

AN EVENT-TRIGGERED COMMUNICATION PROTOCOL FOR INTELLIGENT REAL-TIME
CONTROL

Jason J. Scarlett and Robert W. Brennan

Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W.,
Calgary, Alberta, CANADA, T2N 1N4

Abstract: In this paper we propose an event-triggered communication protocol with
dynamic priority setting for high-integrity systems. The dynamic priority scheduling
involves two components: a component based on node transmission history, and a static
node identifier. In order to investigate the characteristics of the proposed protocol, the
worst-case performance is analysed and simulation experiments are conducted. The
results show that an upper bound on the message delay time can be established with this
approach. Copyright © 2005 IFAC

Keywords: communication protocols, distributed control, intelligent control.

1. INTRODUCTION

Computers and computer networks have become an
integral part of our daily lives. The most famous
network is of course the Internet. Its development
dates back to 1969 when the ARPAnet was first
operational. Today the Internet remains the most
easily identifiable computer network, but other
networks are springing up all around us. These
smaller networks are evident as embedded systems,
and are playing an increasing but hidden role.
Consumer products such as printers, answering
machines, ATMs, refrigerators, thermostats, and
even wristwatches are all equipped with networking
capability to increase their functionality and
intelligence (Moschovitis, 1999). Safety concerns
arise when these embedded systems are used in
safety-critical applications such as automobiles,
trains, aircraft, medical equipment, and industrial
machinery.

The suitability of a specific protocol for safety-
critical applications must consider a wide range of
issues. Many existing protocols are already being
used in safety-critical applications. In this paper, we
begin with a brief review of the main safety-critical

protocols (TTCAN, FTT-CAN, TTP/C, Byteflight,
and FlexRay) along with a summary of some of the
safety techniques implemented in these protocols.
Common issues in safety such as redundancy, data
validation, fault isolation, and timing aspects are
found in existing protocols.

In Section 3, an analogy is given outlining common
assumptions that are made about the deterministic
nature of event-based and time-triggered systems,
and a new protocol is suggested that challenges some
of the commonly accepted ideas regarding
determinism and event-based protocols.

Next, we investigate the characteristics of this new
protocol in Section 4. We begin with an analytical
investigation into the worst-case performance of the
protocol then test our results with a set of discrete-
event simulation experiments. This paper concludes
with an overview of our work on exploring the
potential for this new protocol.

2. REAL-TIME COMMUNICATION PROTOCOLS

A variety of communication protocols are currently
being used in safety-critical applications that fall into

two main categories: event-triggered and time-
triggered protocols. In this section, we briefly
summarise the main protocols used in industry.

Currently, the main communication protocols used
for real-time embedded systems are TTCAN (Marsh,
2003), FTT-CAN (Ferreira et al., 2001), TTP/C
(Marsh, 2003), Byteflight (Kopetz, 2001), and
FlexRay (Kopetz, 2001).

Closely related to each of these recent protocols is
the Control Area Network (CAN) protocol,
developed by Bosch (1991). CAN is an event-
triggered protocol that does not guarantee message
delivery times. Driven by the need for a deterministic
protocol for use in safety-critical systems, Bosch
developed Time Triggered CAN (TTCAN) (Marsh,
2003). TTCAN extends CAN by implementing a
dual scheduling window system. In this scheme, time
windows for both periodic and spontaneous
messages are created allowing both time-triggered
and event-triggered messages to coexist on the same
network (Shaheen et al., 2003).

FTTCAN was proposed by Joaquim Ferreira, Paulo
Pedreiras, and Luís Almeida from the Universidade
de Aveiro, Portugal in 2002 (Ferreira et al., 2001;
Almeida et al., 2002). FTTCAN extends the dual
scheduling window to a new level. The newly
defined time windows are not only able to handle
both time-triggered and event-triggered messages,
but are dynamically resizable. This allows the
protocol to adapt to the present traffic conditions on
the bus.

