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Abstract: The paper focuses on the problem of robust fault detection using neuro-
fuzzy model based strategies. The main objective of the work is to show how
to employ bounding error approach to determine the uncertainty of the neuro-
fuzzy model and next utilize this knowledge for robust fault detection. The paper
presents also how to tackle the problem of choosing the right structure of the neuro-
fuzzy models. Proposed algorithms are applied to fault detection in the valve that
is the part of the technical installation at the Lublin sugar factory. Experimental
results presented in the final part of the paper confirms the effectiveness of the
proposed methods. Copyright c©2005 IFAC
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1. INTRODUCTION

Reliability, safety and availability of the industrial
plants play an important role during their oper-
ational use. It is important especially nowadays
when industrial installations, control algorithms
are becoming more and more sophisticated and
economics pressures to reduce the costs, to reduce
the downtime of plants and to shorten the time
necessary to make product. The early detection of
the faults could be achieved by the model based
fault detection. The method is based on residual
generation by comparaison of the estimates of the
measured signals with their originals. The most
common approach to form the residuals consider
a difference between the estimate and original
signal. Next residual are employed to detect and
isolate the faults. The model based strategy of
fault detection has received much attention in last
few decades due to i.e. the possibility of detecting
incipient faults. The detection of incipient faults
is so important because they affect the process

behavior slowly and it may take a long time before
being detected by simply method of fault detec-
tion rely on monitoring the level or trend of a
particular signal. Usually incipient faults finish as
abrupt faults and make huge damages so the early
detection in the incipient phase can minimize
drastically the destructive effects of such faults.
The prompt detection requires accurate models of
the processes and leads directly to the problem of
the system identification. Real processes are usu-
ally dynamic, nonlinear and stochastic and ana-
lytical approaches of identification are not suitable
for such systems. One way out of this problem is
application of artificial intelligence methods like
Neural Networks, Fuzzy Systems, Neuro-Fuzzy
(N-F) Systems and Expert Systems (Korbicz et
al., 2004; Patton and Korbicz, 1999; Rutkowska
and Zadeh, 2000). The paper focuses on N-F net-
works, which could be used to build the model
necessary to form residuals. The attractiveness
of N-F methods arises from the fact that they



could be useful when there are no phenomenolog-
ical model available. In such a case N-F models
could be identified using simultaneously quanti-
tative and qualitative knowledge i.e. human ex-
pert could code his knowledge in the fuzzy rules,
which next are introduced into N-F system, N-
F model could be also identified using available
measurements and methods of learning known for
neural networks like i.e. gradient descent meth-
ods (Rutkowska, 2002; Rutkowski, 2004), another
approach consider the use of data mining meth-
ods like clustering algorithms to identify the N-F
network (Babuska, 1998). Two types of the N-F
networks are commonly used for modelling pur-
pose: Mamdani N-F network and Takagi-Sugeno
N-F network. Generally Takagi-Sugeno structures
have a better performance in modelling than other
structures due to their possibility to decomposi-
tion of non-linear systems into a collection of local
linear models and thus the paper concentrate on
such structure. The main problem, which arises
during designing Takagi-Sugeno networks is the
question about suitable number of rules, which
ensure modelling accuracy. It is usually a trade
off between the complexity of the network and
its accuracy. Existed methods for determining the
structure of N-F network are time consuming i.e.
genetic algorithms (Kang et al., 2000), clustering
algorithms (Chiu, 1994), partitioning algorithms
(Nelles, 2001) and do not assure the accuracy
of designed model. In the paper new method for
structure determination based on bounding-error
approach is proposed. It helps designer in such a
way that he must define only maximum acceptable
modelling error for local linear models and next
algorithm determines the number of the fuzzy
rules that fulfill the assumption about maximum
error or inform the designer that it is impossible
to achieve model with such error.

