
DECENTRALIZED CONTROL OF WINDING
SYSTEMS: A HYBRID

EVOLUTIONARY-ALGEBRAIC APPROACH

Adel Farag ∗ Herbert Werner ∗

∗ Hamburg University of Technology

Institute of Control Engineering

Eissendorfer Str. 40, 21073 Hamburg

{a.farag,h.werner}@tu-harburg.de

Abstract: This paper considers the problem of controlling a web transport system,
using a 3-input 3-output nonlinear model that has been extensively validated
against the real plant. There are two difficulties that arise when designing a
controller for this industrial plant. The first one is the wide variation in the
system dynamics due to the variation of radius and inertia of the rollers. Secondly,
the multivariable controller should be decentralized to increase the reliability
of the control loop. An approach for designing decentralized controllers that
satisfy a H2-performance measure and place the closed loop poles in a prescribed
region is proposed. The approach is based on the combined use of Genetic
Algorithms and Lyapunov equation solvers. A decentralized controller that meets
all design specifications is presented, and the simplicity of the design procedure
is demonstrated. Among the attractive features of the proposed technique is its
computational efficiency and the fact that it does not need to be initialized.
Copyright c©2005 IFAC
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1. INTRODUCTION

This paper considers the problem of robust control
of an elastic web transmission system, which ap-
pears often in industrial applications. The objec-
tive here is to transmit the web with the maximum
speed without breaking or folding it. The high
degree of coupling between tension and velocity
of the web makes it difficult to suppress the cross-
coupling influences (Koc et al., 2002). Another
important issue here is the reliability and integrity
of the control loop, which can be better achieved
with a decentralized controller structure, such
that if one control loop fails the others continue
to function safely.

It is well known that model based modern tech-
niques such as LQG and H∞ design lead to con-
trollers of the same order as the plant. More-
over, imposing structural constraints like decen-
tralized control becomes a difficult task, see e.g.
(Iwasaki, 1999) . This fact has prevented such
techniques from gaining widespread acceptance in
industrial applications. The problem with fixed-
structure design is the non-convexity of the prob-
lem (Geromel et al., 1999). There have been
many attempts to solve this problem, but com-
mon drawbacks of the approaches proposed so far
are the excessive computation time required for
the design, the sensitivity on initial values and
the conservatism of the resulting controllers. For
these reasons it turns out that in many practi-



cal situations, modern control techniques are not
considered an attractive alternative to the use of
manually-tuned PID controllers.

Control of winding systems for elastic webs has
been considered in (Koc et al., 2002), where it
was shown that applying modern control design
techniques like H∞ synthesis using Linear Matrix
Inequalities can improve the performance com-
pared to classical PID controllers. The problem
of fixed-structure controller design - which is the
main concern here - was however not considered
in this work. The method presented in this paper
is related to the approach proposed in (Farag and
Werner, 2004b), (Farag and Werner, 2004a); the
main difference is the formulation of the problem
in terms of a Lyaponuv equation rather than a
Ricatti equation, and the use of a simpler perfor-
mance measure (H2 rather than H∞). This change
helped to reduce the computation time and in-
creased the reliability of the method. On the other
hand, if a more complex control objective is de-
sired such as robust H2 with stability multiplier,
then the approach in (Farag and Werner, 2004b)
will be more suitable.

2. PLANT MODEL

This section presents a nonlinear model of the web
transmission system. The derivation of this model
is based on a set of physical laws and omitted
here for briefness, the interested reader can refer
to (Koc et al., 2002) for full details. The plant -
shown in Figure 1 - is governed by the differential
equations
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dt
= Rk(Tk+1 − Tk) + KkUk + Cf (2)

with the physical parameters

L: web length under stress,

T : tension of the elastic web,
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Fig. 1. Winding system

ε: web strain,

Rk: radius of the kth roll,

Vk: velocity of the kth roll,

Ωk: rotational speed Vk

Rk

of the kth roll,

KkUk: motor torque of the kth roll,

Jk: inertia of the kth roll,

fk: viscous friction of the kth roll,

Cf : sum of friction torques,

Tk, Tk+1: web tension before and after the roll k,

Tw, Tu: winding and unwinding tension respec-
tively

uu, uv, uw: the voltage inputs of the unwinding
motor, traction motor, and winding motor respec-
tively.