TTP/C uses TDMA (Time Division Multiple Access)
scheme for bus access (Marsh, 2003). Each node is
assigned a window during which they have exclusive
broadcast rights. Currently, this protocol does not
define support for event-triggered messages. In order
to support event-triggered messaging, an additional
protocol such as CAN must be implemented within
TTP/C (Kopetz, 2001).

The Byteflight protocol was developed by BMW
together with several semiconductor companies for
safety-critical applications in automotive vehicles
(Kopetz, 2001). This protocol is not a true time-
triggered protocol because it does not rely on global
timing synchronization (Shaheen et al., 2003).
Instead, Byteflight provides access to the bus in a
FTDMA (flexible time division multiple access)
scheme.

BMW, DaimlerChrysler, Motorola, Philips, GM and
Bosch are currently working together on yet another
protocol aimed at the automotive industry (Kopetz,
2001). Like TTCAN and FTT-CAN, FlexRay uses
the dual time window approach. This protocol
however uses two different bus access methods for
the different windows. Asynchronous messages are
handled by the FTDMA Byteflight protocol and the
synchronous messages are handled by a TDMA
scheme (Shaheen, 2003).

3. EVENT-TRIGGERED AND TIME-TRIGGERED
COMMUNICATION PROTOCOLS

Much of the discussion about choosing a protocol
begins with the assumption that time-triggered
protocols are the only ones suited to safety-critical
applications. This assumption is based on the belief
that time-triggered schemes are deterministic (higher
degree of predictability) and event-triggered schemes
are not (Claesson et al., 2003). The following
comparison will illustrate why this assumption may
not be the right one to take when approaching safety-
critical systems.

One of the first things to clarify is determinism.
Determinism can be defined as:

• The ability for a system to respond with a
consistent, predictable time delay between
input and response (Taylor, 2003).

• A system whose time evolution can be
predicted exactly.

• A system in which the output can be
predicted with 100 percent certainty.

These definitions have three things in common. They
all deal with a system, they all attempt to predict the
outcome, and they all do so with a degree of
certainty. For safety-critical systems message latency
must be predictable.

In time-triggered systems deterministic latency is
achieved by avoiding collisions all together. In doing
so, time-triggered systems are able to guarantee the
transmission of a message at a given point in time.
This ability to guarantee or predict message delivery
makes time-triggered systems suitable for safety
critical applications.

In the case of event-triggered systems, the latency
depends on the frequency of collisions, and on the
arbitration technique used to resolve these collisions.
Some argue that it is not possible to predict the
latency of event-triggered systems because of the
uncertainties involved with arbitration. Another way
to state this is that in an event-triggered system, the
message latency depends on the volume of network
traffic. As network traffic increases, the latency also
increases. This variation introduces a sense of
uncertainty that some claim cannot be tolerated in a
safety-critical environment. On the other hand, a
purely time-triggered system will always be able to
guarantee message latency independent of the traffic
level (within capacity limits), bringing a sense of
predictability to the network. This seems quite
logical, but the following example illustrates why
this should not be the sole basis of describing a safety
critical system.

Compare the transportation option available to a
commuter in large city. Let us assume that the
commuter has two options available for the daily
commute; a car or public rail transport. During light
traffic times of the day, the commuter is likely to opt
for the car because of the shorter commute time (all

other things being equal). During heavy traffic times
of the day, the commuter is likely to opt for the rail
transport system because of the shorter commute
time. This is quite similar to the choice between
event-triggered (car) and time-triggered (rail)
systems. For periods with low volume of traffic an
event-triggered system will outperform a time-
triggered system. During the periods of high volume
traffic, the event-triggered (car) system will result in
potentially greater delay (commute) time than the
time-triggered system. At this point many have
concluded (prematurely) that the time-triggered
approach is best for safety-critical applications
because its performance is more predictable.

