
ON THE SUPERVISORY CONTROL FOR

STATE TRAJECTORY SPECIFICATIONS IN

TIME-VARYING DISCRETE-EVENT SYSTEMS

I. Romanovski ∗ M. Guay ∗ K. Rudie ∗∗

∗ Department of Chemical Engineering, Queen’s University,
Kingston, Ontario, Canada K7L 3N6

∗∗ Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Ontario, Canada K7L 3N6

Abstract:
In this paper, the Supervisory Control in Time-Varying Discrete-Event Systems
is considered when the plant specifications are formulated as State Trajectory
Specifications. The procedure for construction of on-line supervisors in this
case is given and an example of re-using of the computed supervisor is given.
Copyright c©2005 IFAC.

Keywords: Discrete-Event Systems, Time-Varying Automata, Supervisory
Control, State Trajectory Specifications

1. INTRODUCTION

Systems in the areas of manufacturing, telecom-
munications, and transportation are often repre-
sented by networks of interacting objects modelled
by Discrete-Event Systems (DES). Due to the
inherent complexity of many physical networks,
and, as a result, exponential growth of the state
space, the analysis and control of such systems
often gives rise to structural and computational
problems of enormous complexity.

The essential requirements for the construction of
DES supervisors are (i) the existence of a finite
deterministic automaton (Ramadge and Won-
ham, 1987) that represents the model of a system
and (ii) the existence of a finite deterministic au-
tomaton that represents the desired behavior (or,
specification) of the system. However, it may be
extremely difficult, if not impossible, in practice,
to obtain an automaton that completely describes
the future behavior of the modelled process (see
(Chung et al., 1992)). Moreover, the modelled
process, as well as the desired behavior, may have

dynamical components that would not allow us to
get a full description as an automaton (Lin, 1993).

In the theory of supervisory control of DES
(Ramadge and Wonham, 1987) several meth-
ods were developed to minimize the computa-
tional and modelling complexity of a DES super-
visor construction. These methods include vari-
able lookahead policies (Chung et al., 1992), hi-
erarchical control (Zhong and Wonham, 1990),
vertical state aggregation (Hubbard and Caines,
1999), dynamical consistency based state aggre-
gation, (Shen and Caines, 2002) horizontal state
aggregation, (Romanovski and Caines, 2001),
(Romanovski and Caines, 2002) and decentralized
control (Cieslak et al., 1988), (Rudie and Won-
ham, 1992).

The standard model for the interaction of parallel
subsystems is that of the synchronous product
(Wonham, 2000), (also called parallel composi-
tion in (Cassandras and Lafortune, 1999)) where
the computation of a supervisor is performed off-
line based on the complete information about the

model and the desired behavior of an automa-
ton (Fig. 1, top scheme). However, due to the
above observations, such computation is not al-
ways possible. We would like to propose a new
supervisory control scheme that permits the com-
putation of supervisors in situations where models
and specifications are time-varying (Fig. 1, bot-
tom scheme). We call such structures time-varying
discrete-event systems. Switching logic may occur
due to various reasons: device breakdown, appear-
ance of a new device, new information, and so
on. However, the mechanism for logic switching
is unmodeled. We intentionally leave this out of
the scope of the current work because we wish to
focus on supervisor design in the face of switches
rather than on the cause of switches or on the
transitional behavior during a switch.

Plant Controller
event

disabled events

Plant
event Test for

new

logic

Old

Controller

New

Controller

Yes

No

d
isa

b
le

d
 e

v
e

n
ts

Fig. 1. The current control scheme (top) and the
new control scheme (bottom)

2. ONLINE COMPUTATION OF
SUPERVISORS FOR STATE TRAJECTORY

SPECIFICATIONS

Natural specifications for manufacturing, trans-
portation and telecommunications systems are of-
ten formulated in terms of the existence of safe
transitions between members of a specified or-
dered sequence of states (with possible constraints
on visiting other system states) regardless of the
event sequence by which this is achieved. In this
section we introduce an algorithmic procedure for
computing the supervisor for such specifications.