Ku, Kt, Kw: the torque constants of each motor.

E0 : a constant depending on the elasticity mod-
ulus.

The control inputs are uu, uv and uw, and the
controlled outputs are the unwinding web tension
Tu, the traction motor linear velocity V , and
winding web tension Tw. Note that a low pass
filter is added at the input of each motor to
suppress measurement noise; the use of these
filters is compulsory so they are considered as part
of the model.

The controller design technique proposed in the
next section requires a linear model of the above
nonlinear system. This model is obtained by lin-
earizing a simplified version of equations (1) and
(2), around a nominal web tension and velocity
T0, V0 respectively. A linear, time-varying state
space model of the above system can then be
written as

Emẋ = A(t)x + Bu

y = Cx

where

xT =
[

J1Ω1 T2 V2 T3 V3 T4 V4 T5 J5Ω5

]

uT =
[

uu uv uw

]

yT =

[

T2 + T3

2
V3

T4 + T5

2

]

=
[

Tu V Tw

]

Em = diag(1, L1, J2, L3, J3, L3, J4, L4, 1)
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Note that A(t) is divided into two parts just to fit
the column.

It is clear that the system matrix A(t) varies
with time due to the variation in radius and
inertia Rk(t) and Jk(t), respectively, of the rollers.
Obviously, Rk and Jk increases on the winding
roller and decreases on the unwinding roller, their
variation can be as much as 300%.

Controller Structure

To apply the design method proposed in this
paper a nominal model must be selected. The
starting phase is very important, to guarantee
good overall performance, consequently, the nom-
inal operating point is chosen with the radius and
inertia corresponding to the starting phase, (full
roller at unwinder and empty roller at winder).
A useful observation given in (Koc et al., 2002),
is that the dc gain of the transfer functions from
the inputs uu and uw to the web tensions Tu and
Tw, are inversely proportional to the radii Ru and
Rw, respectively. This observation can be used to

construct a simple gain-scheduling strategy that
reduces the influence of the variation in the roller
radius, and improves robust performance of any
designed controller. Following the gain scheduling
methodology proposed in (Koc et al., 2002), the
motor inputs uu and uw are multiplied by the
measured radii Ru and Rw respectively.

The standard H2-synthesis used in this paper does
not provide any direct tuning parameters that
can be used to improve the reference tracking
properties of the closed loop system. A standard
technique to improve the tracking capabilities of
H2 controllers is to augment the nominal model
with integral action as shown in Figure 2.
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Fig. 2. Augmented nominal control

The transfer function of the integral controller
Ki(s) and the noise rejection filter Kf (s) shown
in Figure 1 are
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The state space model of the augmented nominal
model can be derived in straight forward manner
as

ẋ = Aax + Bau

y = Cax

3. CONTROLLER DESIGN

The physical model (5) is first embedded in a
generalized plant model as shown in Figure 3, with
state-space realization

ẋ = Aax + Bww + Bau

z = Czx + Dzu

y = Cax + Dww (5)
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Fig. 3. Generalized plant

To represent an LQG cost function, the weighting
matrices Cz, Dz, Bw and Dw are selected as

Cz =

[

Q1/2

0

]

, Dz =

[

0

R1/2

]

,

Bw = [Q1/2
e 0], Dw = [0 R1/2

e ] (6)

where Q, R, Qe and Re are the usual LQG
tuning parameters. The problem considered in
this section is to determine a controllerK(s) with
state space realization

ζ̇ = AKζ + BKy
u = CKζ

(7)

such that the H2 norm of the closed loop system
is minimized. Substituting the controller (7) in (5)
gives a closed-loop system T (s) with state space
realization

˙̄x = Āx̄ + B̄ww
z = C̄z x̄

(8)

where

x̄ =

[

x
ζ

]

, Ā =

[

Aa BaCK

BKCa AK

]

B̄ =

[

Bw

BKDw

]

, C̄ = [Cz DzCK ] (9)

It is well known that the norm ‖T (s)‖2 of the
above closed loop system can be computed by first
solving

ĀP + PĀT + B̄B̄T = 0 (10)

for P , and computing

‖T (s)‖2
2 = trace C̄P C̄T

Note that the norm ‖T (s)‖2 will always be
bounded for any stabilizing controller K(s).

