

PERFORMANCE ANALYSIS OF THE CONFIDENTIALITY SECURITY SERVICE IN CAN

Miguel León Chávez1, and Francisco Rodríguez Henríquez2

1Benemérita Universidad Autónoma de Puebla
Facultad de Ciencias de la Computación

14 Sur y Av. San Claudio, CP 72570, Puebla, México
Tel. (52) 222 229 55 00 ext. 7213 Fax (52) 222 229 56 72

E-mail: mleon@cs.buap.mx
2CINVESTAV-IPN

Sección de Computación
Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco

México, D.F. 07300
Tel: (52) 52 55 5747 3800 ext. 6570 Fax: (52) 555 747-7002

E-mail: francisco@cs.cinvestav.mx

Abstract: This paper addresses the security service infrastructure included in the
Controller Area Network (CAN), proposing the incorporation of the confidentiality
service for that kind of network. Regarding security currently CAN only supports a
special kind of service, namely safety, of data transfers for error detection, signaling, and
self checking. Nevertheless, as CAN has become more diverse, complex and integrated
into other kind of networks, it must provide higher security services, such as
confidentiality, quite especially for its bus which is the most attack-prone point on CAN.
Taking into account, on one hand, the security services defined by ISO and, on the other
hand, the security services defined by CAN, this paper proposes to incorporate the
confidentiality service to CAN based on a lightweight symmetric stream cipher algorithm,
such as RC4 or A5/1 GSM. Finally, this paper presents the performance analysis of both
algorithms, and recommends using RC4 because it consumes much less clock cycles that
A5/1 for encrypting the CAN data frames. Copyright © 2005 IFAC

Keywords: Fieldbus, Security.

1. INTRODUCTION

Controller Area Network (CAN) (Bosch, 1992; ISO
11898) is a serial communication protocol, which
supports distributed real-time control, and it is used
to connect engine control units, sensors, anti-skid-
systems, etc. in automotive electronics, for example.
This network defines two OSI layers, the physical,
and the data link (Logical Link Control and Medium
Access Control) layers. At the higher layers there are
several approaches such as CAL, CANOpen,
DeviceNet, SDS, CANKingdom, and TT-CAN.

Up to now the security in CAN has only considered
security for data transfer (i.e. error detection, error
signaling, and self-checking). However, nowadays
there are some legitimate security concerns about the
possibility of non-authorized gaining access to the
common communication channel in order to launch
passive/active attacks.
As distributed systems based on CAN become more
and more diverse, complex and integrated into other
kind of systems, the probability of potential attacks
to the security of the network increases in the same
rate. Hence, the communication protocol must be

updated and enhanced in order to prevent/thwart that
kind of security attacks.
This paper discusses the security in CAN according
to the security services defined by ISO. The paper
proposes then to incorporate the confidentiality
service into the CAN protocol based on a lightweight
cryptographic stream cipher, such as RC4 or A5/1
GSM. Finally, this paper presents the performance
analysis of both stream cipher algorithms for
different data sizes in a CAN data frame.
The remaining part of this paper is organized as
follows: Section 2 presents and discusses ISO
security services with regard to CAN; section 3
presents the CAN protocol; section 4 proposes the
confidentiality service for the CAN protocol, and
presents some theoretical results using RC4 and
A5/1. Finally some future work directions and
conclusions are drawn in section 5.

2. ISO SECURITY SERVICES

The Security Architecture of the OSI Reference
Model (ISO 7498-2) considers five main classes of
security services: authentication, access control,
confidentiality, integrity and non-repudiation. These
services are defined as follows: The authentication
service verifies the supposed identity of a user or a
system. The access control service protects the
system resources against non-authorized users. The
confidentiality service protects the data against non-
authorized revelations. Confidentiality has an
essential role on cryptographic systems. The integrity
service protects the data against non-authorized
modifications, insertions or deletions. The non-
repudiation service provides certain protection
against the sender of a message that refuses to be it,
or against the receiver of a message that denies to
have received it.
All those security services are not very likely to be
useful on the context of CAN (Morris and Koopman
2003; León and Rodríguez, 2004) because of the
following considerations. The authentication, of both
nodes and messages, and the non-repudiation
services are not needed in CAN because the CAN
nodes do not make use of any information about the
network configuration, e.g. node addresses. In CAN,
all the messages have been assigned a unique
identifier which is used as a static priority for bus
access. The identifier does not indicate the
destination of the message, but describes the
meaning of the data, so that all the nodes in the
network are able to decide by message filtering
whether the data is to be acted upon by them or not.
As a consequence of the concept of message filtering
any number of nodes can receive and simultaneously
act upon the same message. Message filtering is
based upon the whole identifier, although optional
mask registers may be used to select groups of
identifiers to be mapped into the attached receive
buffers.
The access control service may be implemented at
the higher layers protocols (e.g. application) (León
and Rodríguez, 2004). As it was mentioned before, at
network configuration time, all the messages have
been assigned a unique identifier. Therefore, the

