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Abstract: The controls for reconfigurable manufacturing systems have to be capa-
ble not only of identifying exceptions on-line, but also simultaneously developing
on-line strategies for unpredictable customer orders or inaccurate estimates of
processing times. This paper presents an approach for job-shop scheduling with
uncertain arrival times. The approach exploits Virtual Supervisor (VS) concept,
which provides access to all system information during program execution and
thus can readily monitor the overall system performance. The goal is to minimize
expected part tardiness and earliness cost. A solution methodology based on a
combined Lagrangian relaxation, VS-Patterns, Maxwell equations and temporal
difference is developed to obtain a dual solution for on-line implementation.
Copyright c©2005 IFAC.

Keywords: Manufacturing systems, factory automation, supervisory control, logic
controllers, optimization.

1. INTRODUCTION

In reconfigurable manufacturing systems (RMS),
scheduling decisions and exception handling poli-
cies become more complex since multiple reconfig-
uration strategies have to be considered. The re-
configurability feature turns out to be a new tech-
nological factor enabling novel strategies for han-
dling out-of-order events of the production process
(machine breakdowns, job priority changes, unex-
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pected job arrivals or cancellations, etc.) (Trujillo
et al., 2003; Caramanis and Osman, 1999).

2. PROBLEM FORMULATION

The generic job-shop problem is extremely com-
plex (Caramanis and Osman, 1999). A complete
solution algorithm for solving it does not exist.
The problem consists of N discrete time units,
ranging from 0 to N − 1, R machine types and
J parts to be processed. Let the indexes r and s
denote the type of machine. The available num-
ber of r-type machines (1 ≤ r ≤ R) at time n
is given and denoted by ηnr. The number of r-
type machines that could be substituted by s-type



machines is denoted by ηnrs. Part j (1 ≤ j ≤ J)
has arrival time Γj , due date Dj , and priority
(weight) Wj . In reconfigurable manufacturing sys-
tems some machines can change their configura-
tion, allowing redundant production lines (Koren
et al., 1999). Let P denote the number of re-
dundant lines. The available number of p-type
(1 ≤ p ≤ P ) redundant lines at time n is given
and denoted by Lnp. Processing part j requires
a set of Ij operations for completion without as-
sembly requirements. Let {j, i} denotes operation
i (1 ≤ i ≤ I) on part j. The first operation
on part j, {j, 1}, can only be started after the
arrival of an order or when the raw materials are
available. Operation {j, i} has to be performed
on a machine type for a specified processing time
tjir and the operation may start only after its im-
mediate preceding operation has been completed.
For some parts, the arrival time Γj , processing
time tjir, due date Dj , and priority Wj , are not
exactly known in advance. Such parameters are
modeled as independent random variables with
known discrete probability distributions. The ma-
chine availability is assumed to be deterministic.
The objective is to maximize on-time delivery
of parts and to reduce work in process (WIP)
inventory. The problem is characterized as follows
with a list of symbols provided in Table 1 for easy
reference.

Table 1. Symbols for job-shop problem

Symbol Description

n Time index

kj Completion time
N Total scheduling time

δ Dual cost

r Machine type index
Dj Due date of part j

R Set of machine types

Ej Earliness part j
Γj Arrival time of part j

Tj Tardiness of part j
tj Processing time of part j
Bj Initial time of part j

Oj Time out of part j
s Substitute machine

ηnr Number of r-type machines

ηnrs Number of r-type machines that
can be substituted by s-type machines

P Redundant line

ξj Cumulative cost
Wj Weight of tardiness

$j Weight of earliness

πj Lagrangian Multiplier
Lnp Available number of

p-type redundant lines

(1) Arrival time constraints: the first operation
of part n cannot be started until the arrival
of an order or the appropriate raw material
is available, i.e.,

Γj ≤ Bj1, j = 1, · · · , J (1)

where Bj1 is the beginning time of (j, 1).

