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Abstract: This paper describes the application of a model reduction technique based on
proper orthogonal decomposition for the modelling of the dynamics of an industrial glass
feeder. A technique of missing point estimation is proposed to enhance the computational
speed. For a rather complex change of operating conditions, it is shown that the method
infers low complexity models of high accuraopyright®2005 IFAC
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1. INTRODUCTION The control of such a change of operating conditions
is a difficult task, especially because the dynamical
response of control variables is not, or only partly,
understood and because the large transient behavior of
such changes have a prolonged effect on the overall

?upr?]r;::tlensg er(]:?llgr?wr:tig:‘ig[iseso?aeltfalsns Ifr;c:rl:::rel:ailsglilsesn performance of the system. A better understanding
' 9 9 9 of the process dynamics for this kind of changes is

in Figure 1. A typical furnace consists of a melting

tank, a working end and a feeder section. The feeder istherefore necessary.

located between the refiner, where bubbles in moltenlIn this paper we consider the reduced order modelling
glass are released and the spout or the glass outlet poinff the temperature changes during color changes in
which consists of a dosing mechanism. Inthe glass melta glass melt feeder. For this we apply the method
feeder, the temperature of the glass melt is controlledof proper orthogonal decomposition (POD) which re-
before the glass exits at the spout where a uniform tem-ceives increasing interest for industrial applications.
perature distribution is desired for the forming process The focus on POD techniques for obtaining low com-
of the glass products. Industrial glass melt feeders areplexity models for highly complex dynamic operating
designed to produce glass of different colors, different conditions of processes is motivated by a number of ar-
weights and different viscosity. Among many physical guments. Firstly, the POD method is largely application
variables, especially the temperature in the melt needindependent. Secondly, the method results in reduced
to be controlled very tightly both in time as well as in order models that are highly accurate and of very
each position of the feeder. low complexity. Thirdly, unlike many other methods
of model approximation the POD technique captures

industrial glass feeders involves a color change in relevant dynamics of the system in a small number of
9 9€ N asis functions by explicitly using observed time series
the glass melt. Indeed, such a change effects density,

. i q | ductivit d ab i or simulated responses of the system. As such, the
VISCosity, redox values, concuctivity and absorplion’ ., oy, js gata dependent. Fourthly, the separation of
coefficients, to mention only afew physical parameters.

Among many glass products, the quality and spec-
ifications of container glass mainly depends on the

A most critical change of operating conditions of



spatial and temporal dynamics in reduced order modelswhere p is the density, which is temperature depen-

allows a perfect basis for control system design.

In this paper we will apply the POD reduction tech-

nique to an industrial glass feeder in describing the
dynamics of a setpoint change of a glass feeder from
meltfor green container glassto a flint (uncolored) con-
tainer glass melt. In Section 2 we discuss the model of
the feeder. The POD technique is explained in Section
3. Section 4 provides the results of the data acquisition,

a

dent for glassgp is the heat-capacity is the heat
conductivity which is also temperature dependent for
glass, andj is the external energy sources applied to
the feeder. A complete dynamical model of the feeder
is based on Navier Stokes equations forincompressible
and laminar flows (Versteeg and Malalasekera, 1995)
and includes energy conservation equations, momen-
tum equations, and mass balance equations.

and reduced order modelling. Conclusions are deferredThe physical properties (TNO Institute of Applied

to Section 6.

Fig. 1. Glass furnace containing combustion chamber
(com), refiner (refi), feeder (feed), and throat (thr)

2. THE MODEL

A schematic view of a glass melt feeder is given in
Figure 2. The spatial configuration of the feeder is
captured in a subsitof athree dimensional coordinate
system. Here, we consider an industrial feeder for
whichX = [0, 8.5] x [0, 0.55] x [0, 2] (in meters).
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Fig. 2. Schematic view of a glass feeder

In general, the glass melt flow in the feeder can be
considered as an incompressible and laminar flow.
The governing equations for the feeder are Navier-

Stokes equations that describe the velocity field in each

direction as well as the pressure figléind the energy
equations for the temperature fi@ldBird et al,, 1960).

Physics, 2003) of the green and flint glass are summa-
rized in Table 1 and Table 2. Most physical parameters
of the glass melt are functions of temperature. See also
(Stanek, 1977), (Beerkeres al., 1997) and (Gunther
and Currie, 1980).