We ask then, if the commuter has a medical
emergency (safety-critical) which transportation
system will they rely on? In reality they would rely
on a special type of event-triggered transport that
could be describes as having a higher priority while
on the roadways (i.e. an ambulance). This ensures a
quick transport time, and improves the degree of
uncertainty in the transport time even during periods
of high volume.

Traditionally, the uncertainty in message delivery
makes time-triggered the preferred option. But
clearly, in the analogy, introducing a priority to an
event-triggered system may be able to address the
issue of uncertainty. Current safety-critical
communication protocols do not include an event-
triggered protocol that employs dynamic message
priorities to deterministically describe the messaging
delays.

4. AN EVENT-TRIGGERED PROTOCOL WITH
DYNAMIC PRIORITIES

Event-triggered protocols have the advantage of
potentially fast response times. These response times
are however linked to the level of traffic on the
network. What we seek is a method to decouple these
two characteristics from each other. Additionally, we
understand that under maximum loading the time-
triggered method appears to be the optimal solution
since it maintains deterministic message delays. Note
that we have not considered the effects of exceeding
network capacity.

The protocol suggested here is meant to illustrate that
the traditional view, that an event-triggered system
cannot be deterministic, is false. This false
conclusion has in turn lead to the false conclusion
that event-triggered systems should not be used for
safety-critical systems.

The basic idea is to constrain the system in such a
way that every node is guaranteed an opportunity to
transmit at least one message in a given period of
time. This period of time is essentially equal to the
time-cycle defined in time-triggered protocols. In
doing this, the protocol is able to guarantee
performance (i.e., maximum message delay) equal to
a similar time-triggered protocol.

4.1 Fixed priority scheduling.

Collisions in an event-triggered protocol such as
CAN are dealt with using bit-wise arbitration.
Essentially this allows the message with the highest
priority to continue it’s transmission without delay
during a collision. All other colliding messages must
try again at a later time. With CAN, the message
priority is assigned based on the originating node’s
priority. These node priorities are determined pre-
run-time and are static. This use of static message
(node) priorities prevents delay times from being
predicted deterministically.

For example, if two messages collide, the losing
message must wait until the winning message is
finished it’s transmission before trying to retransmit.
When the winning message is finished, the losing
message may try again only to find that it is
competing with another message of higher priority. It
is clear to see that the lower priority message has a
distinct disadvantage. During times of high traffic
volume, the lower priority message(s) will see
increased average delay times greater that that of
higher priority messages. These delay times are
deterministically unbounded.

One very interesting point to note is that the node
with the highest priority will always win arbitration.
This means when the highest priority node wishes to
transmit a message, it will have to wait, only until the
current message transmission is complete. In this
way the maximum message delay is equal to that of
the longest message and is deterministic.

4.2 Dynamic priority scheduling.

Dynamic priority scheduling allows the maximum
delay time to be deterministically predicted. In order
to achieve this, the priority setting scheme must
guarantee that each node will not have to wait longer
than one cycle to broadcast. This maximum delay
time is equivalent to the delay time a time-triggered
protocol can guarantee.

The dynamic priority scheduling proposed here
involves two components. The first component is a
calculation based on the message history within the
node. The second component is a unique static
identifier like the one used in the fixed priority
scheduling method. Together these two components
make up a dynamic priority code that is computed by
each node.

The calculated component is used to increase a
node’s priority the longer it waits and is based on the
time since the node last sent a message. An important
feature of this is that no clock synchronization is
required between the nodes as is the case with time-
triggered systems.

The static component is assigned pre run-time as a
unique identifier for each node. It is required when
two messages collide that have the same time
priority. This happens only when two nodes that have

not transmitted for greater than the cycle time
attempt to transmit at the same time. In this case both
nodes would have the highest time priority, and the
static component would then be used to settle the
arbitration. In the next section, we look at this
protocol in more detail and determine its worst-case
performance.

