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Abstract: This paper addresses the security service infrastructure included in the 
Controller Area Network (CAN), proposing the incorporation of the confidentiality 
service for that kind of network. Regarding security currently CAN only supports a 
special kind of service, namely safety, of data transfers for error detection, signaling, and 
self checking. Nevertheless, as CAN has become more diverse, complex and integrated 
into other kind of networks, it must provide higher security services, such as 
confidentiality, quite especially for its bus which is the most attack-prone point on CAN. 
Taking into account, on one hand, the security services defined by ISO and, on the other 
hand, the security services defined by CAN, this paper proposes to incorporate the 
confidentiality service to CAN based on a lightweight symmetric stream cipher algorithm, 
such as RC4 or A5/1 GSM. Finally, this paper presents the performance analysis of both 
algorithms, and recommends using RC4 because it consumes much less clock cycles that 
A5/1 for encrypting the CAN data frames. Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
Controller Area Network (CAN) (Bosch, 1992; ISO 
11898) is a serial communication protocol, which 
supports distributed real-time control, and it is used 
to connect engine control units, sensors, anti-skid-
systems, etc. in automotive electronics, for example. 
This network defines two OSI layers, the physical, 
and the data link (Logical Link Control and Medium 
Access Control) layers. At the higher layers there are 
several approaches such as CAL, CANOpen, 
DeviceNet, SDS, CANKingdom, and TT-CAN. 

Up to now the security in CAN has only considered 
security for data transfer (i.e. error detection, error 
signaling, and self-checking). However, nowadays 
there are some legitimate security concerns about the 
possibility of non-authorized gaining access to the 
common communication channel in order to launch 
passive/active attacks. 
As distributed systems based on CAN become more 
and more diverse, complex and integrated into other 
kind of systems, the probability of potential attacks 
to the security of the network increases in the same 
rate. Hence, the communication protocol must be 



     

updated and enhanced in order to prevent/thwart that 
kind of security attacks. 
This paper discusses the security in CAN according 
to the security services defined by ISO. The paper 
proposes then to incorporate the confidentiality 
service into the CAN protocol based on a lightweight 
cryptographic stream cipher, such as RC4 or A5/1 
GSM. Finally, this paper presents the performance 
analysis of both stream cipher algorithms for 
different data sizes in a CAN data frame. 
The remaining part of this paper is organized as 
follows: Section 2 presents and discusses ISO 
security services with regard to CAN; section 3 
presents the CAN protocol; section 4 proposes the 
confidentiality service for the CAN protocol, and 
presents some theoretical results using RC4 and 
A5/1. Finally some future work directions and 
conclusions are drawn in section 5. 
 

2. ISO SECURITY SERVICES  
 
The Security Architecture of the OSI Reference 
Model (ISO 7498-2) considers five main classes of 
security services: authentication, access control, 
confidentiality, integrity and non-repudiation. These 
services are defined as follows: The authentication 
service verifies the supposed identity of a user or a 
system. The access control service protects the 
system resources against non-authorized users. The 
confidentiality service protects the data against non-
authorized revelations. Confidentiality has an 
essential role on cryptographic systems. The integrity 
service protects the data against non-authorized 
modifications, insertions or deletions. The non-
repudiation service provides certain protection 
against the sender of a message that refuses to be it, 
or against the receiver of a message that denies to 
have received it. 
All those security services are not very likely to be 
useful on the context of CAN (Morris and Koopman 
2003; León and Rodríguez, 2004) because of the 
following considerations. The authentication, of both 
nodes and messages, and the non-repudiation 
services are not needed in CAN because the CAN 
nodes do not make use of any information about the 
network configuration, e.g. node addresses. In CAN, 
all the messages have been assigned a unique 
identifier which is used as a static priority for bus 
access. The identifier does not indicate the 
destination of the message, but describes the 
meaning of the data, so that all the nodes in the 
network are able to decide by message filtering 
whether the data is to be acted upon by them or not. 
As a consequence of the concept of message filtering 
any number of nodes can receive and simultaneously 
act upon the same message. Message filtering is 
based upon the whole identifier, although optional 
mask registers may be used to select groups of 
identifiers to be mapped into the attached receive 
buffers.  
The access control service may be implemented at 
the higher layers protocols (e.g. application) (León 
and Rodríguez, 2004). As it was mentioned before, at 
network configuration time, all the messages have 
been assigned a unique identifier. Therefore, the 

