRn is called
the partial state at t. As in the delay free problem,
we assume that the entire state xt is carried over
from one mode to the next at the switch. This
is implied by continuity of x. The problem is to
determine these optimal switching times in order
to minimize

J =

T∫
0

L(x, ξ) dt + Φ(x(T )) (1)

for a fixed terminal time T . Here, ξ(t) is a dis-
crete state, taking values in the finite set, Ξ, and
denotes the operating mode at time t. If ξ(t) = a,
then the dynamical system at t is the autonomous
system

ẋ(t) = f (a)(xt). (2)

Denote the nominal switching times by Ti; i =
1, . . . , N − 1, and define T0 = 0 and TN = T
(assumed fixed). For simplicity, of notation, set
L(x, ξ(t)) = Li(x) and f (ξ(t)) = fi in the interval
(Ti−1, Ti). The performance index (1) expands to

N∑
i=1

Ti∫
Ti−1

Li(x) dt + Φ(x(T )), with ẋ = fi(xt) (3)

for Ti−1 ≤ t ≤ Ti. Consider now arbitrary, in-
dependent perturbations of the nominal Ti with
scale parameter, ε, which we will let eventually
tend to zero, i.e., Ti → Ti + εθi. Adjoining the dy-
namical constraints with different Lagrange mul-
tipliers, defined in each appropriate subinterval,
will not alter the value of J . Assume further
that optimal values Ti exist, giving the optimal
nominal performance index, J0, equal to

N∑
i=1

Ti∫
Ti−1

[Li(x) + λ′i(fi(xt)− ẋ)] dt + Φ(x(T )) (4)

It is very important to remark that due to the
requisite continuity of the state, a change in Tj

say will have an effect on all the modes i > j. This
happens because the change from Tj to Tj + εθi

(keeping everything else the same) now changes
the final (partial) state in the j-th mode from
x(Tj) to (θj > 0 is assumed, the other case being
similar)

x(Tj + εθj) = x(Tj) + ẋ(T−j ) εθj .

Note also that the left derivative needs to be taken
with mode j, and this is

ẋ(T−j ) = fj(xTi
).

If however, no perturbation were made to Tj , then
the value of the partial state x(Tj + εθj) would
have been

x(Tj + εθj) = x(Tj) + ẋ(T+
j ) εθj .

This gives a difference in the state at the begin-
ning of the j + 1-st mode of

∆Tj
x = [fj(xTj

)− fj+1(xTj
)] εθj . (5)

As each subsequent switch will add such a term,
it is clear that the effects of all such perturbations
will accumulate in subsequent modes, and keep-
ing track of all these effects will complicate the
derivation requiring the explicit computation of
perturbations as done in (Egerstedt et al. 2003).
In keeping with the philosophy of calculus of varia-
tions, we shall avoid having to keep track of these
by introducing a sequence of induced variations,
{ηj}, in the same way as we introduced indepen-
dent Lagrange multipliers λj for each mode, i.e., in
each subinterval.Equivalently, we may model the
induced partial state variation η(t) as a discontin-
uous function with discontinuities at the switch-
ing times. These can then be chosen in a very
convenient way in order to avoid computation of
the induced variations. Since continuity of the
state of the delay systems implies the continuity
of the vector function x(t), a partial state, we
shall adjoin the constraints x(T−i ) = x(T+

i ) at
the switching times by a sequence of Lagrange
multipliers µi.

Defining the Hamiltonian functionals,

Hi(xt, λ) = Li(x) + λ′ifi(xt), (6)

we consider thus

J0 = Φ(x(T )) +
N∑

i=1

µ′i[x(T+
i )− x(T−i )]

+
N∑

i=1

Ti∫
Ti−1

[Hi(xt)− λ′iẋ] dt. (7)

A neighboring solution (with η possibly discon-
tinuous) yields the perturbed performance index



Jε = Φ(x(T ) + εη(T )) +
N∑

i=1

µ′i (x + εηi)|(Ti+εθi)
+

(Ti+εθi)−

+
N∑

i=1

Ti+εθi∫
Ti−1+εθi−1

[Hi(xt + εηt)− λ′i(ẋ + εη̇)] dt.