higher layer protocols based on CAN should provide
this service by using some mechanisms of user
identification, such as logging and password, to
avoid access to the CAN based system configuration
from non-authorized human operators.
CAN provides users with a special kind of service for
data transfer, namely safety service, which includes
the following procedures: error detection, error
signaling, and self-checking.
For error detecting the following measures are taken
into account: Monitoring (transmitters compare the
bit levels to be transmitted with the bit levels
detected on the bus), Cyclic Redundancy Check
(CRC), Bit stuffing, and Message Frame Check.
Nevertheless, these procedures do not provide the
integrity security service, which can be achieved by
using cryptographic mechanisms such as one-way
hash functions. Those functions accept a variable-
size message as input and produce a fixed-size code,
called the hash code. The hash code is a function of
all the bits of the message and provides an error
detection capability. A change to any bit or bits in the
message results in a change on the resulting hash
code.
Finally, CAN does not provide the confidentiality
service. All the data transfers are made in plaintext.
Therefore, in order to avoid possible passive and
active attacks from intruders that have managed to
gain access to the bus, CAN must instrument a data-
confidentiality service via feasible
encryption/decryption schemes.
To provide confidentiality, nodes may encrypt their
contents using a random session key and a symmetric
crypto-algorithm specially tailored for constrained
environments, such as those found in CAN where the
size of the messages may be from 0 to 8 bytes.
In general, strong public key cryptography is an
expensive fancy solution for constrained
environments. If for a given CAN based system,
public key cryptography solutions become too
expensive, we can still design limited security
schemes for CAN at a cheaper price. For instance,
we can use a security scheme based on a one-way
hash function optimized for heavily constrained
environments (Sarma, et. al., 2002).
Encryption of the hashed message can then be
achieved by using lightweight symmetric stream
ciphers. In this paper we propose the usage of two
lightweight stream ciphers, such as RC4 and A5/1
GSM, as the main building block needed to implant
the confidentiality service for the CAN protocol.

3. CAN PROTOCOL

CAN defines the CSMA/BA (Carrier Sense Multiple
Access with Bitwise Arbitration) protocol at the
MAC sub-layer. The information on the bus is sent in
fixed format messages of different but limited length
(0-8 byes). As it was mentioned in section 2, each
message has assigned a unique identifier which is
used as its assigned priority. The length of the
identifier is equal to 11 bits in the standard format
and is equal to 29 bits in the extended format. At
network operation time, when the bus is detected as
idle, each CAN node begins to transmit its highest

priority message whilst monitoring the bus. The most
significant bit (MSB) of the identifier field is
transmitted first. The message is coded so that if a
node transmits a recessive bit (logical 1) but
monitors a dominant bit (logical 0) then a collision is
detected. The node knows that its message is not the
highest priority message in the network, stops
transmitting and waits for the bus to become idle.
Meanwhile, the node becomes a receiver of the
message. Each receiver node performs the message
filtering to determine whether the data are relevant.
If so, the data are accepted, otherwise are ignored. If
there is no collision in the least significant bit (LSB),
the node transmits the body of the message.
An analysis that limits the response time of all the
CAN messages including the lowest priority message
is presented in (Tindell, et. al., 1995). Other analysis
providing an analytical method for computing the
worst case deadline failure probability is presented in
(Navet, et. al., 2000). These analyses allow limiting
the end-to-end delay (León and Thomesse, 2000).
The confidentiality service can be implemented in all
the message transfers. However the encryption/
decryption process will affect the end-to-end delay.
As one first step to implement the confidentiality
service in the CAN protocol, this paper analyses the
computing cost for encrypting several CAN data
frames.

4. CONFIDENTIALITY SERVICE FOR CAN

This section presents RC4 and A5/1 GSM, as well as
their performance analysis for encrypting the data
field of the CAN frame.

4.1 RC4

RC4 is a symmetric-key stream cipher that was
developed in 1987 and kept as a trade secret by RSA
Data Security, Inc. In September 1994, the algorithm
was anonymously posted on the Internet, and since
then it has been studied and used widely in academic
circles and is now available for public analysis. RC4
is commonly used as the default cipher for SSL/TLS
(Secure Sockets Layer/Transport Layer Security)
connections.
RC4 uses a 2048-bit key-length needed to initialize a
256-byte state table, called the S-box. If a given
application wishes to use a shorter key, then that
shorter key is repeated as many times as needed to
fill the 2048-bit key. Typically, RC4 is used in a
mode where 16-byte (128-bit) keys are repeated
sixteen times.
Once the S-box is initialized with the key, the RC4
algorithm enters in a loop that updates the S-box and
generates a byte of pseudo-random keystream. That
pseudo-random keystream is XOR-ed with the
plaintext message to produce the ciphertext.
Thus, the RC4 algorithm can be broken into two
phases: initialization and operation. In the first phase
the 256-byte state table S is populated using the key
K as a seed. Once the state table is setup, it continues
to be modified in a regular pattern as data is
encrypted. In the second phase the algorithm outputs
a ciphertext which is the input message XOR-ed byte

by byte with the values of the pseudo-random
keystream. As long as the same initial S-box is used,
both of them encryption and decryption processes are
completely symmetric.