higher layer protocols based on CAN should provide 
this service by using some mechanisms of user 
identification, such as logging and password, to 
avoid access to the CAN based system configuration 
from non-authorized human operators.  
CAN provides users with a special kind of service for 
data transfer, namely safety service, which includes 
the following procedures: error detection, error 
signaling, and self-checking. 
For error detecting the following measures are taken 
into account: Monitoring (transmitters compare the 
bit levels to be transmitted with the bit levels 
detected on the bus), Cyclic Redundancy Check 
(CRC), Bit stuffing, and Message Frame Check. 
Nevertheless, these procedures do not provide the 
integrity security service, which can be achieved by 
using cryptographic mechanisms such as one-way 
hash functions. Those functions accept a variable-
size message as input and produce a fixed-size code, 
called the hash code. The hash code is a function of 
all the bits of the message and provides an error 
detection capability. A change to any bit or bits in the 
message results in a change on the resulting hash 
code. 
Finally, CAN does not provide the confidentiality 
service. All the data transfers are made in plaintext. 
Therefore, in order to avoid possible passive and 
active attacks from intruders that have managed to 
gain access to the bus, CAN must instrument a data-
confidentiality service via feasible 
encryption/decryption schemes. 
To provide confidentiality, nodes may encrypt their 
contents using a random session key and a symmetric 
crypto-algorithm specially tailored for constrained 
environments, such as those found in CAN where the 
size of the messages may be from 0 to 8 bytes. 
In general, strong public key cryptography is an 
expensive fancy solution for constrained 
environments. If for a given CAN based system, 
public key cryptography solutions become too 
expensive, we can still design limited security 
schemes for CAN at a cheaper price. For instance, 
we can use a security scheme based on a one-way 
hash function optimized for heavily constrained 
environments (Sarma, et. al., 2002).  
Encryption of the hashed message can then be 
achieved by using lightweight symmetric stream 
ciphers. In this paper we propose the usage of two 
lightweight stream ciphers, such as RC4 and A5/1 
GSM, as the main building block needed to implant 
the confidentiality service for the CAN protocol. 
 

3. CAN PROTOCOL 
 

CAN defines the CSMA/BA (Carrier Sense Multiple 
Access with Bitwise Arbitration) protocol at the 
MAC sub-layer. The information on the bus is sent in 
fixed format messages of different but limited length 
(0-8 byes). As it was mentioned in section 2, each 
message has assigned a unique identifier which is 
used as its assigned priority. The length of the 
identifier is equal to 11 bits in the standard format 
and is equal to 29 bits in the extended format. At 
network operation time, when the bus is detected as 
idle, each CAN node begins to transmit its highest 



     

priority message whilst monitoring the bus. The most 
significant bit (MSB) of the identifier field is 
transmitted first. The message is coded so that if a 
node transmits a recessive bit (logical 1) but 
monitors a dominant bit (logical 0) then a collision is 
detected. The node knows that its message is not the 
highest priority message in the network, stops 
transmitting and waits for the bus to become idle. 
Meanwhile, the node becomes a receiver of the 
message. Each receiver node performs the message 
filtering to determine whether the data are relevant. 
If so, the data are accepted, otherwise are ignored. If 
there is no collision in the least significant bit (LSB), 
the node transmits the body of the message. 
An analysis that limits the response time of all the 
CAN messages including the lowest priority message 
is presented in (Tindell, et. al., 1995). Other analysis 
providing an analytical method for computing the 
worst case deadline failure probability is presented in 
(Navet, et. al., 2000). These analyses allow limiting 
the end-to-end delay (León and Thomesse, 2000).  
The confidentiality service can be implemented in all 
the message transfers. However the encryption/ 
decryption process will affect the end-to-end delay. 
As one first step to implement the confidentiality 
service in the CAN protocol, this paper analyses the 
computing cost for encrypting several CAN data 
frames. 
 

4. CONFIDENTIALITY SERVICE FOR CAN  
 
This section presents RC4 and A5/1 GSM, as well as 
their performance analysis for encrypting the data 
field of the CAN frame. 
 