4.3 The worst-case scenario.

For simplicity constraints are made on the system’s
messaging abilities. All messages have the same
worst-case transmission time:

Cn = C ∀ N (1)

where N is the total number of nodes in the system.

The system period, Tsystem, is defined as the total time
it takes if each node was to transmit once:

Tsystem = N·C (2)

This definition is derived from a time-triggered
system where each node is given one time slot during
a transmission cycle.

Next, we define the node idle time, Ln, which is
calculated based on the difference between the
current time, Tnow, and the time that a node’s last
message transmission ended, TLn.

Ln = Tnow – TLn (3)

As noted in the previous section, a node’s dynamic
priority, DPn, is based on the node message history
and a static identifier. The first component, the time
priority, TPn, represents the dynamic portion of DPn.
By definition, the TPn is equal to N immediately after
a node transmittes a message. The more time that
passes, the higher the time priority becomes until it
reaches a value of 1. The second component is the
static node priority, NPn.

TPn = Max {RoundUp [(Tsystem – Ln)/C], 1} (4)
NPn = n (5)
DPn = Concatenate (TPn, NPn) (6)

In order to determine the maximum delay time, we
consider the worst potential delay time of a message.
For the worst-case scenario we choose the node that
has been assigned the lowest node priority of N. In
choosing this node, we ensure that this node will be
the last to transmit during a tie (i.e., of two nodes
with equivalent time priorities, the node with a node
priority of N is guaranteed to lose). We also choose
the node to have the lowest time priority at the
current time. This is equivalent to saying that the
node has just finished transmitting a message.

To ensure the maximum amount of delay to our
node, we choose the network loading to be as high as
possible. To do this, two things are required. Firstly,
all other nodes must currently have a message
waiting. And secondly, all of the other nodes have a
time priority of 1. This results in a network where, all

the nodes with a node priority between 1 and N-1
have a message waiting and a time priority of 1.

Since the worst-case node has the lowest time
priority, it follows that all of the other nodes will win
arbitration, and continue to win arbitration even
when the worst case node has a time priority of 1
(remember that the worst case node has a node
priority of N and hence it loses all ties). Since there
are N-1 nodes with a higher time priority than the
worst case node, the worst case node will not be
allowed to transmit during the first (N-1)C time units.

If the worst case scenario described above occurs at
an initial time of 0, the current time is after N-1
nodes have transmitted their messages, then the first
transmission completes after C time units and the idle
time of the first node to send a message given by (3)
is:

L1 = Tnow – TL1 = (N – 1)C – C = (N – 2)C

Since all of the remaining nodes transmitted after this
first node, their idle time must be less than the first
transmitting node’s idle time. Therefore, for all nodes
except the worst case node,

L1,…N-1 ≤ L1
L1,…N-1 ≤ (N – 2)C

Calculating the time priority using (4) and (2) for
these nodes gives:

TP1,…N-1 = Max {RoundUp [(Tsystem – L1,…N-1)/C], 1}
TP1,…N-1 ≥ Max {RoundUp [(Tsystem – (N – 2)C)/C], 1}
TP1,…N-1 ≥ Max {RoundUp [Tsystem/C – N + 2], 1}
TP1,…N-1 ≥ Max {RoundUp [N·C/C – N + 2], 1}
TP1,…N-1 ≥ Max {RoundUp [2], 1}
TP1,…N-1 ≥ 2

Calculating the idle time using (3) and time priority
using (4) and (2) for the ‘worst case node’ gives:

LW = Tnow – TLW = (N – 1)C – 0 = (N – 1)C

TPW = Max {RoundUp [(Tsystem – LW)/C], 1}
TPW = Max {RoundUp [(Tsystem – (N – 1)C)/C], 1}
TPW = Max {RoundUp [Tsystem/C – N + 1], 1}
TPW = Max {RoundUp [N·C/C – N + 1], 1}
TPW = Max {RoundUp [1], 1}
TPW = 1

Since TPW is higher than TP1,…N-1 at T = (N - 1)C, the
‘worst case node’ is guaranteed to transmit at N·C
time units (i.e., there is a maximum period of (N –
1)·C between messages).