4.2 A5/1 GSM

A5 is a stream cipher algorithm used by GSM to
protect the over-the-air privacy of telephone
conversations. The original algorithm was renamed
A5/1 and there exist several versions: A5/0 (no
encryption at all), A5/1, A5/2 (weaker than A5/1),
and A5/3 (the newest version based on Kasumi block
cipher).
The approximate design of A5/1 was leaked in 1994,
and its exact design was reverse engineered in 1999.
A GSM conversation is sent as a sequence of frames
every 4.6 milliseconds. Each frame contains 114 bits
representing the digitized A to B communication.
Each conversation can be encrypted by a new session
key K. For each frame, K is mixed with a publicly
known frame counter Fn, and the result serves as the
initial state of a generator which produces 228
pseudo random bits, which are XOR-ed by the two
parties with the 114+114 bits of the plaintext to
produce the ciphertext (Biryukov, et. al., 2000).
A5/1 uses three linear feedback shift registers, which
are clocked in a stop/go fashion using the following
majority rule: Each register has a single clocking tap;
each clock cycle, the majority function of the
clocking taps is calculated and only those registers
whose clocking taps agree with the majority bit are
actually clocked.
In the first step, the registers are zeroed and then
clocked for 64 cycles (ignoring the stop/go control).
During this period each bit of K (from LSB to MSB)
is XOR-ed in parallel into the LSB’s of the three
registers.
In the second step, the registers are clocked for 22
additional cycles (ignoring the stop/go control).
During this period the successive bits of Fn (from
LSB to MSB) are again XOR-ed in parallel into the
LSB’s of the three registers.
In the third step, the registers are clocked for 100
additional clock cycles with the stop/go clock control
but without producing any output.
In the fourth step, the registers are clocked for 228
additional clock cycles with the stop/go clock control
in order to produce the 228 output bits. At each clock
cycle, one output bit is produced as the XOR of the
MSB’s of the three registers.

4.3 Performance analysis of RC4 and A5/1 in CAN

The RC4 and A5/1 GSM algorithms have been
programmed in C code, and then we have obtained
the assembler code for the Intel MCS®96
microcontroller family, such as the 87C196CB with
integrated CAN 2.0 serial interface, and up to
16MHz operation.
Then the time required for encrypting the data field
of the CAN frames has been calculated, with a key
size of 8 bytes and with the identifier field as the
frame counter Fn. This calculation has been made
adding the number of clock cycles of each assembler

instruction during the phases/steps of both algorithms
for different data size (1-8 bytes). Table 1 shows
these calculations.

Table 1 Clock cycles required for executing the RC4

and A5/1 algorithms in assembler code of the
87C196CB.

Bytes RC4 A5/1
1 120,942 1,026,284
2 121,124 1,064,149
3 121,646 1,100,152
4 122,256 1,138,002
5 122,898 1,173,074
6 123,556 1,210,949
7 124,226 1,246,021
8 124,904 1,282,983

These clock cycles can be multiplied by the system
clock frequency to obtain the time required for
encrypting/decrypting the data field of the CAN
frame. For example, if the clock frequency is 16
MHz then the encryption time, for the RC4
algorithm, goes from 7.5 ms to 7.8 ms for 1 byte to 8
bytes, respectively, and the encryption time for the
A5/1 algorithm goes from 64.1 ms to 80.1 ms for 1
byte to 8 bytes, respectively.
The results shown in Table 1 are due to different
facts:
1. Software/hardware implementation
As it was mentioned before both algorithms have
been programmed in C code.
However, A5/1 GSM was specifically designed for
an efficient implementation in hardware, since it uses
three linear feedback shift registers and four XOR
gates.
On the other hand, RC4 is based on the use of a
random permutation, and the cipher can be expected
to run very quickly in software (Stallings, 2003).
2. Initialization phase
Most of the clock cycles for ciphering the data field
of the CAN frames are consumed during the
initialization phase. For example, RC4 takes in this
phase from 99.28% to 95.49% for 1 byte to 8 bytes,
respectively.
For the A5/1 algorithm, this phase (steps 1, 2 and 3)
takes from 99.61% for 1 byte to 97.56% for 8 bytes.
The initialization phase is required by RC4 in each
encryption because it is strongly recommended that
no two messages are encrypted with the same key.
Otherwise the message can usually be broken. If the
two encrypted messages are XOR-ed together, the
result is the XOR of the original messages (Dawson
and Nielsen, 1996).
Due to the fact that the overhead introduced by the
initialization phase is too large for both algorithms,
we propose to include the concept of a session key.
This way, we propose to open a new session (and
thus to generate a new key) each time that the CAN
protocol is initialized by the application. As long as
the session is still active that same session key will
be used to encrypt all CAN frames.