Another problem considered in the paper arises
from the fact of model uncertainty. In real sit-
uations no matter what kind of identification
method is used there is always model-reality mis-
match, which arises usually from bad assump-
tion about the structure of the model or about
the type of noise, which corrupt measurements.
The uncertainty of the model could dramatically
decrease the reliability of fault detection if it is
not taken into consideration for such system. Two
main approaches have been proposed to overcome
described problem: active approach, which usually
bases on robust observers and passive approach,
which usually bases on adaptive threshold com-
puted for the residual (Patton and Chen, 1999).
In the work adaptive threshold technique is em-
ployed to implement robust neuro-fuzzy model
based fault detection system. This technique bases
on uncertainty of the model defined as a range of
possible values for model output. Unfortunately

do not exists effective methods that allow to deter-
mine uncertainty for non-linear systems. However
exist methods for linear systems and it is shown
in the work they could be applied to Takagi-
Sugeno N-F systems if it is treated as system
linear in parameters. In the paper the bounding-
error approach is modified and adapted for N-
F model. The main advantage of this approach
is that it does not consider strong assumptions
about type of the noise like i.e. statistical meth-
ods (Soderstrom and Stoica, 1994). It assumes
only that bounds on the noise signal are avail-
able (Walter and Pronzato, 1997; Milanese et
al., 1996). Next the method determines the fea-
sible set of parameters that are consistent with
the model, the measured data, and noise bounds.
Unfortunately, the set computed in such a way
could be very complex and computations required
to determine them are time consuming that limits
the use of the method to simply structures of the
N-F model. To overcome this problem the Outer
Bounding Ellipsoid method (OBE) (Walter and
Pronzato, 1997) that approximates the real feasi-
ble set of parameters using ellipsoid is adopted to
determine the uncertainty of N-F model.

The paper is organized as follows. In Section 2, the
elementary information concerning model based
fault detection using N-F network are presented.
Section 3 describes the idea of bounded error
approach and algorithm proposed to determine
the structure of N-F model. Section 4, presents
the algorithm of adaptive threshold and describes
how to obtain such threshold for N-F model using
OBE method. Section 5 contains an experimental
results obtained for fault detection. Last section
is devoted to conclusions.

2. NEURO-FUZZY MODELLING AND FAULT
DETECTION

The idea of model based fault detection consider
the comparison of the model output with the real
values measured from the process, thereby gener-
ating the residuals, which are the faults indicators
(Patton and Korbicz, 1999). Usually residuals are
generated as a difference between model and sys-
tem outputs. It means that residual signal should
be close to zero in the fault free mode, otherwise
it should be significantly different from zero. Ide-
ally residual signal should carry only information
about faults but practically it also contains errors,
which are the effects of model uncertainty. It is
necessary in this case to establish thresholds on
residuals to avoid false alarms. If residual signal
exceeds range defined by thresholds the alarm is
activated, otherwise system is working in fault free
mode. The proposed fault detection approach uti-
lizes Takagi-Sugeno N-F networks to implement



necessary models. The structure of the Takagi-
Sugeno system could be presented in the form
of layered topology similar to the neural network
(Fig. 1). However knowledge coded in this struc-
ture could be viewed in the form of fuzzy rules

Ri : IF x is Ai THEN yi = rT
i pi, (1)

where, x is the vector of the global network
inputs, Ai is the multivariate fuzzy set, yi is
the scalar output of the rule, ri is the vector of
the local linear system inputs, pi is the vector
of the local linear system parameters, and k is
the index of the rule. Fuzzy sets have usually
Gaussian membership functions and in the work
such membership functions are considered. Global
output of the N-F network is a composition of
responses of all rules

y =
∑n

i=1 µkyi∑n
i=1 µi

, (2)

where, y is the global output of the network, µi is
the membership degree archived for i-th rule, yi