Table 1. Physical parameters green con-
tainer glassT is temperature in Kelvin)

Parameters Green container

Densityp (kg/m3) 2540— 0.14T

Viscosity i (Ns/n?) 10725924 4242904

Specific heatp (J/kg.K) 1222+ 0.0957T

Heat conductivitye (W/mK)  0.527+ 0.001T + 1.8 x 10~9T3
Absorption coefficient 36859

Surface emissivity @9

Table 2. Physical parameters flint container
glass T is temperature in Kelvin)

Parameters Flint container

Densityp (kg/m3) 2536— 0.14T

Viscosity u (Ns/n?) 1072490 4 4094950

Specific heatp (J/kg.K) 1220+ 0.0957T

Heat conductivitye (W/mK)  0.527+ 0.001T + 2.54 x 10-8T3
Absorption coefficient 2629

Surface emissivity @9

To solve the equations numerically over the spatial
domainX and a finite discrete time domalf, the
feeder is divided into 7128 grid points. Some grid
points act as boundary points, where the Dirichlet
or Neumann boundary conditions are imposed. These
boundary points belong to the input terms. The number
of non-boundary points is 3800. Hence, the numerical
calculation involves the time evolution @f(x, t) to be
computed simultaneously in 3800 positions.

3. MODEL REDUCTION BY PROPER
ORTHOGONAL DECOMPOSITION

3.1 Construction of basis functions

The Navier-Stokes equations are solved for the glass

media only, while the energy equations are solved for The method of proper orthogonal decomposition
heat transfer in the glass melt media, through the feedePOD) amounts to choosing an optimal basis of the
walls, and heat transfer from the crown to the melt space in which the physical variables reside. For the
surface. application of this paper, we consider temperatdres
defined on a spatial domak and a temporal domain
T. It is assumed that for any time € T, the spa-
tial temperature distributiof (-, t) mappingX to R,
belongs to a known separable Hilbert spa&€eThis
means that for some countable index E¢finite or

The temperature distributiom (x, t) in the feeder is
described by the following PDE:

d (pcpT)

5 = —dv (pcpTu) +div (kgradl) +q (1)



infinite) there exists aminimal bagig; }j 1 of X, thatis X — X defined by the self-adjoint operatGi(¢) :=
orthonormal in the sense that the inner prodycte;) av((T(, 1), 9)T(-,t)). Then the POD basis are the
is1lifi = j and O otherwise. In particular, for any such (normalized) eigenfunctions o, provided that the
basis the spatial temperature distributibg, t) € X operator av commutes with the inner product.

(often referred to as thigh snapshaotadmits a unique

expansion of the form

Tx,t) = Zai O gi (X) (2) 3.2 Construction of modal coefficients
iel

wherea; (t) := (¢, T(-,t)) are the (Fourier) coeffi- Once the basis functions have been extracted from
cients or themodal coefficientsf the expansion (2). the dataT, then the coefficient functiona; (t) :=
The existence and uniqueness of expansions (2) is(¢i, T(-,1)) can be obtained in quite a number of
therefore the consequence of the assumption that thénanners. We consider three approaches here.
shapshots belong to a space equipped with the mathe-
matical structure of an inner producttitne averaging
operatoris a linear function av RT — R with the
property that mige f(t) < av(f) < maxer f ().
For discrete time sef of finite cardinalityL one may L(T) = R(T) (5)
define, for instance,

Galerkin projections. Suppose that the evolution ©f
is governed by a partial differential equation

whereL(T) = Zipzo L Z—'t,T— is a pth order polynomial

av(f) = 1 Z f(t). () differential operator andR(-) is a (nonlinear) partial
L teT differential operator in the spatial variable. Then the
Now suppose that an ensemble of snapsfas, t) modal coefficients are obtained by requiring that the

with x € X andt e T is observed, simulated or Galerkin projectiorof the residual (T,) — R(Ty) with
obtained in an experimental way. The aim will be nthe part|al sum (4) onto the space spanneg lwith
to accurately approximatd by an expansion that | =1 ...,nvanishes. Thatis,

has.considerably Igss tgrms than (2). An or'tho'normal (L(Th) — R(Th), i) =0 i=1....n (6)
basis{gi}icy of X is said to be @OD basiswith

respectto the observed datéf the Fourier coefficients ~ Given the basis functiong, andn > p, the condition
a(t) = (i, T(-,t)) withi € I andt e T satisfy (6) leads to am-th orderordinary differential equation
av(aiz(t)) > av(ajz(t)), whenevei < j. in the coefficients; (t) given by

A POD basis then has the property that for any O 4
the partial sum L@) = Z aj(Oej(X) |, @i (X)

n =1

Ta(x, 1) = Z ai (Hgi (X) (4) wherei = 1,...,n. This defines the dynamics of the
i=1 model.
is an optimal approximation df in the sense that the

time-averaged approximation error Missing point estimation.The coefficients; (t) may

av(I T (X, t) — Tn(x, D)%) be inferred from partial information on the spatial

with | - || the norm induced by the inner produet-) domain. LetXg be a strictly proper subset &f which
is minimal among alhth order approximations of the ~We will refer to as anask Let Xo C X be the Hilbert
data and among all possible minimal orthonormal basessPace of the restricted mappings := T [x, with
of X. Itisimportantto observe thataPOD basidasa | € X and letg; = ¢ |x, be the restrictions of the
dependentThat is, different data yield different bases. Pasis functions. Note that, i > 1, will be a basis