4.1 RC4 
 
RC4 is a symmetric-key stream cipher that was 
developed in 1987 and kept as a trade secret by RSA 
Data Security, Inc. In September 1994, the algorithm 
was anonymously posted on the Internet, and since 
then it has been studied and used widely in academic 
circles and is now available for public analysis. RC4 
is commonly used as the default cipher for SSL/TLS 
(Secure Sockets Layer/Transport Layer Security) 
connections.  
RC4 uses a 2048-bit key-length needed to initialize a 
256-byte state table, called the S-box. If a given 
application wishes to use a shorter key, then that 
shorter key is repeated as many times as needed to 
fill the 2048-bit key. Typically, RC4 is used in a 
mode where 16-byte (128-bit) keys are repeated 
sixteen times. 
Once the S-box is initialized with the key, the RC4 
algorithm enters in a loop that updates the S-box and 
generates a byte of pseudo-random keystream. That 
pseudo-random keystream is XOR-ed with the 
plaintext message to produce the ciphertext. 
Thus, the RC4 algorithm can be broken into two 
phases: initialization and operation. In the first phase 
the 256-byte state table S is populated using the key 
K as a seed. Once the state table is setup, it continues 
to be modified in a regular pattern as data is 
encrypted. In the second phase the algorithm outputs 
a ciphertext which is the input message XOR-ed byte 

by byte with the values of the pseudo-random 
keystream.  As long as the same initial S-box is used, 
both of them encryption and decryption processes are 
completely symmetric.  
 
4.2 A5/1 GSM 
 
A5 is a stream cipher algorithm used by GSM to 
protect the over-the-air privacy of telephone 
conversations. The original algorithm was renamed 
A5/1 and there exist several versions: A5/0 (no 
encryption at all), A5/1, A5/2 (weaker than A5/1), 
and A5/3 (the newest version based on Kasumi block 
cipher).  
The approximate design of A5/1 was leaked in 1994, 
and its exact design was reverse engineered in 1999. 
A GSM conversation is sent as a sequence of frames 
every 4.6 milliseconds. Each frame contains 114 bits 
representing the digitized A to B communication. 
Each conversation can be encrypted by a new session 
key K. For each frame, K is mixed with a publicly 
known frame counter Fn, and the result serves as the 
initial state of a generator which produces 228 
pseudo random bits, which are XOR-ed by the two 
parties with the 114+114 bits of the plaintext to 
produce the ciphertext (Biryukov, et. al., 2000). 
A5/1 uses three linear feedback shift registers, which 
are clocked in a stop/go fashion using the following 
majority rule: Each register has a single clocking tap; 
each clock cycle, the majority function of the 
clocking taps is calculated and only those registers 
whose clocking taps agree with the majority bit are 
actually clocked. 
In the first step, the registers are zeroed and then 
clocked for 64 cycles (ignoring the stop/go control). 
During this period each bit of K (from LSB to MSB) 
is XOR-ed in parallel into the LSB’s of the three 
registers. 
In the second step, the registers are clocked for 22 
additional cycles (ignoring the stop/go control). 
During this period the successive bits of Fn (from 
LSB to MSB) are again XOR-ed in parallel into the 
LSB’s of the three registers.  
In the third step, the registers are clocked for 100 
additional clock cycles with the stop/go clock control 
but without producing any output.  
In the fourth step, the registers are clocked for 228 
additional clock cycles with the stop/go clock control 
in order to produce the 228 output bits. At each clock 
cycle, one output bit is produced as the XOR of the 
MSB’s of the three registers. 
 
4.3 Performance analysis of RC4 and A5/1 in CAN 
 
The RC4 and A5/1 GSM algorithms have been 
programmed in C code, and then we have obtained 
the assembler code for the Intel MCS®96 
microcontroller family, such as the 87C196CB with 
integrated CAN 2.0 serial interface, and up to 
16MHz operation. 
Then the time required for encrypting the data field 
of the CAN frames has been calculated, with a key 
size of 8 bytes and with the identifier field as the 
frame counter Fn. This calculation has been made 
adding the number of clock cycles of each assembler 



     

instruction during the phases/steps of both algorithms 
for different data size (1-8 bytes). Table 1 shows 
these calculations. 
 