is the output of the i-th rule (local linear system),
n is the number of rules. It is worth to notice
that the number of rules determines the number of
the local linear models, which are responsible for
piecewise local linear approximation of the non-
linear system. It could be shown that the number
of rules has strong influence on accuracy of the
global model and its complexity. The designer
must find compromise between these two coeffi-
cients. It is very important to include dynamic in
the N-F network because the real processes are
usually dynamic. It could be done by introducing
into input vector ri delayed inputs ui of the local
model and delayed output of the local output yi

i.e. ri = [ui(k), ui(k − 1), . . . , ui(k − na), yi(k −
1), yi(k − 2), . . . , yi(k − nb)]. The sample layered
structure of Takagi-Sugeno system is presented in
(Fig. 1). It consist of 5 layers. The elements of the
first layer are responsible for realizing membership
functions and each element of this layer include
in the case of Gaussian membership function 2
parameters: c - center of the Gaussian function
and w - width of the Gaussian function. The nodes
in the second layer realize algebraic product in
order to compute firing levels of the rules. The
third layer is responsible for inference operation
and usually it is realized by algebraic product. The
fourth layer represents consequents of the fuzzy
rules and each node of this layer include the vector
of parameters pi. The fifth layer is responsible for
composition of rule responses in order to compute
the global response of the network.

3. DESIGNING THE STRUCTURE OF THE
NEURO-FUZZY MODEL

As has been already mentioned one of the main
problems in designing the structure of N-F model

Fig. 1. Sample Takagi-Sugeno network

is the choice of the significant number of rules that
ensure the accuracy of the model. Let us consider
that N input-output measurements defining the
characteristic of the process are given. The idea
of the proposed approach is to explore these data
in order to find local approximately linear depen-
dencies and next for each found node generation
of one rule. The measurements are explored in
order to find local linear dependencies using the
bounding-error approach. Let us consider simpli-
fied situation when one linear dependence must
be found in the process characteristic. First the
designer must define the maximum error ε that
linear model (3) could made during the approxi-
mation of the linear dependence

y = rT (k)p. (3)

The feasible set of parameters consistent with the
measurements and chosen error can be defined by
the following set

P ={p ∈ Rn | y′(k) + ε ≤ rT (k)p ≤ y′(k)− ε

k = 1, . . . , N}, (4)

where, y′(k) is the output of the system. It is
possible to generate for each measurement feasible
set of parameters Sk separately and in this case
it is a strip in parameter space, bounded by two
parallel hyperplanes. The set of N measurement
points could be viewed as a local linear depen-
dence if they lay in the input-output space in
the contiguity and the product of their feasible
sets is not empty, otherwise measurements are
not consistent for defined error ε. The procedure
of looking for linear dependence is recurrent, and
is repeated while the chosen measurement passes
the test of consistency with all previously tested
measurements, otherwise procedure is stopped.
The set of all measurements that passed the test
of consistency define the working ranges in the
input-output space for the local linear model. The
parameters of this model could be obtained by
calculating the geometrical center of feasible set



Fig. 2. Detection of linear dependencies in mea-
surements (four sample steps)

of parameters generated by measurements that
passed the test of consistency. Sample four steps
of described procedure are shown in (Fig. 2)
where the feasible sets for 4 measurements are
shown. Three first measurements are consistent
each other but fourth measurement is not con-
sistent with the previous data and could not be
used to generate local linear model. In this case
procedure stops and model is designed using only
consistent measurements. Proposed algorithm has
been modified to find multiple approximately lin-
ear dependencies in process characteristic.

Fig. 3. Algorithm for detection local linear depen-
dencies

The steps of modified algorithm are shown in (Fig.
3) where the following notations are introduced,
X is the set of all measurements, L is the set of
measurements creating local linear dependence, s
is a measurement tested for the consistency with
elements of the set L, P is the feasible set of
parameters generated by measurements from the
set L, P is feasible set of parameters generated
by measurement s. The process is repeated until
the set X will be empty or one measurement will
not be consisted with any local linear dependence.
The results of this procedure are as follows: the
number of the local linear dependencies, ranges in
the input-output space of the linear dependencies
and the parameters of linear models that approx-
imates these linear dependencies. Moreover the
ranges of local linear dependencies could be used
to determine the centers and widths of Gaussian
fuzzy sets. Summing up, algorithm could be used
to determine the structure of Takagi-Sugeno N-F
network and to estimate its parameters.