(8)

Note that θ0 = θN = 0, since initial and final time
were considered fixed.

2.1 Separable Mode Systems

We shall leave the full generality of the problem
behind and consider from now on only systems
having a single crisp delay (point delay) and
with separable modes defined by the functional
differential equations

ẋ(t) = fi(x(t)) + gi(x(t− τ)). (9)

Thus, the Hamiltonians, Hi(xt, λi) and final cost
adjoined with the state continuity constraints are
respectively defined by

Li(x(t)) + λ′i(t) [fi(x(t)) + gi(x(t− τ))] (10)

Ψ(x, µ) = Φ(x) +
N∑

i=1

µ′i[x(T+
i )− x(T−i )]. (11)

Precisely definition (11) obviates the need for
computing the perturbations at switching times.

2.2 Delay effect of a single switch

Definition 1 A function y is said to be Ck at t0,
if the k-th derivative of y is continuous at t0, but
the (k + 1)-st is not.
Obviously, this implies that the derivatives of
order i are all continuous at t0 for i ≤ k.

Assume that a single controlled switch occurs at
time T , switching from mode i to i+1. This makes
ẋ discontinuous at T . Consequently, x and f have
a ‘kink’ (i.e., are non-differentiable) at T . From
the continuity assumption, x and f are C0 at T .
But then x(t − τ) and g are C0 at t = T + τ . In
turn this implies that ẋ is C0 at T + τ , inducing
again C1 behavior in x and f at T + τ and C1

behavior in x(t− τ) and g at time T + 2τ , and so
on. We summarize the chain of events:

Lemma 1: A controlled switch at time T induces
the following behavior in the delay system (9)

1 This is a slight departure from the usual definition, which

implies Ck ⊆ Ck−1 ⊆ . . . ⊆ C0.

T T + τ T + 2τ T + kτ

ẋ(t) jump C0 C1 Ck−1

x(t) C0 C1 C2 Ck

f(x(t)) C0 C1 C2 Ck

x(t− τ) C0 C1 Ck−1

g(x(t− τ)) C0 C1 Ck−1

2.3 Effect of variation in a single switching time

Let us first recall a simple result:
Lemma 2: If y is Ck (see Definition) at t0,
then the variation of y induced by the perturbation
t0 → t0 + θ is of order k + 1 in θ.
Proof: We note that the variation involves only
the effect due to the shift of the switch of behavior
from t0 to t0 + θ. Since this is only visible in the
(k + 1)-st derivative,

∆t0y =
[
y
(k+1)
+ − y

(k+1)
−

] θk+1

(k + 1)!
. 2

In particular, if y is a continuous integrand, the
first order variation of its integral (as in a perfor-
mance index) will not involve ‘future’ additional
contributions due to the propagation effect of
the delay. Such additional contributions do occur
however, if the integrand has jumps, as with im-
pulsive control (Verriest et al. 2004).

If another switch occurs, say at T1, then for some
k, T + kτ < T1 < T + (k + 1)τ , and another ε
perturbation may be induced. Therefore the book-
keeping of all perturbation terms will be quite
complicated, in this more general case, especially
in view of the fact that that all possibilities (of
relative positions of switching instants) need to
be taken into account.

2.4 Optimal sequencing

So far, it was assumed that the sequence of modes
was fixed, and only control of the switching in-
stants was assumed. However, if the m modes are
cycled k times as: 1→2→. . .→m→1→2→m→. . .→
m, then we can optimize their switching times.
If it is found that the optimal switching time
sequence has Ti−1 = Ti for some i, it means that
mode i only occurs for duration 0, and therefore
should be excised. Performing all such excisions
will leave the optimal mode sequence associated
with at most km−1 switches. Thus by formulating
first the optimal control problem for a fixed mode
sequence, we really do not loose the generality of
the global optimal control problem if an upper
bound on the number of switches is imposed on
the latter.