Table 1 Clock cycles required for executing the RC4 

and A5/1 algorithms in assembler code of the 
87C196CB. 

 
Bytes RC4  A5/1     
1  120,942  1,026,284   
2  121,124    1,064,149 
3  121,646  1,100,152  
4  122,256  1,138,002 
5  122,898  1,173,074 
6  123,556  1,210,949 
7  124,226  1,246,021 
8  124,904  1,282,983 
  
 
 
These clock cycles can be multiplied by the system 
clock frequency to obtain the time required for 
encrypting/decrypting the data field of the CAN 
frame. For example, if the clock frequency is 16 
MHz then the encryption time, for the RC4 
algorithm, goes from 7.5 ms to 7.8 ms for 1 byte to 8 
bytes, respectively, and the encryption time for the 
A5/1 algorithm goes from 64.1 ms to 80.1 ms for 1 
byte to 8 bytes, respectively.  
The results shown in Table 1 are due to different 
facts: 
1. Software/hardware implementation 
As it was mentioned before both algorithms have 
been programmed in C code.  
However, A5/1 GSM was specifically designed for 
an efficient implementation in hardware, since it uses 
three linear feedback shift registers and four XOR 
gates. 
On the other hand, RC4 is based on the use of a 
random permutation, and the cipher can be expected 
to run very quickly in software (Stallings, 2003). 
2. Initialization phase  
Most of the clock cycles for ciphering the data field 
of the CAN frames are consumed during the 
initialization phase. For example, RC4 takes in this 
phase from 99.28% to 95.49% for 1 byte to 8 bytes, 
respectively.  
For the A5/1 algorithm, this phase (steps 1, 2 and 3) 
takes from 99.61% for 1 byte to 97.56% for 8 bytes. 
The initialization phase is required by RC4 in each 
encryption because it is strongly recommended that 
no two messages are encrypted with the same key. 
Otherwise the message can usually be broken. If the 
two encrypted messages are XOR-ed together, the 
result is the XOR of the original messages (Dawson 
and Nielsen, 1996).  
Due to the fact that the overhead introduced by the 
initialization phase is too large for both algorithms, 
we propose to include the concept of a session key. 
This way, we propose to open a new session (and 
thus to generate a new key) each time that the CAN 
protocol is initialized by the application. As long as 
the session is still active that same session key will 
be used to encrypt all CAN frames.  

This feature will require a specific protocol among 
the parties involved in order to solve issues related to 
key generation and management. Such issues 
include: key generation and renovation; opening and 
closing sessions, etc. 
 
 

5. CONCLUSION  
 
This paper has discussed the OSI security services 
regarding the Controller Area Network protocol. The 
paper has shown that some security services are not 
needed in the context of CAN, such as 
authentication, and non-repudiation.  
The access control service may be implemented at 
the upper layers. 
Even though CAN provides users with a special kind 
of safety service for data transfers, this paper 
recommends the usage of cryptography mechanisms 
to provide the integrity service, such as hash 
functions. 
Finally, this paper has presented the performance 
analysis of two lightweight cryptographic stream 
ciphers, RC4 and A5/1 GSM, in order to implement 
the confidentiality service into the CAN protocol. 
The RC4 and A5/1 algorithms have been 
programmed in C code, and translated to assembler 
code for the Intel MCS®96 microcontroller family. 
In this way, we have computed the clock cycles 
required for encrypting/decrypting the data field of 
the CAN frames, with this result it is possible to 
compute the time required for encryption/decryption 
according to the clock frequency of the 
microcontroller been used. 
It can be noted that the encryption/decryption process 
hardly affect the end-to-end delay of the CAN 
protocol. Nevertheless, in any application there must 
exist a tradeoff between real-time and security 
constraints on the network, and the developer must 
decide what level of tradeoff is required by the 
application. 
On the other hand, RC4 has the characteristic that no 
two messages must be encrypted with the same key. 
However we may relax this condition due to the 
already mentioned huge overhead associated to the 
generation of new keys each time that a frame has to 
be transmitted. Taking this design decision will 
imply the definition of a specific session protocol and 
this is our future research work, as well as the 
performance analysis using the A5/3 cipher. 
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