Hybrid Evolutionary-Algebraic (HEA)
Design Approach

We now present an algorithm that uses a com-
bination of GA and Lyaponuv equation solver
to solve the above design problem. Note that
designing a full order controller that minimizes
‖T (s)‖2 is a standard problem that, can be solved
in a straightforward manner. However, with the
controller order or structure fixed the problem
becomes difficult to solve due to its non-convexity.
In this paper both the controller order and struc-

ture are fixed by imposing the constraint that the
controller belongs to the set

K = {K(s) = diag (K1(s), K2(s), K3(s))} (11)

where

K1(s) =
b11s + b01

a21s2 + a11s + a01

K2(s) =
b12s + b02

a22s2 + a12s + a02

K3(s) =
b13s + b03

a23s2 + a13s + a03

Note that the number of parameters (decision
variables) in each of the three transfer functions
could be reduced to four by dividing all coeffi-
cients in Ki(s) by a2i, i = 1, 2, 3, respectively.
However, the redundant variables a2i are added
deliberately to facilitate the initialization of the
GA algorithm.

Let θ denote a parameter vector that contains all
controller parameters, and let Θ denote the set
of all admissible controller parameters such that
K(s) ∈ K. The design problem can be now stated
as

min
θ∈Θ,P

trace C̄(θ)PC̄T (θ)

subject to

Ā(θ)P +PĀT (θ)+B̄(θ)B̄T (θ) = 0, P > 0 (12)

Note that the number of decision variables in θ
is 15, while the number of decision variables in
P is 210. With 225 decision variables an attempt
use GA only to solve this problem is not advisable,
because evolutionary techniques are unreliable for
such large numbers of variables.

The idea now is to use GA to search for K(s)
(non-convex part); a standard Lyapunov solver
is then used to calculate the unique solution
P (convex part), to allow the computation of
the objective function trace C̄P C̄T . Note that a
positive definite solution P will always exist as
long as K(s) is a stabilizing controller and T (s)
is strictly proper. These considerations motivate
the following usage of a genetic algorithm.

Algorithm

• Generate an initial random population of
controllers {θ1(s), θ2(s), . . . , θµ(s)}

• Use the objective function

f(θi) =

{

trace C̄(θ)PC̄T (θ), if Ā is stable
κ(Ā(θ)) + β, if Ā is unstable

where κ(Ā) stands for maximum real part of
the eigenvalues of Ā, and β is a penalty (e.g.
103) for destabilizing controllers

• Use ranking to determine fitness

It turns out that starting with a complete random
population - which may contain controllers that



do not stabilize the plant - creates no problem
at all for the HEA algorithm. The above penalty
based approach enables the HEA algorithm to
search for stabilizing controllers in early genera-
tions, and to turn to the task of norm minimiza-
tion later. This property gives the HEA approach
an advantage over design techniques that cannot
be started with random initialization.

The idea of breaking the problem up into a small
non-convex part, solved by GA, and larger convex
part solved by efficient algebraic solvers, has been
presented before in (Farag and Werner, 2004b).
The advantage of splitting the problem is the
huge reduction in the size of the non-convex
part (searching over 15 rather than 225 decision
variables).

A straightforward application of the above idea
to the linear model of the elastic web system
leads initially to very slow controllers. An inter-
esting observation is the fact that although the
cost trace C̄P C̄T obtained using this approach is
close to that obtained using the standard LQG
approach, the time response is much slower. To
overcome this problem, a pole region constraint is
added to the problem formulation as follows:

min
θ∈Θ,P

trace C̄(θ)PC̄T (θ)

subject to P > 0 and

Ā(θ)P+PĀT (θ)+B̄(θ)B̄T (θ) = 0, κ(Ā(θ)) < −κ0

(13)
where κ0 > 0 is a design parameter that controls
the speed of response.