This feature will require a specific protocol among
the parties involved in order to solve issues related to
key generation and management. Such issues
include: key generation and renovation; opening and
closing sessions, etc.

5. CONCLUSION

This paper has discussed the OSI security services
regarding the Controller Area Network protocol. The
paper has shown that some security services are not
needed in the context of CAN, such as
authentication, and non-repudiation.
The access control service may be implemented at
the upper layers.
Even though CAN provides users with a special kind
of safety service for data transfers, this paper
recommends the usage of cryptography mechanisms
to provide the integrity service, such as hash
functions.
Finally, this paper has presented the performance
analysis of two lightweight cryptographic stream
ciphers, RC4 and A5/1 GSM, in order to implement
the confidentiality service into the CAN protocol.
The RC4 and A5/1 algorithms have been
programmed in C code, and translated to assembler
code for the Intel MCS®96 microcontroller family.
In this way, we have computed the clock cycles
required for encrypting/decrypting the data field of
the CAN frames, with this result it is possible to
compute the time required for encryption/decryption
according to the clock frequency of the
microcontroller been used.
It can be noted that the encryption/decryption process
hardly affect the end-to-end delay of the CAN
protocol. Nevertheless, in any application there must
exist a tradeoff between real-time and security
constraints on the network, and the developer must
decide what level of tradeoff is required by the
application.
On the other hand, RC4 has the characteristic that no
two messages must be encrypted with the same key.
However we may relax this condition due to the
already mentioned huge overhead associated to the
generation of new keys each time that a frame has to
be transmitted. Taking this design decision will
imply the definition of a specific session protocol and
this is our future research work, as well as the
performance analysis using the A5/3 cipher.

ACKNOWLEDGMENTS

This research project has been partially supported by
the CONACyT project 45306.

REFERENCES

Biryukov, A., A. Shamir and D. Wagner (2000). Real

Time Cryptanalysis of A5/1 on a PC. In Fast
Software Encryption Workshop, April 10-12,
New York City.

Bosch, R. GmbH. (1992). CAN Protocol
Specification V2.0 (A, B).

Dawson, E., and L. Nielsen (1996). Automated
Cryptanalysis of XOR Plaintext Strings.
Criptologia, vol. XX, No. 2.

ISO 7498-2 (1989). International Organization for
Standardization. Information processing
systems-Open Systems Interconnection-Basic
Reference Model - Part 2: Security Architecture.

ISO 11898 (1992). International Organization for
Standardization. Road Vehicles-Interchange of
Digital Information-Controller Area Network
(CAN) for High Speed Communication.

León, M., and J.P. Thomesse (2000). Fieldbuses and
Real-Time MAC Protocols. In 4th IFAC
International Symposium on Intelligent
Components and Instruments (SICICA’2000),
Buenos Aires, Argentina, pp 51-56.

León, M., and F. Rodríguez (2004). SDL
Specification of a Security Architecture for the
IEC 61158. In 11th IFAC Symposium on
Information Control Problems in Manufacturing
(INCOM’2004), Salvador da Bahia, Brazil, April
5-7.

Morris, J., and P. Koopman (2003). Critical Message
Integrity over Shared Network. In 5th IFAC
Conference on Fieldbus Systems and their
Applications, Aveiro, Portugal, July 7-8, pp 145-
151.

Navet, N., Y-Q. Song, and F. Simonot (2000).
Worst-case deadline failure probability in real-
time applications distributed over controller area
network. Journal of Systems Architecture, vol.
46, pp 607-617.

Sarma, S.E., S.A. Weis and D.W. Engels (2002).
Low Cost RFID and the Electronic Product
Code. In Cryptographic Hardware and
Embedded Systems-CHES, Lecture Notes in
Computer Sciences, Springer-Verlag,
Heiselberg, Germany.

Stallings, W. Cryptography and Network Security:
Principles and Practice. Prentice Hall, Third Ed.,
2003.

Tindell, K., A. Burns and A. Wellings (1995).
Calculating Controller Area Network (CAN)
Message Response Times. Control Engineering
Practice, vol. 3, No. 8, pp 1163-1169.