For a system with 5 nodes, Table 1 depicts the
scheduling of messages in the worst-case scenario.
At time equal to 0, the worst-case node (node 5) has
just completed transmitting a message. Immediately
following, all 5 nodes are waiting to send a message.
The first four nodes have a time priority of 1 while
the worst-case node has a time priority of 5. This
results in the first four nodes being scheduled in the
next four time slots followed by the worst-case node

in the fifth time slot. The total time delay between
the beginning of successive messages from the
worst-case node is shown as 5C.

Table 1 Worst case scheduling for a 5 node system.

 Node Dynamic Message Priority
 1 - 11 51 41 31 21
 2 - 12 12 52 42 32
 3 - 13 13 13 53 43
 4 - 14 14 14 14 54
 5 15 55 45 35 25 15
 Broadcasting Node 5 1 2 3 4 5
Transmsn. End Time 0 C 2C 3C 4C 5C

4.4 Experiments.

For simulation purposes the system is modelled
consisting of five nodes with equal exponentially
distributed mean interarrival times. Message length
is constant for all nodes and is set to one time unit.
Scheduling of the bus is handled by one of three
methods: time-triggered (TTCAN), event-triggered
(CAN), and dynamic priority event-triggered
scheduling.

Initial simulation results for time-triggered and
event-triggered scheduling methods are consistent
with the expected outcome. In each case the nature of
the simulation delay time is consistent with the
commonly expected nature of the scheduling
method.

Figure 1 shows the simulation results for the time-
triggered method. Specifically, the maximum delay
time experienced by any message from any node is
five time units. It can also bee seen that each node
performs equally.

In contrast, static event-triggered scheduling (Figure
2) shows that each node does not perform equally
well. Nodes with higher static priorities perform
better. In fact, the node with the highest static
priority demonstrates its dominance with a maximum
delay time that never exceeds one time unit (seen as
the single nearly horizontal line). The non-
deterministic nature is also evident by the increasing
delay time as message interarrival times decrease.
For these simulations, the maximum delay time for
the lowest priority node was 170 time units.

As illustrated in Figure 3, the dynamic priority
scheduling method achieves its primary goal. The
figure shows that the maximum delay time never
exceeds five time units, and hence can be described
deterministically. Unlike the static priority method,
the delay times for the dynamic priority method
appear to be ‘clipped’ as the message interarrival
time decrease. This is precisely the behaviour we
desire. Two other benefits are also seen. Firstly, the
average delay times are now more consistent
between the different nodes meaning that no node is
‘outperforming’ any of the other nodes. Secondly,
the average delay time is better than those shown by
the time-triggered method.

0

1

2

3

4

5

6

0 10 20 30 40 50
Message Interarrival Time

(arbitrary time units)

D
el

ay
 T

im
e

(a
rb

itr
ar

y
tim

e
un

its
)

Maximum Delay Time

Average Delay Time

Fig. 1. Time-triggered performance.

0

1

2

3

4

5

6

0 10 20 30 40 50
Message Interarrival Time

(arbitrary time units)

D
el

ay
 T

im
e

(a
rb

itr
ar

y
tim

e
un

its
) Maximum Delay Time

Average Delay Time

Fig. 2. Event-triggered performance.

0

1

2

3

4

5

6

0 10 20 30 40 50
Message Interarrival Time

(arbitrary time units)

D
el

ay
 T

im
e

(a
rb

itr
ar

y
tim

e
un

its
)

Average Delay Time

Maximum Delay Time

Fig. 3. Event-triggered, dynamic priority

performance.