Definition 1. ((Romanovski and Caines, 2001)) A
State Trajectory Specification (SPEC) for a given

automaton G is a 4-tuple of subsets of X, namely,
SPEC = {XI , XT , Xpc, Xbad}, where
Xpc ∩ Xbad = ∅. The set XI is termed the set of
initial states (of the SPEC), XT is termed the set
of terminal states, Xpc is an ordered subset of X

(possibly with repetitions) termed the set of ports
of call and Xbad is termed the set of bad states.

The interpretation is that Xpc is the set of states
which should be visited in a given order while
Xbad is the set of states which must be avoided.
Furthermore, unless otherwise stated, XI and XT

are singletons ({xI} and {xT }, respectively).

The term to drive a state x (of an automaton) to
a state y signifies that there exists an input word
of controllable and uncontrollable events u such
that when the automaton is in the state x and
accepts the word u the automaton terminates in
state y. Equivalently, y is reachable from x via an
input sequence u ∈ Σ∗.

Definition 2. We say that an automaton G =
(X,Σ, δ,Xo, Xm) satisfies the
SPEC = {xI , xT , Xpc, Xbad} if and only if for any
initial automaton state xo there exists a system
trajectory that satisfies all of the following:

(1) The initial automaton state xo is driven to
the state xI without entering the set Xpc;

(2) The state xI is driven to state xT along a
trajectory which contains all the elements of
Xpc in the specified order;

(3) The trajectory from xo to the xT does not
pass through any state in the set of poten-
tially bad states,

where a potentially bad state is a state in Xbad

or a state which can be driven to a bad state
by a sequence of uncontrollable events (or from
which a bad state is reachable by a sequence of
uncontrollable events). The set of potentially bad
states is denoted by Xpbad.

For any given SPEC and automaton G we denote
by L(SPEC)G the set of all legal strings (or,
trajectories) v ∈ L(G) that satisfy the definition
above (for the formal definition of L(SPEC)G see
(Romanovski and Caines, 2002)).

2.1 State Trajectories with Bad States Only

First, we consider a special class of specifications
for which XI = XT = Xpc = ∅; we denote
this class by K. In other words, if SPEC ∈
K, for trajectory v ∈ L(G) we have that v ∈
L(SPEC)G ⇐⇒ v does not pass through any
state from Xpbad, that is, we must only avoid
potentially bad states. Below we present the al-

gorithm for calculation of potentially bad states
for a given automaton and specification.

Algorithm 3.1 Computes the set of potentially
bad states
Inputs: G = (X,Σ, δ, xo, Xm),
SPEC = {xI , xT , Xpc, Xbad}.
Xpbad ← Xbad

for all (x′, u, x′′) ∈ (X −Xpbad)× Σuc ×Xpbad

do

Xpbad ← Xpbad ∪ {x
′}

end for

Output: Xpbad

Note that if Σuc = ∅ then Xpbad = Xbad.

Proposition 3. For any automata
G = (X,Σ, δ, xo, Xm) and a specification SPEC ∈
K, G satisfies SPEC if and only if xo 6∈ Xpbad.

Proof. Follows from Definition 2 and Algorithm
3.1.

In the rest of the paper we assume that xo 6∈
Xpbad, that is, L(SPEC)G 6= ∅ for SPEC ∈ K.

Let us consider a collection of automata G =
{G(0), . . . G(N) . . .} and legal specification K

represented as a state trajectory specification
SPEC ∈ K. We start with the synthesizing of
S(0) using Algorithm 3.1 as follows:

(1) Compute X0
pbad for input G(0) = (X0,Σ0 =

Σc0
∪ Σuc0

, δ0, xo0
, Xm0

) and SPEC;
(2) For any x ∈ X0 set

S(0)[x] =

Σuc0
∪ {a ∈ Σc0

, s.t. δ0(x, a) 6∈ X0
pbad} (1)

Let L0(SPEC) be the language realized by S(0)
acting on G(0).