4. ADAPTIVE THRESHOLD IN THE FAULT
DETECTION

The adaptive threshold method bases on assump-
tion that uncertainty of the model for each sam-
ple of data could be evaluated in order to com-
pute thresholds for the residuals. In the proposed
method the uncertainty of the model is charac-
terized by feasible set of parameters determined
by bounding error approach. Let us consider the
following Takagi-Sugeno N-F model:

y(k) =
n∑

i=1

φi(k)yi(k), (5)

where, yi(k) is the output of the i-th rule and

φi(k) =
µi(k)∑n

j=1 µj(k)
. (6)

The model described by equation (5) could be
viewed as system linear in parameters

y = xT (k)p, (7)

where

x(k) =




φ1(k)r1(k)
φ2(k)r2(k)

...
φn(k)rn(k)


 , p =




p1

p2
...

pn


 .

if parameters of the fuzzy sets are treated like
constant values. Let us define the output error

ε(k) = y′(k)− xT (k)p, (8)

where e(k) is the error, and y′(k) is the out-
put of the system The usual statistical parame-
ter estimation approaches assumes that the data



are corrupted by the errors which can be mod-
elled as realizations of independent random vari-
ables, with a known or parameterized distribution
(Soderstrom and Stoica, 1994). Bounded error ap-
proach is more realistic because assumes that the
errors lie between given priori bounds (Milanese
et al., 1996; Walter and Pronzato, 1997)

εmin(k) ≤ ε(k) ≤ εmax(k). (9)

Let us assume that

εmax(k) = ε, εmin(k) = −ε. (10)

Thus the feasible set of parameters for N data
points is

P ={p ∈ Rn | y′(k) + ε ≤ xT (k)p ≤ y′(k)− ε

k = 1, . . . , N}. (11)

and the confidence interval for output signal of
the system is

xT (k)pmin(k)− ε ≤ y′(k) ≤
≤ xT (k)pmax(k) + ε, (12)

where
pmax(k) = arg max

p∈W
xT (k)p, (13)

pmin(k) = arg min
p∈W

xT (k)p. (14)

The algorithm requires to determine the set of all
vertices W of convex polyhedron P. This process
is so time consuming that it is hard to employ de-
scribed algorithm for models with more then 6 pa-
rameters. Fortunately, recursive OBE algorithm is
able to approximate the area P by enclosing it by
ellipsoid E and is not so time consuming (Walter
and Pronzato, 1997). The date in this algorithm
are taken into account one after the other to con-
struct succession of ellipsoids containing all values
parameters consistent with all previous measure-
ments. After the first k observations, the feasible
set of parameters is described by the ellipsoid

E(k) ={p ∈ Rn| (p− p̂(k))T M−1(k)

(p− p̂(k)) ≤ σ2(k)}, (15)

where p̂(k) is the center of the ellipsoid, M(k)
is the positive define matrix, which specifies the
size and orientation of the ellipsoid, the coefficient
σ(k) has the influence on the size of the ellipsoid.
By means of intersection of the above strip and
the ellipsoid, we get region of possible parameter
estimates. This region is overbounded, by new
ellipsoid. The algorithm described below provides
rules for computing p̂(k+1), M(k+1) and σ(k+1)
in such a way that

E(k) ∩ U(k + 1) ⊂ E(k + 1). (16)

The new E(k + 1) ellipsoid is the smallest one in
some sense. Detailed description of the algorithm
could be found in (Milanese et al., 1996). The last
ellipsoid obtained from recursive algorithm is used

to compute the confidence interval for the output
signal of the system:

xT (k)p̂−
√

xT (k)Mx(k)− ε ≤ y′(k) ≤

≤ xT (k)p̂ +
√

xT (k)Mx(k) + ε (17)