(2) Operation precedence constraints: The opera-
tion precedence constraints state that opera-
tion (i+1) of part j cannot be started before
the completion of operation I of part j plus
a deadtime Oji,

kji + Oji ≤ Bj,i+1,

j = 1, · · · , J, i = 1, · · · , Ij−1 (2)

where kji is the completion time of (j, i), and
Bj,i+1 is the beginning time of (j, i + 1).

(3) Processing time requirements: An operation
i of part j must be assigned the required
amount of processing time tjir, i.e.,

kji = Bji + Tji + tjir ≤ Bj,i+1,

j = 1, · · · , J, i = 1, · · · , Ij (3)

(4) Replacement machine requirements: For any
r-type can be substituted by an s-type ma-
chine, the completion time of part kji plus
deadtime Oji is less that beginning time Bj1

plus arrival time Γji. Substitution is only
carried out when priority is maximal.

If Wji ≥ Wmax, and

kji + Oji ≤ Bj,i+1 + Γji,

j = 1, · · · , J, i = 1, · · · , Ij−1 (4)

(5) Machine capacity constraints: The number of
operations assigned to an r-type machine at
time n should be less than or equal to ηnrs

(the number of machines available at that
time),∑

ji

θjinrs ≤ ηnrs, n = 0, · · · , N − 1,

r ∈ R (5)

where θjinrs is a boolean variable. It equals
one if task {j, i} is assigned to an r-type ma-
chine at time n, and zero otherwise. For ran-
dom arrival processing times, handling ma-
chine capacity constraints (4) for all possible
instances of random events is very difficult
because of complexity. The feasible model is
a schedule satisfying (1)-(6)

E

∑
ji

θjinrs

 ≤ ηnrs ≤ Lnp,

on redundant line case,

n = 0, · · · , N − 1, r ∈ R, s ∈ S (6)

(6) Objective function: The objective function
is a weighted sum of penalties for parts tar-
diness Tj and raw materials earliness Ej .
Therefore, the following optimization prob-
lem is formulated



min
{Bji,rji}

I,

where I = E

 J∑
j=1

(WjT
2
j + $iE

2
i )

 (7)

subject to constraints (1)-(6)

In the next section, a heuristic scheduling list is
used to dynamically construct the schedule based
on the optimization solution and the realization
of random actions (events).

3. SOLUTION APPROACH

3.1 Gradient Projection Method

This numeric method for obtaining the minimum
subject to equality restrictions can be applied
after introducing Lagrange multipliers to hold
expected machine capacity constraints (6). The
following problem is obtained

min
{Bji,rji}

L, where

L = E

∑
j

(WjT
2
j + $jE

2
j )

 +

∑
nrs

πnrs

E

∑
ji

θjinrs

− θnrs

 (8)

By using the conditions imposed to capacity con-
straints on (5) and regrouping relevant terms, the
problem can be decomposed into the following
part-level subproblems:

min
{Bji,rji}

Lj , where

Lj = E

WjT
2
j + $jE

2
j +

Ij∑
i=1

kji∑
n=Bji

πnrs

 ,

j = 1, · · · , J (9)

subject to (1)-(6). The high level dual problem is
then obtained as,

max
{πnrs}

δ, where

δ =
∑

j

Lj −
∑
nrs

πnrsηnrs (10)

3.2 Temporal-Difference Method (TD)

TD method can learn directly from patterns (ref-
erence set structures) without a model of the envi-
ronment (Sutton and Barto, 2002). This method
updates estimates partially based on other learned

references, without waiting for the final outcome.
In this paper, backward stochastic dynamic pro-
gramming is used on part subproblems (9) to man-
age uncertainties. In this procedure, each TD/DP
(dynamic programming) stage corresponds to an
operation. At each stage, the positions are the pos-
sible operation beginning times. The subgradient
component E[

∑
θjinrs − ηnrs] which is required

to update the multipliers, is calculated based on
subproblem results. Next, the TD-DP procedure
is illustrated for the deterministic case.