Lemma 2.1. v ∈ L0(SPEC) ⇐⇒ δ∗0(xo0
, v) 6∈

X0
pbad.

Proof. We use induction on the length of v.

=⇒ Since the initial state, x0, does not belong to
X0

pbad, we have that δ∗0(xo0
, ε) 6∈ X0

pbad. Assume

that δ∗0(xo0
, v) 6∈ X0

pbad for any v ∈ L0(SPEC)

for which |v| ≤M , and consider va ∈ L0(SPEC).
If a ∈ Σuc0

and δ∗0(xo0
, va) ∈ X0

pbad, then, by the

definition of X0
pbad we must have that δ∗0(xo0

, v) ∈

X0
pbad; this fact contradicts the inductive hypoth-

esis. If a ∈ Σc0
, we have that δ∗0(xo0

, va) 6∈ Xpbad

by the construction of S(0).

⇐= Similarly, if δ∗0(xo0
, ε) 6∈ Xpbad, we have that

ε ∈ L0(SPEC) by the construction of S(0).
Assume δ∗0(xo0

, v) 6∈ Xpbad =⇒ v ∈ L0(SPEC)
for any |v| ≤ M . Set δ∗0(xo0

, v) = x. Then, by

the construction of S(0) for any a ∈ Σ0 such that
δ0(x, a) is defined, we have that

δ0(x, a) 6∈ X0
pbad =⇒ va ∈ L0(SPEC)

Proposition 4. L0(SPEC) is the supremal con-
trollable sublanguage of L(SPEC)G(0) w.r.t. G(0)
(i.e., L0(SPEC) ⊆ L(SPEC)G(0) and for any
L′ with L0(SPEC) ⊂ L′ we have that if L′ ⊆
L(SPEC)G(0), then L′ is uncontrollable).

Proof. By definition (see (Wonham, 2000)),
L0(SPEC) is controllable if and only if for
any v ∈ L0(SPEC) and a ∈ Σuc0

such that
va ∈ L(G(0)), we have that va ∈ L0(SPEC).
If v ∈ L0(SPEC) and a ∈ Σuc0

such that
va ∈ L(G(0)), we have that δ∗0(xo0

, va) 6∈ X0
pbad,

otherwise δ∗0(xo0
, v) ∈ X0

pbad and, as a result,

v 6∈ L0(SPEC) by Lemma 2.1. Thus, va ∈
L0(SPEC), and L0(SPEC) is controllable w.r.t.
L(G(0)). Let now v ∈ L(G(0) and v ∈ L(SPEC).
Then δ∗0(xo0

, v) 6∈ X0
pbad by Algorithm 3.1, and

as a result, v ∈ L0(SPEC) by Lemma 2.1, so
that L0(SPEC) is indeed a supremal controllable
sublanguage of L(SPEC)G(0) w.r.t. G(0).

Once we detect that logic of the plant has changed
to G(i) for some i = 1, 2, 3, . . . , N, . . ., we run
Algorithm 3.1 with the new input G(i), compute
Xi

pbad and set

S(i)[x] = Σuci
∪{a ∈ Σci

, s.t. δi(x, a) 6∈ Xi
pbad} (2)

We assume that once we are at state x no un-
controllable events are added to x when the plant
logic is changed to G(i). This way we guarantee
that x 6∈ Xi

pbad.

Corollary 5. S(i) realizes the supremal control-
lable sublanguage Li(SPEC) of L(SPEC)G(i)

w.r.t. G(i).

From Proposition 4 and Corollary 5 we see that
at each point in time the supervisors constructed
according to (1) and (2) guarantee that for the
current plant, the minimally restrictive behavior
of SPEC is generated.