This additional constraint can be added by mod-
ifying the objective function according to

f(θi) =

{

trace C̄(θ)PC̄T (θ), if κ(Ā(θ)) < −κ0

κ(Ā(θ)) + β, if κ(Ā(θ)) ≥ −κ0

Thus the GA sees only a single objective function
f , but this objective can be either a bound on the
closed-loop pole locations or on the norm ‖T (s)‖2

2,
depending on whether κ(Ā) < −κ0 is true or
not. Experience has shown that the pole region
constraint dominates the search only for a few
early generations, while in the middle and final
stage of the search the focus is on minimizing the
norm ‖T (s)‖2

2.

4. SIMULATION AND RESULTS

The algorithm presented in the previous section
is implemented on the 15th order linear model of
the elastic web. The weighting matrices Q, Qe, R
and Re in (6) are selected as:

Q = CT C , R = ρr





1 0 0
0 ρc 0
0 0 1





Qe = BBT , Re = ρr





1 0 0
0 ρc 0
0 0 1





This selection leaves the designer with two tuning
parameters ρr and ρc, which simplifies the tuning
strategy. All results given here were obtained
using Genetic Algorithm Direct Search Toolbox

developed by MathWorks (Goldberg, 1989). The
population size and number of iterations by the
GA are 40 and 500, respectively. The computer
used is a Pentium4-2.2G with 512 MB Ram,
the average computation time is 3-5 min. Once
the controller K(s) is designed using the HEA
algorithm, a non-linear validation for its closed
loop performance is performed using the control
configuration shown on Figure 4. The pre-filter
Kr(s) is included to add a further degree of
freedom, it can be tuned easily directly on the
nonlinear simulation.

Ru

Ki(s)Ki(s)K(s)Kr(s) Plant

Kf (s)

r

Tu

V
Tw

-

Rw

Fig. 4. Closed-loop system

Figures 5 and Figure 6 show nonlinear simulation
results with a full-order LQG controller and a de-
centralized controller.The first observation is the
high performance of the full-order LQG controller.
On the other hand, for the decentralized controller
it is more difficult to suppress the cross-coupling
influences of both tension channels on the velocity
channel. The large cross-perturbation in the ve-
locity resulting from step changes in both tension
channels is due to the restricted controller struc-
ture (the controller does not see what happens in
the other channels). Nevertheless the decentral-
ized controller achieves a better performance than
the controllers presented in (Koc et al., 2002),
where it must be kept in mind however that the
results shown in the latter work represent real-
time experiments whereas the results presented
here are only nonlinear simulations.

5. CONCLUSION

Modern robust design techniques like H2 and
H∞ control can improve the achievable perfor-
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Fig. 5. Nonlinear simulation using full-order cen-
tralized controller, (dashed: reference signal,
solid: system output)
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Fig. 6. Nonlinear simulation using decentralized
controller, (Dashed: reference signal, solid:
system output)

mance compared with classical PID controllers.
But such techniques become very difficult to use
when the controller structure is fixed. This paper
illustrates a novel way of combining the power
of global search algorithms such as GA with well
established tools from linear control theory. Even
though the idea is simple, it can lead to im-
pressive results. Among the attractive features of
the approach proposed here are its computational
efficiency as well as the increased likelihood of
converging to the global minimum. Moreover, the
proposed technique does not require initializa-
tion with stabilizing controllers, which adds to
its numerical reliability. Simulation results using
a nonlinear model that has been extensively vali-
dated against experimental data confirms the high
performance of the designed controllers compared
with previously published results. The advantage
claimed here is however not only the achieved

performance but also the fact that only two tuning
parameters were used to tune this controller. In
contrast a large number of tuning parameters are
involved in tuning the shaping filters of a mixed
sensitivity loop-shaping approach. This advantage
has an important impact on the reliability of the
method presented here, since using a small num-
ber of tuning parameter leads to a reduction in
the number of the design cycles required to tune
a fixed-structure controller.
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