(1) TD deterministic case: In this case, all pa-
rameters of part j are deterministic. The
gradient-descent procedure was applied, al-
though for effectively reasons it has been
parametrically combined with conventional
TD methods. The algorithm starts at the last
stage having the following terminal cost:

ςji(Bji, rji, sji) =

WjT
2
j +

kjIj∑
n=BjIj

πnrjIj
sjIj

(11)

The cumulative cost when moving back-
ward is then obtained recursively as follows,

ςji(Bji, rji, sji) =

min
{Bj,i+1,rj,i+1,sj,i+1}

$jE
2
j Aji +

kjIj∑
n=BjIj

πnrjIj
sjIj

+

ςji+1(Bj,i+1, rj,i+1, sj,i+1) (12)

where Aji is an integer variable that equals
one if operation {j, i} is the first operation of
part j, and zero otherwise. The optimal L is
obtained as the minimal cumulative cost at
the first stage, subject to the arrival time con-
straint. Finally the optimal beginning times
and the corresponding machine types can be
obtained by tracing the stages forward.

The TD algorithm for the uncertain case
is similar to the deterministic case. The ter-
minal cost for the stochastic case is given
by (13), where the expectation is taken with
respect to all possible processing times of the
last operation and weights.

(2) Solving subproblems with uncertain process-
ing times: When the processing times tjnr

are random and other parameters of part j
are deterministic, the terminal cost is the
expected value of all these possible costs,

ςji(Bji, rji, sji) =

E

WjT
2
j +

kjIj∑
n=BjIj

πnrjIj
sjIj

 (13)



The associated cost is obtained as in (11).
Thus, the cumulative costs of the positions
are then the expected value of all the above
costs.

ςji(Bji, rji, sji) =

E

$jE
2
j Aji +

kjIj∑
n=BjIj

πnrjIj
sjIj

+ ς∗ji+1


(14)

where

ς∗ji+1 =

min
{Bj,i+1,rj,i+1,sj,i+1}

ςji+1(Bj,i+1, rj,i+1, sj,i+1)

(15)

This procedure continues until the cumula-
tive costs for all the positions at the first
stage are obtained.

3.3 The Dual Problem

The dual cost function in (10) is concave, piece-
wise linear, and consists of many phases (Mulvey
and Ruszczynsky, 1995). Each phase corresponds
to a possible scheduling policy of the problem. The
number of possible scheduling policies strongly
increases with the problem size. The reasons are
the combinatorial nature of discrete optimization
and the presence of uncertain factors.

A conjugate gradient method is used to iteratively
solve the high level dual problem (10), but us-
ing subgradients instead of gradients. Through a
given set of multipliers, subproblems are solved
to obtain the optimal subproblem solutions, and
multipliers are then updated based on degrees of
constraint violation using the conjugate subgradi-
ent method. This iterative procedure repeats until
some stopping criteria is met. Computation of the
objective function (7) for a single dual solution
involves simulation and is very time consuming.
The idea of optimization is employed to perform
short simulation runs on selected candidate dual
solutions to determine the ranking of their ex-
pected costs. A winner (substituted) of the short
tryout is then the dual solution selected to gen-
erate pattern schedules, and feasible simulation
runs are then accomplished to obtain performance
statistics. The block diagram of Fig. 1 is a pictorial
representation of the algorithm.

4. SYSTEM OPERATION MONITORING VIA
VIRTUAL SUPERVISOR

4.1 Monitoring methods

Virtual Supervisor through setup pattern (Trujillo
and Pasek, 2003) and inductive Maxwel method
(Trujillo et al., 2003) are capable of monitoring
the manufacturing process at the plant, machine,
and device level. It updates the equivalent model
at each clock interval. Thus, the manufacturing
plant is checked on line against the model gener-
ated in a virtual space, where it is also compared
with the reference setup pattern sequence.

4.2 Real time processing

The process works as follows: each machine, pro-
cess and parts are assigned a level of resistance
using coefficients and previously described con-
ditions, see the details in (Trujillo et al., 2003).
The potential induced by each machine depends
on these coefficients and conditions, e.g. for a
machine on a path of critical flow, since a critical
path has high priority, the induced potential will
be higher.