2.2 State trajectories with xT

Here we consider the SPECs of the type
(∅, ∅, xT , Xbad) for the collection of automata G.
The class of such specifications is denoted by K1.

We assume that for every index j = 0, 1, . . . N . . .

and SPEC ′ = (∅, ∅, ∅, Xbad), Lj(SPEC ′) 6= ∅
there is at least one index i such that Li(SPEC) 6=
∅, and our aim is to produce the scheme that
synthesizes the supervisor for Li(SPEC) for any
such i.

In order to do that, we must find the set of states
X ′

i ⊆ Xi through which all possible trajectories
from xo0

to xT go. First, we run Algorithm 3.1
for G(i) to get Xi

pbad. Then we compute all states
that are reachable from xoi

, denoted by Xi(xo0
) ⊆

Xi − Xi
pbad and all states from which xT can be

reached, denoted by Xi(xT) ⊆ Xi−Xi
pbad. Clearly,

X ′

i = Xi(xo0
) ∩Xi(xT)

Algorithm 3.2 Computes Xi(xo0
).

Inputs: G(i), X i
pbad, SPEC

Xi(xo0
)← {xo0

}
for all (x′, u, x′′) ∈ Xi(xo0

)× Σi × (X −Xi
pbad)

do

Xi(xo0
)← Xi(xo0

) ∪ {x′′}
end for

Output: Xi(xo0
)

Algorithm 3.3 Computes Xi(xT).
Inputs: G(i), X i

pbad}, SPEC

Xi(xT)← {xT }
for all (x′, u, x′′) ∈ (X −Xi

pbad)× Σi ×Xi(xT)

do

Xi(xT)← Xi(xT) ∪ {x′}
end for

Output: Xi(xT)

Now, some of these trajectories may not be safe,
i.e., for some x ∈ X ′

i, there may exist an uncon-
trollable u ∈ Σuci

such that δi(x, u) 6∈ X ′

i, so we
must exclude these states.

Algorithm 3.4 Computes the X ′′

i : states of
safe trajectories from xoi

to xT .
Inputs: G(i), X ′

i.
Xunsafe ← ∅
for all (x′, u, x′′) such that
(x′, u, x′′) ∈ (X ′

i −Xunsafe)× ΣU × ((X −X ′

i)
∪Xunsafe) do

Xunsafe ← Xunsafe ∪ {x
′}

end for

Output: X ′′

i ← X ′

i −Xunsafe

It is clear that if xo ∈ Xunsafe or xT ∈ Xunsafe,
there are no safe trajectories from xo to xT . If it is
not the case, we need to modify G(i) to see if there
are trajectories from xoi

to xT going through safe
states only. For each G(i) = (Xi,Σ, δi, xoi

, Xmi
)

we form G′(i) as follows:

G′(i) = (X ′′

i ,Σ, δ|X′′

i

, xoi
, Xmi

)

and do over Algorithms 3.2 and 3.3 with input
G′(i) to get new X

safe
i (xoi

) and X
safe
i (xT).

Now we are ready to define S(i):

S(i)[x] = Σuci
∪

{a ∈ Σci
, s.t. δi(x, a) ∈ X

safe
i (xo0

)∩X
safe
i (xT)}.

Note that when xT 6∈ Xi, or when X
safe
i (xo0

) ∩

X
safe
i (xT) = ∅, we just wait, i.e., disable every-

thing we can, until the logic of the plant changes
(in which case, there is a possibility that for
some m > i the plant has evolved so that G(m)
will lead to X ′′

m 6= ∅). Since each G(i) satisfies
(∅, ∅, ∅, Xbad), we will never visit a potentially bad
state by uncontrollable string.

Next, we show how the general SPEC =
{xI , xT , Xpc, Xbad} can be represented as a se-
quence of specifications from class K1.