On the other hand, differemtdo not require different for Xo, but in general this will be neither a minimal
bases for (4) to be optimal (Holmesal., 1996). nor an orthonormal one. Given an orthonormal basis

o o {ei }iK_1 of X and ameasuremeni on the masKxX,
If both X and T have finite cardinality, sa)K and the o_bjective is to estimate

L, then a POD basis is easily constructed from a
singular value decomposition of thex L data matrix

T whose entries [ = T(xi,tj). Specifically, let

X = RK be the Hilbert space with inner product
(X1, X2) := X{ Xz and suppose that (T3) defines the time by minimizing the least squares error

averaging operator. Let = ®X ¥ ' be a singular O T 2

value decomposition of T. Then thigh POD basis B = 1T 5 =T Dl ®
function is given byg;(xj) := ®jj, wherex; is an overg; (t) fort € T. By deriving E(t) in (8) to & (t)
arbitrary elementiX andj =1, ..., K. and set the derivation to zero, we obtain the optimal
estimation ofgj (t) asa *(t):

n
Ta, ) =Y &MGEX), xeXo (7)
i=1

For arbitrary Hilbert space& a POD basis is ob-
tained by constructing the data-correlation n@p: &M@ (X), §j)x = (T(x, 1), P xe  (9)



By solving (9), we obtain the estimate ©fby setting reduced order model cannot be expected to accurately
capture the color change dynamics.

n
Ta(X, 1) = Zéi(t)‘ﬂi ), xeX In this application we focus on the reduced order
i=1 modeling of the temperature during the color change.
We will refer to T, as themissing point estimationf 1 he green container glass meltin the feeder is assumed
T, based om modes. The problem gfoint selection to be initially under the steady state condl'tlon with
amounts to characterizing masKs of fixed dimen- constant pull rate of 80 tons/day and the nominal crown

sion, ¢ say, so that the missing point estimatidp temperature distribution (the inputs) as depicted in
based on the measureméht= T |x, . provides a Figure 3. The crown temperature of each zone is varied
- 0

good estimate of . as shown in Figure 3.

In (Astrid et al,, 2004) a criterion is proposed for the o1 Veriatons ofthe cow temperetn e per zone
selection of such points. The criterion is based on g o — . —
the correlation of the output energy over the spatial ) ™% 20w @ s 0 o
domain. Precisely, define for each poit € X, the

Zone 2(K)
°

L x L matrix E(xx) whose(i, j)-th entry is _5%
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- —

Zone 3(K)
o

n
Eij ) == Y T, )T (e, 1) =T Ok, ) T (X ).

0 20 40 60 80 100 120

r=1 . ‘ ‘ ! ! ‘
(10) é Df\ﬁ
Then, fork =1, ..., K, definee by setting: T e e e o
=] E(X 11 . L
& =l B (11) Fig. 3. Crown temperature variations
where the normi E|| is defined as
L L The green container glass melt is then replaced by
IEN=>_> Ef. the flint container glass melt at time= 0 and data
i=1j=1 is collected for 112 minutes with a sampling time

of 1 minute. To derive the reduced order model of
the temperature field, 112 temperature distributions
(snapshots) are collected. Hend¢, = 3800 and

L = 112. The POD basis functiong defines in
Section 2 are computed.

Theneg in (11) represents the total output correlation
obtained by ignoring the poink € X. The point with
smallesk is the one that maximizes the output energy,
i.e., the one which is most relevant in comparison
with other points. Let us re-index the pointsX¥has
Xigs - - - » X SUCh that Forthe color change, 18 POD basis functions are taken.
B <8, < <8 The reduced order model is obtained by employing a
=" = =K Galerkin projection of the first 18 POD basis functions
After this ordering, we will choose the masly = ¢1, - . . p18 Onto the original model describing the tem-
{X;, - -+, X, }. In addition, the re-ordering may take perature distribution.
the conditioning of the incomplete basis into account
(See (Astrid, 2004)).

The reduced order model by the MPE technique is 4.2 Validation of reduced order model

constructed by projecting the restricted POD balsis

onto the equations governing the pointXipn Hence,  Figure 4 shows the comparison between the results of
the termT (x, t) in (9) is replaced by the equation Bf the reduced order model and the original model for
located aix. the measured temperature profiles at the glass melt
surface. The point3; and T, are the measurement
points at the surface and the poirfig to Ts are the
measurement points at the outlet of the furnace. The
simulated conditions are the same as when the data
was collected. From Figure 4, itis clear that the reduced
order model can capture the dynamics of the original
model quite well.