2.5 Refractory period

Let us now assume the existence of a refractory
period, which means that another switch cannot



occur until a sufficiently long time has elapsed.
This avoids the existence of switching cluster
points and chattering. However, at once this also
invalidates the search for the optimal sequencing
of the modes as explained in the previous section,
since modes persisting in intervals of length zero
are no longer feasible.

In particular, we shall consider the case where
this refractory time exceeds the delay time, τ . In
this case, the problem greatly simplifies, and the
aforementioned complexity disappears, as only
two adjacent intervals need to be considered.
Indeed the delayed effect of the k-th switch hits
before the k + 1-st switch. This yields a situation
which is akin to the case with a single switch in
the previous section.

With the Hamiltonian functionals defined in (10),
we express the first variation in the performance
index (4) as the limit for ε → 0 of

δJ = lim
ε→0

Jε − J

ε
.

For the separable mode form, (4) is

N∑
i=1

Ti∫
Ti−1

[Li(x) + λ′i(fi(x(t)) + gi(x(t−τ))− ẋ)] dt

+ Φ(x(T )) +
N∑

i=1

µ′i[x(T+
i )− x(T−i )]. (12)

Hence, up to first order, the perturbed perfor-
mance index (8) evaluates to

Jε = Φ(x(T )+εηN (T )) +
N∑

i=1

µ′i[ηi(T+
i )−ηi(T−i )]+

+
N∑

i=1

µ′i[x((Ti + εθi)+)− x((Ti + εθi)−)] +

+
N∑

i=1

Ti+εθi∫
Ti−1+εθi−1

[Hi(x + εηi)− λ′iẋ)] dt. (13)

This expands to

Jε = Φ(x(T )) +
N∑

i=1

Ti∫
Ti−1

[Hi(x)− λ′iẋ)] dt+

+
N∑

i=1

Ti+εθi∫
Ti

Li(x) dt−
N∑

i=1

Ti−1+εθi−1∫
Ti−1

Li(x) dt +

+
N∑

i=1

µ′i[x((Ti + εηi)+)− x((Ti + εηi)−)] +

+ε
N∑

i=1

Ti∫
Ti−1

[DηH − λ′iη̇i] dt +

+ε
N∑

i=1

µ′i[ηi(T+
i )− ηi(T−i )] + ε

∂Φ
∂x

∣∣∣∣
T

ηN (T). (14)

Note that we explicitly used the fact that fi(x(t))+
gi(x(t−τ))−ẋ is zero in the intervals [Ti−1, Ti−1+
εθi−1] and [Ti, Ti + εθi]. Also, here

DηH =
∂Hi(x, y)

∂x
ηi(t) +

∂Hi(x, y)
∂y

ηi(t−τ),

with Hi(x, y) = H(x(t), x(t− τ)).

It readily follows that

δJ =
N∑

i=1

[Li(x(Ti−1)) θi − Li(x(Ti−1) θi−1] +

+
N∑

i=1

Ti∫
Ti−1

[DηH − λ′iη̇i] dt +

+
N∑

i=1

µ′i[ηi(T+
i )− ηi(T−i )]+

∂Φ
∂x

∣∣∣∣
T

ηN (T) +

+
N∑

i=1

µ′i[ ẋ(Ti)+)− ẋ(Ti)−] θi, (15)

in which we separate the delayed terms and re-
order the summation, remembering that θ0 =
θN = 0

δJ =
N−1∑
i=1

Li(x(Ti−1)) θi −
N−1∑
i=1

Li+1(x(Ti)) θi+

+
N∑

i=1

Ti∫
Ti−1

[(
∂Li(x)

∂x
+ λ′i

∂fi(x)
∂x

)
ηi − λ′iη̇i

]
dt

+
N∑

i=1

Ti∫
Ti−1

λ′i
∂gi(y)

∂y

∣∣∣∣
y=x(t−τ)

ηi(t−τ) dt +

+
N∑

i=1

µ′i[ηi(T+
i )− ηi(T−i )]+

∂Φ
∂x

∣∣∣∣
T

ηN (T) +

+
N∑

i=1

µ′i[ ẋ(T+
i )− ẋ(T−i )] θi, (16)