Since we are considering the case where the ini-
tial and terminal states are singletons ({xI} and
{xT }), we can represent any SPEC as a pair
{Xpc, Xbad} with the singletons {xI} and {xT }
included in the Xpc as the first and the last state,
respectively.

In (Romanovski and Caines, 2002) it was proven
that the automaton G satisfies the specification
SPEC = {Xpc, Xbad} if and only if

SPEC0 = {< xI >,Xbad ∪Xpc − {xI}}

is satisfied by

G0 = (X,Σ, δ, xo, xI);

and

SPECj = {< xj >,Xbad ∪Xpc − {xj}}

is satisfied by

Gj = (X,Σ, δ, xj−1, xj), j = 1, . . . n + 1,

where x0 = xI , xn+1 = xT and n is the number
of ports of call. In fact, since by the construction
of Gj the initial state of the current specification
is xj−1, we can return to a 4-tuple representation
of SPECj as {∅, xj , ∅, Xbad ∪Xpc−{xj−1, xj}} ∈
K1. That allows us to formalize the scheme that
synthesizes S(i) for SPEC = {Xpc, Xbad} as
follows:

(1) For each SPECj ∈ K1 we synthesize Sj(i)
that realizes Li(SPECj) for G(i).

(2) Then,
S(0)[xo0

] = S0(0),

and for each i = 1, 2, 3 . . ., 0 ≤ j ≤ n + 1

S(i)[x] =







Sj(i), until x 6= xj

Sj+1(i), if x = xj

Σuci
if x = xT

3. EXAMPLE

This example is adapted from (Rudie et al., 1994).
Consider a production line which consists of a
conveyer belt and a series of identical machines
that work in parallel to process video cassettes.
Each machine is designed to wind a recorded tape

ENDs
4

s
3

s
2

s
1

s
0

M
1

M
2 M

3

a
3

a
2a

1
a

SRC

t t t t t
s

n+1

M
n

a
n

. . .

. . .

Fig. 2. Belt and N machines

onto empty cassettes. Cassettes are to be taken
from the belt located above the machines, and
there is a special machine that is responsible for
placing empty cassettes (one at a time) on the
conveyer belt. A detailed description of the line
can be found in (Rudie et al., 1994).

We assume that the maximum number of cassettes
that can be in any machine at once is 3. Also, We
define the following time constants. Let Ts be the
time it takes for a video cassette to reach the first
machine and Tb the time it takes for a cassette to
travel from one machine to the next. As in (Rudie
et al., 1994), Ts = 10 seconds and Tb = 5 seconds.
The minimum processing time, Tp, is equal to
25 seconds. We model a basic time unit as an
uncontrollable event t with the assumptions that
Ts = 2t and Tb = t.

The model of the conveyer belt with N machines
is given in Figure 2. In this figure, controllable
event a denotes a cassette being dropped on the
conveyer belt and each controllable event ai de-
notes the machine Mi grabbing a cassette from the
belt above the machine. The belt can be modelled
by an automaton, and state of this automaton
can be completely described by a binary string
[s0, s1, . . . , sn+1], where si ∈ {0, 1}, si = 1 when
there is a cassette in the spot si on the belt and
si = 0 otherwise. There is also a special state
called “END”. Transition function δbelt is defined
as follows:

(1) First,

δbelt([s0, s1, . . . , sn+1], t) =
{

[s′0, s
′

1, . . . , s
′

n+1] if sn+1 6= 1,
END otherwise

where s′0 = 0, s′i = si−1.
(2) Further, an event ai, i = 1, . . . N , is defined

whenever si−1 = 1 and
δbelt([s0, s1, . . . , si−2, 1, si, . . . , sn+1], ai) =
[s0, s1, . . . , si−2, 0, si, . . . , sn+1].

(3) Finally, event a is defined whenever s0 = 0
and δbelt([0, s1, . . . , sn+1], a) = [1, s1, . . . , sn+1].