4. RESULTS
4.1 Collection of data

The color change will significantly change the physical
properties of the glass melt. If green container glass The plot of the average absolute error for every grid
melt is replaced by flint (transparent) container glass point is given in Figure 5. The highest value of the
melt, the heat conductivity will change by a factor absolute error is about@ (in Kelvin), observed in

8. The reduced order model will need to take these the glass melt. The temperature variations in the glass
significant changes into account. If the reduced ordermelt during the simulation is about 20 K. Hence, the
model is derived from simulation data where the color deviation of the reduced model from the original model
change from green to flint is not simulated, then the accounts forless than®% of the temperature changes.



, Temperature ,at e surace The second being those points that minimize the MPE

.y criteria as proposed in section 3.2. Since the feeder
is symmetric along its widthz{direction), only 1635
points qualify for this.

g
[ . . .
< 3 The value of the criteriomy is calculated for all 1635
2 candidate points and shown in Figure 6.
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Fig. 4. Reduced and original temperature profiles dur-

ing color change Fig. 6. Ordered values @

Based on these values, the m&gkis then defined by
the locations of the 265 excitation points and a number
of extra points points which are chosen such that the
condition number ofp(Xg) T ®(Xp) is close to 1 with

P (Xo) = (¢1lx,- - - ¢nlx,). Based on the condition
numbers, 400 additional points have been selected to
define a maskg of 665 points.

Average of the absolute error of temperature field
0.09 T T T T T T T
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0.04f

0.03f

Average absolute error (K)

The comparisons between the original model, POD
model with 18 basis functions, POD-MPE with 665
points and 18 basis functions, and POD-MPE with 465

0.02f

0.01

© 1000 1500 2000 2500 3000 3500 4000 points and 18 basis functions are depicted in Figure 7
n-th grid cells
for Ty andT, at the surface.
Fig. 5. Absolute errors over the gridpoints , T 1, at the surace

The operating temperature of the glass melt feeder is
around 1480 K and the effective heat conductivity of

the green container glass is varying around 7 W/m.K.
For this operating temperature, the flint container glass

melt has an effective heat conductivity of around 84 Al ~rop”
W/m.K. The drastic change of the glass melt heat . e
conductivity will change the temperature distribution )

in the glass melt and the resulting transient changes can SR e
be captured quite well by the reduced order model. Temprure T o e uce

4.3 Acceleration by missing point estimations g

— original

—— POD
MPE-665

—— MPE-465

Despite the reduction of complexity, the reduced or-
der model turns out to be about 2.3 times faster in
calculation time than the original model. To construct S0 @ w8 w0 o
a faster reduced order model, the method of missing melmnees

point estimation (MPE) as described in section 3.2is Fig. 7. Reduced and original temperature profiles at
applied. the measurement poirts andT, during the color
The selected pointX of the spatial grid consists change simulation.

of the union of two sets. The first being all points

adjacent to the points in which on which the crown Table 3 shows the maximum error average (calculated
temperature, inlet temperature and pull rate are definecby (5)) and the resulting computational gain with
(the ‘excitation points’ in the feeder, 265 in total). respect to the computing time of the original model

o kN w o » oo o N @




during the situations where the process settings are the

Validation of MPE model: random excitation signals
1474 , : .

same as during the snapshot data collection. From the o w2k
. <3 L Sensor position 1 1
Table 3. Comparison between POD and g ZZZ ‘
MPE models 5 el
Model Maximum average ~ Computational ¥ io 2 v v3‘0 0 5 60
Type Absolute error gain 147 time (minutes)
POD Q081°C 226% o 17|
MPE_665 OOSZDC 527% ;5: 1a70k Sensor position 2 |
MPE-465 01¥C 754% g waf Mo ﬁ«,“
2 14661 7 ¥ e 0 1
results tabulated in table 3, it is clear the MPE-reduced Lag4 - 5 - - " )
based model can still follow the dynamics of the iime (minutes)

gﬁ;gﬂ&gﬁdﬂp\lg rgavlil(lj' Z:642565&;2;:3;?;%0?“2?” Fig. 9. '!'he_ vali(_jation of the MPE model using random
faster than the original model and this corresponds to excitation signals

8.5 times faster than the real time. Since we only reduceThe reduced order model is considerably less complex,
the temperature here and calculate the Navier-Stokedut nonlinear, and still computationally expensive. Itis
equation by the original model, the enhancement of thefor this reason that we also implemented a method of
computational speed is limited. missing point estimation to enhance the computational
speed of the reduced order model. Details of the latter

To evaluate the performance of the MPE reduced method are described in (Astrd al, 2004).

models, we impose random excitation signals at the
crown temperature zones. This condition is different to
the condition used to derive the POD basis. The random
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