Rec =

∑
k

∑
j vkj

In
((1 + ς)(1 + ζ)(1 + x))e−(x+1)2

k = 1, 2, · · · , n, j = 1, 2, · · · , 2n (16)

The coefficient ς reflects the path criticity and its
value depends on priority level. The inductor is a
manufacturing piece affected by other coefficients:

v0 =

∑
k

∑
j vkj

n
(1 + Wj)(1 + $j)(1 + sj)e−(x+1)

k = 1, 2, · · · , n j = 1, 2, · · · , 2n (17)

where Wj and $j are the priority or weight
of tardiness and earliness penalty for part j,
respectively, and sj is the index of the possible
substituted machines.

4.3 Learning of new conditions

The induction method combined with the ref-
erence pattern contains enough information to
deal with the conflict. The new sequence will
have a new order imposed by the position de-
termined by induction. This way the potential
provides the order and priority magnitudes re-
quired by the controller to drive the control ac-
tion. vk1 >> vk2 >> · · · >> vkn, {k1, · · · , kn} ⊆
[
∑

n En,
∑

n Xn,
∑

n Vn] where (En, Xn, Vn are
pattern events, states, and times respectively)
(Trujillo et al., 2003; Trujillo and Pasek, 2003),
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Fig. 1. Overall system for Job-Shop Scheduling via VS

where kn becomes established by sequence im-
posed by the value of νkn. The exception Sne is
integrated as a new reference pattern after be-
ing optimized and verified Sne ⊆

∑
n Hn, where∑

n Hn is a setup state-event-time pattern. The
relation of pattern references contains the list of
operations, and the process, part and machine can
be obtained from it. Thus, the algorithm can take
the order and identify the exact position required
by VS to simulate on line the scenario for job-shop
scheduling.

5. EXAMPLE. INDUCTIVE METHOD

The following example shows how the proposed
methodology can be applied, how it allows to
detect exceptions and to establish handling pro-
cedures. The Virtual Supervisor can recognize an
exception, and propose a new job-shop scheduling
by getting all necessary information from predic-
tive state space, where such solution can be tested
virtually. The routing and operation processing
times for a six-job, job-shop scheduling problem
are shown Gantt diagram in Fig. 2 depicted the
total time for this schedule is 60 time units.

In this chart a series of operations marked with
red line form a critical path, where the machine
M3 breaks down after operation 2 in J2 for half
a time unit. (The repair time for the machine
is known in advance). The on-line supervisor is
showing the scenario represented in Fig. 2 Using
the proposed method is possible to automatically
recognize what machines produce a conflict and
obtain the priority order of a new scheduling.

5.1 Interpretation of results

The Virtual Supervisor can build in advance the
estimated situation in a virtual space, where it
is recognized by induction how each machine is

working, and preview the future situation for an
eventual workpiece arrival at specific machines.
The Gantt charts of the resulting schedules are
shown in Fig. 3 with a 15% lower expected cost
than that of the conflict scenario in Fig. 2. The
reason can be explained as follows. In the conflict
scenario, the delay produced at machine M3 pro-
vokes future delays in the operations where this
machine has part process, i.e. M2, M5, M9 that
become overloaded. The priority for each process,
part, and what machine could absorb the overload
generated by M3 in a new job-shop scheduling is
obtained from pattern analysis and TD algorithm.
Thus Fig. 3 shows the evolution to balance the line
for the complete system. The VS obtained a real-
time predictive state space so that the controller
can get the information required to perform an
exception decision.

6. CONCLUSIONS

A novel methodology that balances modeling ac-
curacy and solution methodology complexity is
presented. Satisfaction of arrival time constraints
and operation precedence are effectively managed.
Simulated testing results demonstrate that the
method can be substantially better than those
used today, and near optimal schedules are gener-
ated for problems of practical size. The handling
of unpredictable machine breakdowns is also an
important issue, this falls directly into the cur-
rent framework. These strategies allow to observe
performance results during simulation and, auto-
matically terminate a simulation when accurate
results are obtained.
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