The automaton modelling machine Mi is given
in Figure 3. Each state in this automaton corre-
sponds to the number of cassettes currently in the
machine. The uncontrollable event bi represents
the end of the processing and must occur after Tp

or more time units when the machine is in state
1, 2 or 3.

3 2 1 0
a

i
a

i
a

i

b
i

b
i

b
i

Fig. 3. Machine Mi

Following (Rudie et al., 1994), we need to ensure
that (i) no machine will ever be idle for lack of
empty cassettes to process, (ii) no input stack will
exceed its capacity of three cassettes, and (iii)
no cassette will go beyond the last machine in
the row without being grabbed from the overhead
conveyor belt.

For N = 2 this problem was solved in (Rudie et
al., 1994). Here we denote by An the automaton
that represents the production line with n ma-
chines processing the cassettes and consider the
above specifications for a set of finite deterministic
automata {A2, . . . An . . .}. The change of a model
from Ai to Aj can be caused by various reasons
(e.g., by adding one or more new machines, from
the breakdown of a working machine, and so on).

We model the first and the third specifications
as state trajectory specifications for the belt
and for each machine Mi respectively, namely,
SPECbelt = {∅, ∅, ∅, Xbelt

bad }, where Xbelt
bad =

{END}, and SPECMi
= {∅, ∅, ∅, XMi

bad}, where

XMi

bad = {0}. The second specification is modelled
by construction of the automata for Mi, namely,
there is no transition ai from state 3.

Here, due to the actual physical implementation
of controlled events a and ai, we consider them to
be not only controllable, but forcible (see (Rudie
et al., 1994)), that is, it is possible to force the
occurrence of events a or ai before the next
occurrence of t or bi. Without this assumption
our specifications would be impossible to realize,
since there is a string of uncontrollable events that
leads to a bad state from the initial state for each
machine as well as for the belt.

It is shown in (Rudie et al., 1994) that when
N = 5 the number of states in the automaton
representing the whole system could be over 319
million. Clearly, it is impossible to compute a
supervisor directly each time a new machine is
added to the system, for example. However, due to
the nature of our specification, the supervisor can
appear as a set of supervisors for each machine,
which command, for each state of the belt, for
ai to be disabled or forced. For example, for the
last machine, MN , the event aN must be forced
whenever sN+1 = 1. We will explain how the
supervisor for the Ai can be used for Ai+1, that
is, when a new machine is added.

Let Sold
i be a supervisor for machine Mi in an au-

tomaton AN , Sold
0 be a supervisor for the machine

that controls the cassette being put on the belt.
Suppose that a new machine M ′ is added between

machines Mj and Mj+1 in AN . Then, for AN+1,
i = 2, . . . , N + 1,

Snew
i =

{

Sold
i if i > j,

Sold
i−1 if i ≤ j.

That is, if the machine appeared in a row before
Mi, Snew

i disables or forces ai for any string
[s0, s1, . . . , sn+2] if and only if ai was disabled
or, respectively, forced by Sold

i for the string
[s′0, s

′

1, . . . , s
′

n+1], where s′i = si+1, i = 0, . . . , n.
And if the new machine appeared in a row after
(or at the place of) Mi, Snew

i disables or forces
ai for any string [s0, s1, . . . , sn+2] if and only if
ai was disabled or, respectively, forced by Sold

i−1

for the string [s′0, s
′

1, . . . , s
′

n+1], where s′i = si+1,
i = 0, . . . , n.