The integrals of the delayed terms in (16) may be
rearranged as follows:

δK def=

Ti∫
Ti−1

λ′i(t)
∂gi(y)

∂y

∣∣∣∣
x(t−τ)

ηi(t−τ) dt

=

Ti−τ∫
Ti−1−τ

λ′i(t+τ)
∂gi(y)

∂y

∣∣∣∣
x(t)

ηi(t) dt



=

Ti−1∫
Ti−2

χ[Ti−1−τ,Ti−1](t)λ
′
i(t+τ)

∂gi(x)
∂x

∣∣∣∣
x(t)

ηi(t) dt

+

Ti∫
Ti−1

χ[Ti−1,Ti−τ ](t)λ′i(t+τ)
∂gi(x)

∂x

∣∣∣∣
x(t)

ηi(t)dt.

In these expressions, χ[a,b] is the indicator func-
tion of the interval [a, b].

Let the advanced term λ(t+τ) be denoted by λτ ,
and define the pseudo-Hamiltonians, Hi(x, λ, λτ ),

Hi(x, λ, λτ ) = Li(x) + λ′ifi(x) + χ+
i (λτ

i )′gi(x) +

+ χ−i+1(λ
τ
i+1)

′gi+1(x), (17)

for i = 1, . . . , N − 1, and for i = N ,

HN (x, λ, λτ ) = LN (x) + λ′NfN (x) + χ+
N (λτ

N )′gN (x)

where for simplicity of notation, we also set
χ+

i+1 = χ[Ti,Ti+1−τ ] and χ−i+1 = χ[Ti−τ,Ti] . The
integral terms in the expression (16) reduce fur-
ther to

δK=
N−1∑
i=1

Ti∫
Ti−1

[
∂Hi

∂x
ηi(t)− λ′iη̇i

]
dt +

+

TN∫
TN−1

[
∂HN

∂x
ηN (t)− λ′N ˙ηN

]
dt +

+

0∫
−τ

χ−1 (λ1)′τ
∂g1

∂x
η1(t) dt (18)

The last integral is zero, as the initial data is
specified in the problem (thus making η1(t) = 0
for t < 0.) As usual, integration by parts gives for
the other terms in (18)

δK =
N−1∑
i=1

Ti∫
Ti−1

[
∂Hi

∂x
ηi(t) + λ̇′iηi(t)

]
dt+

+

TN∫
TN−1

[
∂HN

∂x
ηN (t) + λ̇′NηN (t)

]
dt +

+
N∑

i=1

[
−λ′i(T

−
i )ηi(T−i ) + λ′i(T

+
i−1)ηi(T+

i−1)
]
.(19)

Note that for i = 0, θ0 = 0 and for i = N , θN = 0,
since initial and final time were fixed.

The {θi}-induced perturbation of the non-integral
term in (16), follows from (5),

δΨ =
∂Φ
∂x

η(T ) +
N−1∑
i=1

µ′i
[
(ẋ(T−i )− ẋ(T+

i ))θi +

+ ηi(T−i )− ηi+1(T+
i )

]
. (20)

Substituting the δK and δΨ in δJ , and choosing
λi in the intervals [Ti−1, Ti] to solve

λ̇i = −
(

∂Hi

∂x

)′

, (21)

this finally yields the expression

N−1∑
i=1

[
Aiθi + B′

iηi+1(T+
i ) + C ′

iηi(T−i )
]

+ (22)

+λ1(0+)η1(0+) +
(

∂Φ
∂x

− λ′N (T−N )
)

ηN (T−N ),

for δJ , where

Ai = Li(x(T−i )) + µ′iẋ(T−i ) + (23)

−Li+1(x(T+
i ))− µ′iẋ(T+

i )

Bi =−µi + λi+1(T+
i ) (24)

Ci = µi − λi(T−i ) (25)

With the initial data given η1(0+) must be zero.
Computation of the requisite perturbations {ηi}
is avoided if one chooses