The confidence interval could be directly applied
to compute adaptive threshold for residual signal.
Let us consider residual signal

er(k) = y′(k)− y(k). (18)

Thus adaptive threshold can be put in the follow-
ing form

xT (k)p̂−
√

xT (k)Mx(k)− ε− y(k) ≤ er(k) ≤

≤ xT (k)p̂ +
√

xT (k)Mx(k) + ε− y(k). (19)

It has to be pointed that presented method for
computing the adaptive threshold for neuro-fuzzy
model assumes that input vector x is not cor-
rupted by errors. In real situations sometimes this
assumption may be not fulfilled.

5. EXPERIMENTAL RESULTS

The proposed in this work methods have been
applied to build fault detection system for valve.
Based on the observations of the process variables
and the knowledge about the process two neuro-
fuzzy models have been designed

F = fF (X,P1, P2, T1) (20)

X = fX(CV , P1, P2, T1) (21)
where F is the juice flow, X is the servomotor
rod displacement, P1 is the juice pressure (valve
inlet), P2 is the juice pressure (valve outlet), T1

is the juice temperature (valve outlet) and CV is
the control value (controller output). The method
for structure generation of N-F model presented
in subsection 3 has been applied for models (20)
and (21). The obtained structures are described in
table 1. The parameters of fuzzy sets have been
estimated from the results obtained during the
structure generation and the parameters of the
consequents have been estimated using the OBE
algorithm. The priori known value of the error
ε was 0.05. To demonstrate the effectiveness of
the fault detection system 44 faulty scenarios were
simulated using the model build within framework
of the project DAMADICS.

Table 1. Neuro-fuzzy models

quantity fF fX

global inputs X CV

local inputs X, P1, P2, T1 CV , P1, P2, T1

no. of rules 7 3

The faults have been divided into 2 main classes
abrupt faults, and incipient faults, abrupt faults



Table 2. Fault detection results

No. Desc. S M B A

Control valve faults

f1 Valve clogging Y Y Y
f2 Sedimentation Y Y
f3 Seat erosion Y
f4 Bushing frictions Y
f5 External leakage N
f6 Internal leakage Y
f7 Medium evaporation Y Y Y

Servo-motor faults

f8 Twisted piston rod N N Y
f9 Housing N
f10 Diaphragm perforation Y Y Y
f11 Spring fault Y Y

Positioner faults

f12 E/P transducer fault N N N
f13 Rod displ. sensor fault Y Y Y Y
f14 Pressure sensor fault N N N
f15 Feedback fault Y

External faults

f16 Pressure drop Y Y Y
f17 Unexpected pressure change Y Y
f18 Opened bypass valves Y Y Y Y
f19 Flow rate sensor fault F Y Y Y

are divided into 3 groups small, medium and big
faults. Fault detection results obtained for all sce-
narios are shown in the table 2 where the following
notations has been introduced Y indicates that
fault was detected using designed N-F models, N
indicates that fault was not detected by designed
N-F models. The sample results obtained for the
incipient fault are shown in Fig. 4.
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Fig. 4. Faulty scenario: adaptive threshold and
residual signal

6. CONCLUDING REMARKS

The main purpose of this paper was to propose
robust fault detection scheme using the N-F net-
work. This was achieved with the use of the
adaptive threshold technique for residual signal.
The confidence interval for output signal had to
be evaluated in order to determine the adaptive
threshold. The Takagi-Sugeno N-F network was

modified to obtain linear in parameters structure
of N-F network and next OBE algorithm was ap-
plied to determine feasible set of parameters of the
N-F model. Another objective of the work was to
develop new method for designing the structure of
N-F network. It has been proposed method based
on bounding-error approach, which concentrate
on detection of locally linear dependencies in the
process characteristic in order to generate fuzzy
rules. Experimental results confirm the effective-
ness of the proposed solutions.
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