To see this, it is enough to show that a decision
of forcing or disabling each ai at the string (belt’s
state) [s′0, s

′

1, . . . , s
′

n+1], where the information for
how many units of time the cassette currently
being processed in each machine is given, depends
only on the position of Mi in the row; namely,
we disable ai if and only if there is a machine in
a row after Mi, say, Mi+k that would lead to a
state “0” after kt seconds if we would force ai.
For example, when N = 2, at the string 1010,
when in machine M2 there is only one cassette
processed for 4t seconds, we need to disable a1,
as it was computed in (Rudie et al., 1994), since
otherwise it is possible that M2 finishes processing
the cassette and there is no cassette on the belt
to grab, so M2 may enter state “0”. Similarly, we
force the event ai only if there is a possibility
of that machine Mi reaching the state “0”, or
there is a possibility that this cassette could not
be grabbed by any machine further in the row
since they all packed, so the belt reaches the
state “END”. But in both cases, if any of these
possibilities exist at the string [s′0, s

′

1, . . . , s
′

n+1] for
machine Mi, then this possibility will remain the
same for a new string [s0, s1, . . . , sn+2], since it is
obtained from the old string by adding 0 or 1 at
the beginning! Thus, for example, if new machine
Mj is added between M1 and M2 in A2, we need
to disable aj at strings 01010 and 11010 by the
same reasons we disabled a1 in A2. We conclude
that we leave the supervisor for Mi unchanged if
the new machine is added at the jth place in the
row and j < i, and we use the old supervisor for
Mi−1 for each Mi where i = 1, . . . , j.

Thus, when a new machine is added, we need
to recompute only S0 and S1, and use the old
supervisors for the rest of the machines by the
scheme described above.

4. CONCLUSIONS

A new scheme is presented that allows us to com-
pute on-line supervisors for state trajectory spec-

ifications. This approach is especially useful when
it is impossible to form a union of time-varying
automata. In future work, the mechanisms for
the plant logic evolution will be formalized to
consider methods of constructing “hierarchical”
supervisors and to invoke new methods for model-
predictive control.

REFERENCES

Cassandras, C.G. and S. Lafortune (1999). Intro-
duction to Discrete Event Systems. Kluwer
Academic Publishers. New York.

Chung, S.L., S. Lafortune and F. Lin (1992). Lim-
ited lookahead policies in supervisory control
of discrete event systems. IEEE Trans. on
Automatic Control 37, 1921–1935.

Cieslak, R., C. Desclaux, A.Fawaz and P.Varaiya
(1988). Supervisory control of discrete event
processes with partial observation. IEEE
Trans. on Automatic Control 33, 249–260.

Hubbard, P. and P.E. Caines (1999). Initial in-
vestigations of hierarchical supervisory con-
trol for multi-agent systems. Proceedings of
the 38th IEEE CDC 3, 2218–2223.

Lin, F. (1993). Robust and adaptive supervi-
sory control of discrete event systems. IEEE
Trans. on Automatic Control 38, 1848–1852.

Ramadge, P.J. and W.M. Wonham (1987). Su-
pervisory control of a class of discrete event
processes. SIAM J. Control Optimization
25, 206–230.

Romanovski, I. and P.E. Caines (2001). On vector
trajectory specifications for multi-agent prod-
uct systems. Proceedings of the 40th IEEE
CDC 1, 2333–2334.

Romanovski, I. and P.E. Caines (2002). Multi-
agent products and trajectory specifications
in supervisory control theory. Proceedings of
the 2002 ACC 1, 722–723.

Rudie, K. and W.M. Wonham (1992). Think glob-
ally, act locally: Decentralized supervisory
control. IEEE Trans. on Automatic Control
37, 1692–1708.

Rudie, K., N. Shimkin and S.D. O’Young (1994).
Timed discrete-event systems: A manufac-
turing application. Proceedings of the CISS
1, 374–381.

Shen, G. and P. E. Caines (2002). Hierarchically
accelerated dynamic programming for finite
state machines. IEEE Trans. on Automatic
Control 47, 271–283.

Wonham, W.M. (2000). Notes on control of dis-
crete event systems,
http://www.control.utoronto.ca/cgi-
bin/dldes.cgi.

Zhong, H. and W.M. Wonham (1990). On the
consistency of hierarchical supervision in
discrete-event systems. IEEE Trans. on Au-
tomatic Control 35, 1125–1134.