λi(T−i ) = µi = λi+1(T+
i ), (26)

with final condition

λN (T−N ) =
(

∂Φ
∂x

)′

, (27)

thus specifying the the boundary conditions for
the differential equations (21). This implies that
we can choose the costates λi in [Ti−1, Ti] to
concatenate to a continuous functions in [0, T ]. It
follows that the first order variation of J reduces
to

δJ =
N−1∑
i=1

Ai θi. (28)

2.6 Main Result

Since the θi are independent, necessary conditions
for optimality are the vanishing of the Ai in (28).
In view of the choice (26) of the multipliers µi and
boundary conditions, it gives for i = 1 to N − 1

Hi(x(T−i )) = Hi+1(x(T+
i )). (29)

Simply stated, it means the continuity of a Hamil-
tonian, H, at the switching times.

We summarize this result as the main theorem
below. We will assume that the vector fields fi(x)



and gi(x) as well as the functions Li(x) are
smooth, and we let N − 1 be the total number
of switches, with T0 = 0 and TN = tf being fixed.

Theorem 3:
The separable mode switched system in equation
(9) minimizes the performance index J in (1),
with fixed initial time (T0 =0) and terminal time
(TN =T) if the switching times Ti, i = 1, . . . , N−1
are chosen as follows:
Euler-Lagrange Equations:

λ̇i =−
(

∂Li

∂x

)T

−
(

∂fi

∂x

)T

λi−χ+
i

(
∂gi

∂x

)T

λτ
i +

−χ−i+1

(
∂gi+1

∂x

)T

λτ
i+1, (30)

with Ti−1 < t < Ti, i = 1, . . . , N − 1, and where
χ+

i (t) = 1 if t ∈ [Ti−1, Ti − τ ] and 0 otherwise,
χ−i+1(t) = 1 if t ∈ [Ti− τ, Ti] and 0 otherwise, and
λτ

i = λi(t + τ). Moreover,

λ̇N = −
(

∂LN

∂x

)T

−
(

∂fN

∂x

)T

λN−χ+
N

(
∂gN

∂x

)T

λτ
N .

(31)

where χ+
N = 0 is understood if TN−1 > T − τ .

Boundary Conditions:

λN (TN ) =
(

∂Φ
∂x

)T

(32)

λi(T−i ) = λi+1(T+
i ) (33)

Optimality Conditions:

Hi(T−i ) = Hi+1(T+
i+1) (34)

where Hi is the Hamiltonian

Hi = Li(x) + λi(f(x) + g(xτ )). (35)

Proof: All one has to do is to recall what the
function K was and realize that both indicator
functions in its definition evaluate to 1 at the
switching point Ti 2.

2.7 Commensurate delays

The problem for systems with multiple delays can
be reduced to the problem solved in Theorem 3, if
the delays are commensurate. Indeed, assume that
for x ∈ IRn

ẋ(t) = f(x(t)) +
m∑

k=1

gk(x(t− kτ), (36)

then the embedding x′(t) = [x′(t), ...x′(t−(k−1)τ)]
reduces the dynamics to

ẋ(t) = f(x(t)) + g(x(t−mτ)), (37)

a system with partial state x ∈ IRmn and a single
delay equal to mτ .

3. CONCLUSIONS AND BEYOND

We derived necessary conditions for stationarity
of the performance index of a multi-mode de-
lay system controlled by switchings between a
prespecified mode sequence. This is a first step
in the complete optimal control of a multi-mode
system, where also the optimal sequence of the
modes needs to be found. Whereas in the absence
of a refractionary period, the optimal sequencing
follows from the fixed sequence problem, with a
refractionary period, in principle a search is re-
quired to find the global optimum. Whereas this
quickly leads to a combinatorial explosion, reg-
ularization methods as for instance presented in
(Verriest 2003) could be invoked to obtain a first
approximation and thus narrow down the search.
The result is amenable to numerical solution using
gradient methods (Xu et al. 2002, Egerstedt et
al. 2003).
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