5. CONCLUSIONS

The proposed protocol assigns each node a priority
that is used to arbitrate collisions (as in CAN bit-
wise arbitration). Unlike the protocols described
previously however, these priorities change
dynamically. Once a node transmits a message, the
node lowers its priority for a specified amount of
time. In doing this, the node guarantees that it is not
able to monopolize the bus because other nodes now
have a higher priority than it does. This in turn
guarantees that every node will not have to wait any
longer than one cycle to broadcast.

A side benefit of this method is that it automatically
provides a method to control babbling idiot failures.
This could be accomplished for example by
implementing a bus guardian of the loosely coupled
or close coupled type described in (Broster and
Burns, 1998). Implementing the bus guardian in this
way could prevent a node from attempting to
transmit multiple successive messages of the highest
priority. The bus guardian would effectively limit
the node by allowing it to only send a message with
the lowest priority immediately after a higher priority
message has been sent. The second message would
then be transmitted immediately only if the bus is
idle. The architecture of a bus guardian is one of the
remaining issues to be researched further.

Another issue related to bus guardians is the potential
for including the dynamic message priority setting
intelligence solely within the bus guardian itself. In
effect the bus guardian would be responsible for
setting the message priority.

In this paper, we compared the proposed event-
triggered dynamic priority protocol with existing
protocols using a discrete-event simulation model
(implemented in Arena (Kelton et al., 1998)). Initial
analysis has shown that a fundamental assumption
about event-triggered protocols is flawed.
Specifically, with dynamic priorities we are able to
set an upper bound on the delay time of the first
message in queue at each node. This makes the
proposed dynamic priority event- triggered system
deterministic.

Future work will focus on evaluating the
performance of the system with variable message
lengths and transmission errors.

REFERENCES

Audsley, N., A. Burns, M. Richardson, K. Tindell and

A. Wellings. (1993) Applying New Scheduling
Theory to Static Priority Pre-Emptive
Scheduling. Software Engineering Journal, 8(5):
285-292.

Almeida, L., Pedreiras, P., Fonseca, J., (2002) The
FTT-CAN protocol: why and how, IEEE
Transactions On Industrial Electronics, 49 (6),
pp. 1189-1201.

Broster, I., Burns, A., (2001) The Babbling Idiot in
Event-triggered Real-time Systems, Proceedings
of the Work-In-Progress Session, 22nd IEEE
Real-Time Systems Symposium, YCS 337.

Claesson, V., Ekelin, C., Suri, N., (2003) The event-
triggered and time-triggered medium-access
methods, Proceedings of the IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC'03).

Ferreira, Pedreiras, Almeida and Fonseca (2001) The
FTT-CAN protocol for flexibility in safety-
critical systems, IEEE Micro, pp. 81-92.

Holonic Manufacturing Systems (2004) Web Site,
http://hms.ifw.uni-hannover.de/.

Kelton, W., Sadowski, R., Sadowski, D. (1998)
Simulation with Arena, New York: McGraw-
Hill.

Kopetz, H., (2001) A comparison of TTP/C and
FlexRay, TU Wien Research Report 2001/10.

Marsh, D., (2003) Network protocols compete for
highway supremacy, EDN Europe, pp. 26-38.

McFarlane, D.C., and Bussmann, S. (2000)
Developments in holonic production planning
and control, Production Planning & Control,
11(6), pp. 522-536.

Moschovitis, C.J.P. (1999). History of the Internet.
ABC Clio Ltd.

Robert Bosch GmbH. (1991). Bosch CAN
Specification version 2.0.

Shaheen, S., Heernan, D., Leen, G., (2003) “A
comparison of emerging time-triggered protocols
for automotive X-by-wire control networks,”
IMechE J. Automobile Engineering, 217(Part D),
pp. 13-22.

Taylor, P., (2003) “Real-time, determinism and
Ethernet.” Retrieved November 24, 2003 from
<www.bara.org.uk/encyclopedia/ethernet/Hirsch
mann2.pdf>

	Node		Dynamic Message Priority

